3,202 research outputs found

    Self-stabilizing tree algorithms

    Full text link
    Designers of distributed algorithms have to contend with the problem of making the algorithms tolerant to several forms of coordination loss, primarily faulty initialization. The processes in a distributed system do not share a global memory and can only get a partial view of the global state. Transient failures in one part of the system may go unnoticed in other parts and thus cause the system to go into an illegal state. If the system were self-stabilizing, however, it is guaranteed that it will return to a legal state after a finite number of state transitions. This thesis presents and proves self-stabilizing algorithms for calculating tree metrics and for achieving mutual exclusion on a tree structured distributed system

    Self-Stabilization in the Distributed Systems of Finite State Machines

    Get PDF
    The notion of self-stabilization was first proposed by Dijkstra in 1974 in his classic paper. The paper defines a system as self-stabilizing if, starting at any, possibly illegitimate, state the system can automatically adjust itself to eventually converge to a legitimate state in finite amount of time and once in a legitimate state it will remain so unless it incurs a subsequent transient fault. Dijkstra limited his attention to a ring of finite-state machines and provided its solution for self-stabilization. In the years following his introduction, very few papers were published in this area. Once his proposal was recognized as a milestone in work on fault tolerance, the notion propagated among the researchers rapidly and many researchers in the distributed systems diverted their attention to it. The investigation and use of self-stabilization as an approach to fault-tolerant behavior under a model of transient failures for distributed systems is now undergoing a renaissance. A good number of works pertaining to self-stabilization in the distributed systems were proposed in the yesteryears most of which are very recent. This report surveys all previous works available in the literature of self-stabilizing systems

    Locally Self-Adjusting Skip Graphs

    Full text link
    We present a distributed self-adjusting algorithm for skip graphs that minimizes the average routing costs between arbitrary communication pairs by performing topological adaptation to the communication pattern. Our algorithm is fully decentralized, conforms to the CONGEST\mathcal{CONGEST} model (i.e. uses O(logn)O(\log n) bit messages), and requires O(logn)O(\log n) bits of memory for each node, where nn is the total number of nodes. Upon each communication request, our algorithm first establishes communication by using the standard skip graph routing, and then locally and partially reconstructs the skip graph topology to perform topological adaptation. We propose a computational model for such algorithms, as well as a yardstick (working set property) to evaluate them. Our working set property can also be used to evaluate self-adjusting algorithms for other graph classes where multiple tree-like subgraphs overlap (e.g. hypercube networks). We derive a lower bound of the amortized routing cost for any algorithm that follows our model and serves an unknown sequence of communication requests. We show that the routing cost of our algorithm is at most a constant factor more than the amortized routing cost of any algorithm conforming to our computational model. We also show that the expected transformation cost for our algorithm is at most a logarithmic factor more than the amortized routing cost of any algorithm conforming to our computational model

    A self–stabilizing algorithm for finding weighted centroid in trees

    Get PDF
    In this paper we present some modification of the Blair and Manne algorithm for finding the center of a tree network in the distributed, self-stabilizing environment. Their algorithm finds n/2 -separator of a tree. Our algorithm finds weighted centroid, which is direct generalization of the former one for tree networks with positive weights on nodes. Time complexity of both algorithms is O(n2), where n is the number of nodes in the network

    Self-Stabilizing Computation of 3-Edge-Connected Components

    Get PDF

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure
    corecore