25,568 research outputs found

    Visual and semantic context modeling for scene-centric image annotation

    Get PDF
    Automatic image annotation enables efficient indexing and retrieval of the images in the large-scale image collections, where manual image labeling is an expensive and labor intensive task. This paper proposes a novel approach to automatically annotate images by coherent semantic concepts learned from image contents. It exploits sub-visual distributions from each visually complex semantic class, disambiguates visual descriptors in a visual context space, and assigns image annotations by modeling image semantic context. The sub-visual distributions are discovered through a clustering algorithm, and probabilistically associated with semantic classes using mixture models. The clustering algorithm can handle the inner-category visual diversity of the semantic concepts with the curse of dimensionality of the image descriptors. Hence, mixture models that formulate the sub-visual distributions assign relevant semantic classes to local descriptors. To capture non-ambiguous and visual-consistent local descriptors, the visual context is learned by a probabilistic Latent Semantic Analysis (pLSA) model that ties up images and their visual contents. In order to maximize the annotation consistency for each image, another context model characterizes the contextual relationships between semantic concepts using a concept graph. Therefore, image labels are finally specialized for each image in a scene-centric view, where images are considered as unified entities. In this way, highly consistent annotations are probabilistically assigned to images, which are closely correlated with the visual contents and true semantics of the images. Experimental validation on several datasets shows that this method outperforms state-of-the-art annotation algorithms, while effectively captures consistent labels for each image

    Hybrid image representation methods for automatic image annotation: a survey

    Get PDF
    In most automatic image annotation systems, images are represented with low level features using either global methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is beneficial in annotating images. In this paper, we provide a survey on automatic image annotation techniques according to one aspect: feature extraction, and, in order to complement existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation

    Mind the Gap: Another look at the problem of the semantic gap in image retrieval

    No full text
    This paper attempts to review and characterise the problem of the semantic gap in image retrieval and the attempts being made to bridge it. In particular, we draw from our own experience in user queries, automatic annotation and ontological techniques. The first section of the paper describes a characterisation of the semantic gap as a hierarchy between the raw media and full semantic understanding of the media's content. The second section discusses real users' queries with respect to the semantic gap. The final sections of the paper describe our own experience in attempting to bridge the semantic gap. In particular we discuss our work on auto-annotation and semantic-space models of image retrieval in order to bridge the gap from the bottom up, and the use of ontologies, which capture more semantics than keyword object labels alone, as a technique for bridging the gap from the top down

    Multimedia Markup Tools for OpenKnowledge

    No full text
    OpenKnowledge is a peer-to-peer system for sharing knowledge and is driven by interaction models that give the necessary context for mapping of ontological knowledge fragments necessary for the interaction to take place. The OpenKnowledge system is agnostic to any specific data formats that are used in the interactions, relying on ontology mapping techniques for shimming the messages. The potentially large search space for matching ontologies is reduced by the shared context of the interaction. In this paper we investigate what this means for multimedia data on the OpenKnowledge network by discussing how an existing application that provides multimedia annotation (the Semantic Logger) can be migrated into the OpenKnowledge domain

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning

    Automatic Annotation of Images from the Practitioner Perspective

    No full text
    This paper describes an ongoing project which seeks to contribute to a wider understanding of the realities of bridging the semantic gap in visual image retrieval. A comprehensive survey of the means by which real image retrieval transactions are realised is being undertaken. An image taxonomy has been developed, in order to provide a framework within which account may be taken of the plurality of image types, user needs and forms of textual metadata. Significant limitations exhibited by current automatic annotation techniques are discussed, and a possible way forward using ontologically supported automatic content annotation is briefly considered as a potential means of mitigating these limitations

    Bridging the Semantic Gap in Multimedia Information Retrieval: Top-down and Bottom-up approaches

    No full text
    Semantic representation of multimedia information is vital for enabling the kind of multimedia search capabilities that professional searchers require. Manual annotation is often not possible because of the shear scale of the multimedia information that needs indexing. This paper explores the ways in which we are using both top-down, ontologically driven approaches and bottom-up, automatic-annotation approaches to provide retrieval facilities to users. We also discuss many of the current techniques that we are investigating to combine these top-down and bottom-up approaches

    Annotating Object Instances with a Polygon-RNN

    Full text link
    We propose an approach for semi-automatic annotation of object instances. While most current methods treat object segmentation as a pixel-labeling problem, we here cast it as a polygon prediction task, mimicking how most current datasets have been annotated. In particular, our approach takes as input an image crop and sequentially produces vertices of the polygon outlining the object. This allows a human annotator to interfere at any time and correct a vertex if needed, producing as accurate segmentation as desired by the annotator. We show that our approach speeds up the annotation process by a factor of 4.7 across all classes in Cityscapes, while achieving 78.4% agreement in IoU with original ground-truth, matching the typical agreement between human annotators. For cars, our speed-up factor is 7.3 for an agreement of 82.2%. We further show generalization capabilities of our approach to unseen datasets
    corecore