1,573 research outputs found

    A Semantics for Timed MSC

    Get PDF
    AbstractMessage Sequence Charts (MSC) is a graphical and textual specification language developed by ITU-T. It is widely used in telecommunication software engineering for specifying behavioral scenarios. Recently, the time concept has been introduced into MSC'2000. To support the specification and verification of real-time systems using timed MSC, we need to define its formal semantics. In this paper, we use timed lposet as a semantic model and give a formal semantics for timed MSC. We first define an event in a timed MSC as a timed lposet, then give a formal semantics for timed basic MSCs, timed MSCs with structures and high-level MSCs. In this paper, we also discuss some important issues related to timed MSC

    Towards more accurate real time testing

    Get PDF
    The languages Message Sequence Charts (MSC) [1], System Design Language1 (SDL) [2] and Testing and Test Control Notation Testing2 (TTCN-3) [3] have been developed for the design, modelling and testing of complex software systems. These languages have been developed to complement one another in the software development process. Each of these languages has features for describing, analysing or testing the real time properties of systems. Robust toolsets exist which provide integrated environments for the design, analysis and testing of systems, and it is claimed, for the complete development of real time systems. It was shown in [4] however, that there are fundamental problems with the SDL language and its associated tools for modelling and reasoning about real time systems. In this paper we present the limitations of TTCN-3 and propose recommendations which help minimise the timing inaccuracies that would otherwise occur in using the language directly

    Validation and refinement of timed MSC specifications

    Get PDF
    This thesis addresses the validation and the refinement of MSC (Message Sequence Charts) specifications at the requirement and the design phases in a software development process. The validation is necessary to ensure that an MSC specification does not contain semantic errors. The refinement provides a systematic approach to develop MSC specifications. The focus of this thesis is on timed MSC specifications, which may contain absolute and relative time constraints for specifying quantified timing requirements. To provide a foundation for analysis of MSC specifications, we develop a formal semantics for timed MSCs based on labeled partially ordered sets (lposets). We equip an lposet with two timing functions for expressing absolute and relative time constraints. The semantics of an MSC is represented by a set of lposets. The set can be obtained compositionally from the semantics of constructs contained in the MSC. Time constraints in an MSC specification may lead to inconsistencies. In such a case, the specification contains semantic errors. We study the time consistency of MSC specifications. We define the time consistency and develop sufficient and necessary conditions for the consistency. According to these conditions, algorithms are designed for checking the consistency. We also study the time consistency of high level MSCs and identify a subset of high level MSCs such that their consistency can be checked efficiently. We propose a refinement approach where we refine not only behaviors, but also time constraints specified in an MSC specification. Refining time constraints makes constraints on a system stronger, and assumptions on the environment weaker. We define refinement relations and develop algorithms to check the satisfaction of these relations. To reduce the complexity in the case of high level MSCs, we constrain the refinement rules. At last, as an outcome of our investigation of timed MSCs, we propose a new time construct as an extension of timed MSC in order to specify more timing requirements. Most of the algorithms presented in this thesis have been implemented and integrated to our set of tools MSC2SDL

    The formal, tool supported development of real time systems

    Get PDF
    The language SDL has long been applied in the development of various kinds of systems. Real-time systems are one application area where SDL has been applied extensively. Whilst SDL allows for certain modelling aspects of real-time systems to be represented, the language and its associated tool support have certain drawbacks for modelling and reasoning about such systems. In this paper we highlight the limitations of SDL and its associated tool support in this domain and present language extensions and next generation real-time system tool support to help overcome them. The applicability of the extensions and tools is demonstrated through a case study based upon a multimedia binding object used to support a configuration of time dependent information producers and consumers realising the so called lip-synchronisation algorithm

    TURTLE-P: a UML profile for the formal validation of critical and distributed systems

    Get PDF
    The timed UML and RT-LOTOS environment, or TURTLE for short, extends UML class and activity diagrams with composition and temporal operators. TURTLE is a real-time UML profile with a formal semantics expressed in RT-LOTOS. Further, it is supported by a formal validation toolkit. This paper introduces TURTLE-P, an extended profile no longer restricted to the abstract modeling of distributed systems. Indeed, TURTLE-P addresses the concrete descriptions of communication architectures, including quality of service parameters (delay, jitter, etc.). This new profile enables co-design of hardware and software components with extended UML component and deployment diagrams. Properties of these diagrams can be evaluated and/or validated thanks to the formal semantics given in RT-LOTOS. The application of TURTLE-P is illustrated with a telecommunication satellite system

    Real-time systems development with SDL and next generation validation tools

    Get PDF
    The language SDL has long been applied in the development of various kinds of systems. Real-time systems are one application area where SDL has been applied extensively. Whilst SDL allows for certain modelling aspects of real-time systems to be represented, the language and its associated tool support have certain drawbacks for modelling and reasoning about such systems. In this paper we highlight the limitations of SDL and its associated tool support in this domain and present language extensions and next generation real-time system tool support to help overcome them. The applicability of the extensions and tools is demonstrated through a case study based upon a multimedia binding object used to support a configuration of time dependent information producers and consumers realising the so called lip-synchronisation algorithm

    Synthesis of behavioral models from scenarios

    No full text

    Replica determinism and flexible scheduling in hard real-time dependable systems

    Get PDF
    Fault-tolerant real-time systems are typically based on active replication where replicated entities are required to deliver their outputs in an identical order within a given time interval. Distributed scheduling of replicated tasks, however, violates this requirement if on-line scheduling, preemptive scheduling, or scheduling of dissimilar replicated task sets is employed. This problem of inconsistent task outputs has been solved previously by coordinating the decisions of the local schedulers such that replicated tasks are executed in an identical order. Global coordination results either in an extremely high communication effort to agree on each schedule decision or in an overly restrictive execution model where on-line scheduling, arbitrary preemptions, and nonidentically replicated task sets are not allowed. To overcome these restrictions, a new method, called timed messages, is introduced. Timed messages guarantee deterministic operation by presenting consistent message versions to the replicated tasks. This approach is based on simulated common knowledge and a sparse time base. Timed messages are very effective since they neither require communication between the local scheduler nor do they restrict usage of on-line flexible scheduling, preemptions and nonidentically replicated task sets
    • 

    corecore