
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: wucse-2009-8

2009

Self-Stabilizing Computation of 3-Edge-Connected Components Self-Stabilizing Computation of 3-Edge-Connected Components

Abusayeed Saifullah and Yung Tsin

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Saifullah, Abusayeed and Tsin, Yung, "Self-Stabilizing Computation of 3-Edge-Connected Components"
Report Number: wucse-2009-8 (2009). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/31

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233235046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/31?utm_source=openscholarship.wustl.edu%2Fcse_research%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Department of Computer Science & Engineering

2009-8

Self-Stabilizing Computation of 3-Edge-Connected Components

Authors: Abusayeed Saifullah and Yung Tsin

Corresponding Author: saifullaha@cse.wustl.edu

Web Page: http://www.cse.wustl.edu/~saifullaha

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Self-Stabilizing Computation of 3-Edge-Connected Components

Abusayeed M. Saifullah
Computer Science and Engineering

Washington University
St. Louis, Missouri, USA

Email: saifullaha@cse.wustl.edu

Yung H. Tsin ∗

School of Computer Science
University of Windsor

Windsor, Ontario, Canada
Email: peter@uwindsor.ca

∗Research partially supported by NSERC under grant NSERC-781103.

ABSTRACT

A self-stabilizing algorithm is a distributed algorithm that can start from any initial (legitimate

or illegitimate) state and eventually converge to a legitimate state in finite time without being

assisted by any external agent. In this paper, we propose a self-stabilizing algorithm for finding the

3-edge-connected components of an asynchronous distributed computer network. The algorithm

stabilizes in O(dn∆) rounds and every processor requires O(n log ∆) bits, where ∆(≤ n) is an upper

bound on the degree of a node, d(≤ n) is the diameter of the network, and n is the total number

of nodes in the network. These time and space complexity are at least a factor of n better than

those of the previously best-known self-stabilizing algorithm for 3-edge-connectivity. The result of

the computation is kept in a distributed fashion by assigning, upon stabilization of the algorithm,

a component identifier to each processor which uniquely identifies the 3-edge-connected component

to which the processor belongs. Furthermore, the algorithm is designed in such a way that its time

complexity is dominated by that of the self-stabilizing depth-first search spanning tree construction

in the sense that any improvement made in the latter automatically implies improvement in the

time complexity of the algorithm.

KEY WORDS

Distributed system, fault-tolerance, self-stabilization, depth-first search tree, cut-pair, 3-edge-connected

component.

2

1 Introduction

Self-stabilization, first proposed by Dijkstra [6, 7], is a theoretical framework of non-masking fault-

tolerance for distributed systems. A self-stabilizing algorithm is a distributed algorithm that can

start from any initial (legitimate or illegitimate) state and eventually converge to a legitimate state

in finite time without being assisted by any external agent. Thus a self-stabilizing system is capable

of tolerating any unexpected transient fault. Many fundamental as well as some advanced graph-

theoretic problems in computer network have been studied in the context of self-stabilization over

the last decade [1, 2, 3, 5, 10, 11, 12, 13, 14, 15, 20].

The property of edge-connectivity requires considerable attention in graph theory since it mea-

sures the extent to which a graph is connected. In telecommunication systems and transportation

networks, this property represents the reliability of the network in the presence of link failures.

Moreover, when communication links are expensive, it plays a vital role in minimizing the commu-

nication cost. Finding k-edge-connected components, k ≥ 2, is an important issue in distributed

computer networks. In a distributed system modelled as an undirected connected graph G = (V,E),

a k-edge-connected component is defined as a maximal subset X ⊆ V having the local edge-

connectivity at least k for any x, y ∈ X, where the local edge-connectivity for two nodes x, y

of G is the minimum number of edges in M ⊆ E such that x and y are disconnected in G−M , the

graph after removing the edge set M from G.

Several self-stabilizing algorithms for 2-edge-connectivity (as well as 2-vertex-connectivity) are

available [3, 5, 12, 13, 14, 20]. Among them, the most efficient one is given by Tsin [20] which

stabilizes in O(dn∆) rounds and every processor requires O(n log ∆) bits, where ∆(≤ n) is an upper

bound on the degree of a node, d(≤ n) is the diameter of the network, and n is the total number

of nodes in the network. The only known self-stabilizing algorithm for 3-edge-connectivity [17]

is a composition of three algorithms that run concurrently, where the first algorithm stabilizes in

O(dn∆) rounds and each of the other two stabilizes in O(n) rounds in the worst case. The first

algorithm of the composition constructs a special spanning tree of the system, called a first depth-

first search tree, based on the self-stabilizing depth-first search algorithm of Collin et al. [4]. In the

second algorithm, every 3-edge-connected component is computed at a specific node that belongs to

the component. The third algorithm is dedicated to propagate the results computed in the second

phase to every other node. Thus, multiple phases comprise the 3-edge-connectivity algorithm where

the computation of every phase, except the first phase, depends on the results of the preceding

3

phase. The space complexity of the algorithm is O(n2 log ∆) bits per processor. The drawbacks

of a composite self-stabilizing algorithm have been explained by Tsin [20]. Specifically, the time

complexity of a composite algorithm, in the worst case, is the product of the time complexities

of the algorithms that make up the composite algorithm if the time complexity is measured in

terms of step. If the time complexity is measured in terms of round, although the time complexity

of the composite algorithm is the sum of the time complexities of the algorithms that make up

the composite algorithm, however, each round of the composite algorithm will be a non-constant

factor larger than the round of the non-composite algorithm that solves the same problem. This

non-constant factor is the product of the time complexities of those algorithms that must run

concurrently with the algorithm.

In this paper, we present a self-stabilizing algorithm, with time and space complexity substan-

tially improved, for 3-edge-connectivity of an asynchronous distributed computer network. The

algorithm is non-composite in the sense that it does not require other self-stabilizing algorithms

running concurrently with it. The time complexity of the algorithm is O(dn∆) rounds and every

processor requires only O(n log ∆) bits. Note that these time and space complexity are domi-

nated by the part of the algorithm that constructs a depth-first search spanning tree based on

the algorithm of Collin et al. [4]. The remaining part of the algorithm that determines the 3-

edge-connected components takes only O(n∆) rounds. In other words, the time complexity of the

algorithm is max{Tdfs(n), O(n4)}, where Tdfs(n) is the time complexity for constructing a depth-

first search tree for a network of n nodes. Since Tdfs(n) = O(dn∆) for the algorithm of Collin et

al. [4], the stated O(dn∆) time bound thus follows. Hence, any improvement made in the time or

space complexity for constructing a depth-first search tree will automatically imply an improvement

in our algorithm. When the algorithm stabilizes, each processor is assigned a component identifier

to uniquely identify the 3-edge-connected component to which the processor belongs.

2 Some Definitions from Graph Theory

For ease of explanation of the proposed algorithm, some definitions from graph theory are in order.

A connected undirected graph is denoted by G = (V, E), where V is the set of nodes and E is

the set of edges or links. Two nodes are neighboring if they are connected by an edge and the

two nodes are the end-nodes of the edge. In G, a non-empty set of edges M , M ⊆ E, is a cut or

an edge-separator if the total number of components in G−M is greater than that in G and no

4

proper subset of M has this property, where G −M represents the graph after removing M from

G. If |M | = k, i.e. the number of edges in M is k, then M is called a k-cut. The only edge in a

1-cut is called a bridge. A cut with two edges is called a cut-pair or separation-pair. A graph

G is k-edge-connected if every cut of G has at least k edges. The local edge-connectivity, denoted

by λ(x, y; G), for two nodes x, y of G is the minimum number of edges in M ⊆ E such that x and

y are disconnected in G−M . A maximal subset X ⊆ V such that λ(x, y; G) ≥ k for any x, y ∈ X

is called a k-edge-connected component of G.

A depth-first search over an undirected connected graph G generates a spanning tree of G called

a depth-first search tree. It labels every edge either as a tree edge or as a non-tree edge. The

search also assigns a distinct number to each node v, called depth-first search number of v,

denoted by dfs(v), which is the order in which the node is visited first time during the search.

The root of the tree is denoted by r. The terms spanning tree, path, parent, child, ancestor,

descendant with respect to a spanning tree are very common in graph theory and their definitions

can be found in [9].

In a depth-first search spanning tree of G, the set of children of a node v ∈ V is denoted by

C(v). If C(v) = ∅, then v is a leaf node. Otherwise, v is a non-leaf node. A root-to-leaf path

is a path that connects the root r to a leaf node. A u-v tree path is a path in the tree connecting

nodes u and v. The set of ancestors and the set of descendants of node v are denoted by

Anc(v) and Des(v), respectively. The sets Anc(v)− {v} and Des(v)− {v} are called the set of

proper ancestors of v and the set of proper descendants of v, respectively. A subtree rooted

at a node u, denoted by T (u), in a tree T is the subgraph of T induced by Des(u). For a tree edge

(u, v), we shall assume that u is the parent of v, while for a non-tree edge (s, t), we shall assume

that t is an ancestor of s in the tree. A tree edge (u, v) is called the parent link of v and a child

link of u. An outgoing non-tree edge of any node v connects v to one of its proper ancestors

while an incoming non-tree edge of v connects v to one of its proper descendants. Out(v) and

In(v) represent the set of outgoing non-tree edges of v and the set of incoming non-tree

edges of v, respectively.

Lemma 2.1. [16] If nodes a and b are 3-edge-connected and nodes b and c are 3-edge-connected,

then nodes a and c are 3-edge-connected.

5

3 Computational Model

We adopt the model used by Collin and Dolev [4] and Tsin [20]. The distributed system is rep-

resented by an undirected connected graph G = (V, E). The set of nodes V in G represents the

set of processors {v1, v2, · · · , vn}, where n is the total number of processors in the system and E

represents the set of bidirectional communication links connecting the processors. We shall use

the terms node and processor (edge and link, respectively) interchangeably throughout this paper.

There is at most one edge between any two nodes. We assume that the graph is bridgeless.

All the processors, except v1, are anonymous. The processor v1 is a special processor and is

designated as the root. For the processors vi, 2 ≤ i ≤ n, the subscripts 2, · · · , n are used for ease

of notation only and must not be interpreted as identifiers. Two processors are neighboring if they

are connected by a link. The processors run asynchronously and the communication facilities are

limited only between the neighboring processors. Communication between the neighbors is carried

out using shared communication registers (called registers throughout this paper). Each

register is serializable with respect to read and write operations. Every processor vi, 1 ≤ i ≤ n,

contains a register. A processor can both read and write to its own register. It can also read the

registers of the neighboring processors but cannot write to those registers. The contents of the

registers are divided into fields. Each processor vi orders its edges by some arbitrary ordering αi.

For any edge e = (vi, vj), αi(j) (αj(i), respectively) denotes the edge index of e according to αi (αj ,

respectively). Furthermore, for every processor vi and any edge e = (vi, vj), vi knows the value of

αj(i).

We consider a processor and its register to be a single entity, thus the state of a processor

fully describes the value stored in its register, program counter, and the local variables. Let χi

be the set of possible states of processor vi. A configuration c ∈ (χ1 × χ2 × · · ·χn) of the

system is a vector of states, one for each processor. Execution of the algorithm proceeds in steps

(or atomic steps) using read/write atomicity. An atomic step of a processor consists of an

internal computation followed by either read or write, but not both. Processor activity is managed

by a scheduler (also called daemon). At any given configuration, the scheduler activates a single

processor which executes a single atomic step. An execution of the system is an infinite sequence

of configurations < = (c0, c1, · · · , ci, ci+1, · · ·) such that, for i ≥ 0, configuration ci+1 can be

reached from configuration ci by executing one atomic step. A fair execution is an infinite

execution in which every processor executes atomic steps infinitely often. A suffix of a sequence of

6

configurations (c0, c1, · · · , ci, ci+1, · · ·) is a sequence (ck, ck+1, · · ·), where k ≥ 0; the finite sequence

(c0, c1, · · · , ck−1) is a prefix of the sequence of configurations. A task is defined by a set of

executions, called legal executions. A distributed algorithm is self-stabilizing for a task if

every fair execution of the algorithm has a suffix belonging to the set of legal executions of that

task. The time complexity of the algorithm is expressed in terms of rounds [8]. The first round

of an execution < is the shortest prefix of < in which every processor executes at least one step.

Let < = <1<2 such that <1 is the prefix consisting of the first k rounds of <. Then the (k + 1)-th

round of < is the first round of <2.

4 Basis of the Algorithm

It is easily verified that if two edges, e and e′, form a cut-pair in graph G, then at least one of them

is a tree edge in a depth-first search spanning tree of G. Furthermore, if both e and e′ are tree

edges, then they lie on a common root-to-leaf path; if one of them, say e′, is a non-tree link then

link e must lie on the tree-path connecting the two end-nodes of e′.

The proposed algorithm is based on depth-first search. In a depth-first search tree, for each

node v ∈ V , we compute two terms, low1(v) and low2(v), which were introduced in [18] and [19],

respectively (Figure 1). (Notations used in Definitions 1 and 4.1 below have been introduced in

Section 2.)

Definition 1. low1(v) = min({dfs(v)} ∪ {low1(x)|x ∈ C(v)} ∪ {dfs(s)|(v, s) ∈ Out(v)});

Definition 2. low2(v) =





min({low1(x)|x ∈ C(v)− {w}} ∪ {dfs(s)|(v, s) ∈ Out(v)} ∪ {dfs(v)}),

if ∃w ∈ C(v) such that low1(v) = low1(w);

min({ low1(x)|x ∈ C(v)} ∪ {dfs(s)|(v, s) ∈ Out(v) ∧ s 6= low1(v)}∪

{dfs(v)}), otherwise ;

Since every depth-first search number is unique in a depth-first search tree, for any node v, the

notation dfs(v) will often be used to denote the node v for ease of presentation of our algorithm.

The following lemma is easily verified.

Lemma 4.1. Every node v is 3-edge-connected to low2(v).

Definition 3. An incident link (v, w) of a node v is a to-low link of v if w ∈ C(v) and low1(w) =

low1(v), or (v, w) ∈ Out(v) and dfs(w) = low1(v). In the former case, node w is called a lowchild

of v.

7

 r low1(v)

 low2(v)

 v

 r

 s In depth-first search tree,
 non-tree edges are shown
 by dotted lines

 v

 ((v, s) is an outgoing non-tree edge of v)

Figure 1: An illustration of low1(v) and low2(v) for v ∈ V (In the figure depth-first search starts from the
node r)

Note that to-low link (lowchild, respectively) of a node is non-unique. However, in the algorithm

to be presented below, the first incident link from which node v receives the final value of low1(v) is

designated as the to-low link of v; the corresponding lowchild, if exists, is designated as the lowchild

of v.

Definition 4. The to-low path of node v is the longest path starting from v and consisting of

to-low links of descendants of v.

Lemma 4.2. The to-low path of v is the v − low1(v) path in which every link is a tree link except

the last one.

Proof: By induction on the length of the to-low path.

The correctness of the proposed algorithm is based on the following characterization theorem

for cut-pairs which is a generalization of Theorem 1 in [19].

Theorem 4.3. Given a depth-first search tree rooted at r, two edges e = (v, w) and e′ = (x, y)

form a cut-pair if and only if (assuming without loss of generality that y is an ancestor of v)

(i) for every node u lying on the y − v tree path, there does not exist an incoming non-tree link

(s, u) such that s is a descendant of w, and

(ii) if (x, y) is a tree link, then for every node u lying on the r − x tree path, there does not exist

an incoming non-tree link (s, u) such that s is a descendant of y but not of w.

Proof: Similar to the proof of Theorem 1 in [19].

Corollary 4.3.1. Let (x, y) and (v, w) form a cut-pair such that (x, y) is a tree link and y is an

ancestor of v. Then (v, w) must lie on the to-low path of y.

8

Corollary 4.3.2. Let nodes a, b, c, and d be such that a is a proper ancestor of b, b is an

ancestor of c, and c is an ancestor of d. Suppose a and c are 3-edge-connected and either b and

d are 3-edge-connected or ∃(s, b) ∈ In(b) such that s is a descendant of d. Then b and c are

3-edge-connected.

5 Description of the Self-Stabilizing 3-Edge-Connectivity Algo-

rithm

To determine the 3-edge-connected components, we shall identify a unique node in each 3-edge-

connected component and use the identity of that node to label all the nodes in that 3-edge-

connected component. We shall first give a characterization of those nodes. For ease of explanation,

we shall use a ≺ b (a ¹ b, respectively) to denote ‘node a is a proper ancestor (ancestor, respectively)

of node b’.

Lemma 5.1. Let u be a node such that the parent link of u does not form a cut-pair with any link in

T (u) (the subtree rooted at u) or any non-tree link having an end-node in T (u). Then low2(u) ≺ u

or there exists a sequence of nodes wi, 1 ≤ i ≤ k, on the to-low path of u such that (Figure 2):

(i) low2(w1) ≺ u ≺ w1;

(ii) w1 ¹ w2 and there is a non-tree link (a, b) such that u ¹ b ≺ w1 while w2 is the closest

ancestor of a on the to-low path of u;

(iii) b ¹ w3 ≺ w1 and low2(w3) ≺ b;

(iv) low2(w3) ¹ w4 ≺ b and low2(w4) ≺ low2(w3);

(v) low2(wi−1) ¹ wi ≺ low2(wi−2), 5 ≤ i ≤ k, and low2(wi) ≺ low2(wi−1), 5 ≤ i ≤ k;

(vi) low2(wk) = u.

Proof: By Lemma 4.2, there exists a non-tree link, (z, low1(u)), on the to-low path of u. By

assumption, the link (z, low1(u)) does not form a cut-pair with the parent link of u. Therefore, by

Theorem 4.3, there exists a non-tree link (s, t) such that t ≺ u ¹ s. If s is not also a descendant of

the lowchild of u or u has no lowchild, then we immediately obtain low2(u) ≺ u.

Suppose u has a lowchild and s is a descendant of the lowchild of u for any of the aforementioned

(s, t) non-tree links. Then low2(u) = u. Of all these (s, t) links, we choose one for which the closest

ancestor of s on the to-low path of u is closest to u and let w1 be that ancestor of s. This implies

that there does not exist a node w(6= w1) on the u − w1 tree-path such that low2(w) ≺ u. It

9

follows that there is no non-tree link (s, t) such that t ≺ u while u ¹ s and w1 ¹/ s. Moreover,

low2(w1) ≺ u ≺ w1.

Since by assumption, the parent link of u and the parent link of w1 do not form a cut-pair,

there must exist a non-tree link (s, t) such that u ¹ t ≺ w1 while w1 ¹ s. Let (a, b) be one of these

(s, t) links such that b is closest to u and let the closest ancestor of a on the to-low path of u be

w2. If b = u, we have the desired sequence.

Suppose b 6= u. Since the parent link of u and the parent link of b do not form a cut-pair, by

Theorem 4.3, there must exist a non-tree link (s, t) such that u ¹ t ≺ b while b ¹ s. Let w be

the closest ancestor of s on the to-low path of u. Then low2(w) ≺ b. Moreover, from the way we

determine w2, node w must lie on the b−w1 tree-path, excluding w1. Now, of all the aforementioned

w nodes, let w3 be one such that low2(w3) is closest to u. Then low2(w3) ≺ b.

If low2(w3) = u, we have the desired sequence. Otherwise, as the parent link of u and the

parent link of low2(w3) do not form a cut-pair, by Theorem 4.3, there must exist a non-tree link

(s, t) such that u ¹ t ≺ low2(w3) while low2(w3) ¹ s. Let w be the closest ancestor of s on the

to-low path of u. Then low2(w) ≺ low2(w3). Moreover, by the way we determine wi, 2 ≤ i ≤ 3,

node w must lie on the low2(w3) − b tree-path, excluding b. Now, of all the aforementioned w

nodes, let w4 be one such that low2(w4) is closest to u. Then low2(w4) ≺ low2(w3).

If low2(w4) = u, we have the desired sequence. Otherwise, as the parent link of u and the parent

link of low2(w4) do not form a cut-pair, by Theorem 4.3, there must exist a non-tree link (s, t) such

that u ¹ t ≺ low2(w4) while low2(w4) ¹ s. Let w be the closest ancestor of s on the to-low path

of u. Then low2(w) ≺ low2(w4). Moreover, from the way we determine wi, 2 ≤ i ≤ 4, node w must

lie on the low2(w4) − low2(w3) tree-path, excluding low2(w3). Now, of all the aforementioned w

nodes, let w5 be one such that low2(w5) is closest to u. Then low2(w5) ≺ low2(w4).

If low2(w5) = u, we have the desired sequence. Otherwise, by repeating the above argument,

we will obtain the desired sequence.

Theorem 5.2. A node u is an ancestor of all the other nodes in the 3-edge-connected component

it belongs to if and only if the parent link of u forms a cut-pair with some link in T (u) or having

an end-node in T (u).

Proof: Suppose the parent link of u does not form a cut-pair with any link in T (u) or having

an end-node in T (u). By Lemma 5.1, either low2(u) ≺ u or there exists a sequence of nodes

wi, 1 ≤ i ≤ k, on the to-low path of u satisfying Conditions (i)-(vi). In the former case, low2(u)

10

 Low1(u)

u

lowchild(u)

parent(u)

2
w

1w

k-2x
i-3w

tree-path

tree link

non-tree link

Low2(w)1

=Low2(w)k

k-1
Low2(w)

wk

wk-1

k-2Low2(w)

z

3
w

a

b

3
Low2(w)

4
w

Low2(u)

Figure 2: An Illustration of Lemma 5.1

is not a descendant of u although it is 3-edge-connected to u owing to Lemma 4.1. In the latter

case, as low2(w1) ≺ b ≺ w1 ¹ w2 (Figure 2) and w1 and low2(w1) are 3-edge-connected owing to

Lemma 4.1, by Corollary 4.3.2, nodes b and w1 are 3-edge-connected. But then, by Lemma 2.1,

low2(w1) and b are 3-edge-connected. Similarly, as low2(w3) ≺ b ¹ w3 ≺ w2, nodes b and w3 are

3-edge-connected which implies that b and low2(w3) are 3-edge-connected. For i, 4 ≤ i ≤ k, since

low2(wi) ≺ low2(wi−1) ¹ wi ≺ wi−1 and wi is 3-edge-connected to low2(wi), nodes low2(wi−1) and

wi are 3-edge-connected which implies that low2(wi) and low2(wi−1) are 3-edge-connected. It then

follows from Lemma 2.1 that low2(w1) is 3-edge-connected to low2(wk) = u. As low2(w1) ≺ u,

node u is thus 3-edge-connected to a non-descendant node.

Suppose the parent link of u forms a cut-pair with a link in T (u) or having an end-node in

T (u). By Theorem 4.3, it is easily verified that for any node w outside T (u), there are at most

two edge-disjoint paths connecting u and w: one passing through the parent link of u; the other

passing through the link that forms the cut-pair with the parent link of u. Hence, all the nodes

that are 3-edge-connected to u are in T (u).

Definition 5. The representative node of a 3-edge-connected component is the node in that com-

ponent that is an ancestor of all the other nodes in that component in a depth-first search spanning

tree. For each node w, the representative node of the 3-edge-connected component containing w is

denoted by reprenode(w).

Owing to Theorem 5.2, every node u whose parent link does not form a cut-pair with some link

11

in T (u) or some link having an end-node in T (u) is a representative node. It remains to find an

effective way of determining reprenode(u) at every node u.

Definition 6. A sequence of ordered pairs of nodes, (x1, q1), (x2, q2), · · · , (xk, qk), is in nested

order if xj+1 is an ancestor of xj; qj+1 is a descendant of qj, 1 ≤ j < k, and node xk is a

descendant of qk.

Definition 7. Two ordered pairs of nodes (u, v) and (x, y) interlace if v is an ancestor of y, y is

an ancestor of u, and u is an ancestor of x.

In order to determine the representative node of every 3-edge-connected component, every node

v maintains a sequence of ordered pairs of nodes, Sv : (x1, q1), (x2, q2), · · · , (xk, qk), in nested order

such that node v is an ancestor of xk and a descendant of qk. Furthermore, xi, 1 ≤ i ≤ k, and qi

are 3-edge-connected to each other and all nodes xj , 1 ≤ j ≤ k, lie on the to-low path of v. The

sequence indicates that the parent link of q1 has the potential of forming a cut-pair with a link on

the to-low path of x1, and the parent link of qi, 2 ≤ i ≤ k, has the potential of forming a cut-pair

with a link on the xi−1 − xi tree-path. Therefore, each qi, 1 ≤ i ≤ k, is a potential representative

node of a 3-edge-connected component.

The sequence Sv is constructed as follows: node v reads the sequence of node-pairs, Sw :

(x1, q1), (x2, q2), ..., (xk, qk), k ≥ 0, from its lowchild w; if v has no lowchild, then Sw is an empty

sequence. Node v then modifies Sw so as to produce Sv as follows:

(i) Node v calculates next(v) which is defined as:

Definition 8.

Let Sw : (x1, q1), (x2, q2), ..., (xk, qk), k ≥ 0.

next(v) = min≺({low2(v)} ∪ {qj |∃(s, v) ∈ In(v) such that (xj , qj) interlaces with (s, v)}).

Specifically, next(v) is either the node low2(v) or the node qf with the smallest index f such

that (xf , qf) interlaces with some incoming non-tree link of v. Node v then removes every

node-pair (xi, qi) from Sw such that qi is a proper descendant of next(v). This is because, by

Theorem 4.3, the parent link of qi cannot form a cut-pair with a link lying on the xi−1 − xi

path and hence is no longer a potential representative node of a 3-edge-connected component.

(ii) If next(v) = v, then node v is the representative node of a 3-edge-connected component (see

Theorem 5.4 below). Otherwise, if next(v) = qf , then the node-pair (xf , qf) is replaced by

12

(v, next(v)), and if next(v) ≺ qf , then (v, next(v)) is simply added to Sw as the innermost

node-pair. This is because the parent link of next(v) has the potential of forming a cut-pair

with some link lying on the v − xf−1 tree-path. In either case, the modified Sw becomes Sv.

Lemma 5.3. For every node u, next(u) is 3-edge-connected to u.

Proof: If u is a leaf node, then next(u) = low2(u). By Lemma 4.1, node u is 3-edge-connected to

next(u).

Let u be a non-leaf node. Suppose next(w) is 3-edge-connected to w, for every proper descendant

w of u. If u has no incoming non-tree link interlacing with an (xj , qj) in the nested sequence of

its lowchild such that qj ≺ low2(u), then next(u) = low2(u) which implies that next(u) is 3-

edge-connected to u. Otherwise, let f be the smallest index such that (xf , qf) interlaces with

some (s, v) ∈ In(v). Then next(u) = qf . Since xf is a proper descendant of u, next(xf) is 3-edge-

connected to xf by assumption. By Corollary 4.3.2, u is 3-edge-connected to xf . But next(xf) = qf ;

therefore xf is 3-edge-connected to qf . By Lemma 2.1, u is 3-edge-connected to qf which is next(u).

The lemma thus follows.

Theorem 5.4. Node u is a representative node if and only if next(u) = u.

Proof: Suppose u is not a representative node. By Theorem 5.2, the parent link of u does not

form a cut-pair with any link in T (u) or having an end-node in T (u). By Lemma 5.1, low2(u) ≺ u

or there exists a sequences of nodes wi, 1 ≤ i ≤ k, on the to-low path of u satisfying Conditions

(i)-(vi). In the former case, as next(u) ¹ low2(u) by definition, we thus have next(u) ≺ u.

In the latter case, low2(w1) ≺ u implies that next(w1) ≺ u. Since the non-tree link (a, b)

interlaces with the node-pair (w1, low2(w1)), it must interlace with either (w1, next(w1)) or a

node-pair (xj , qj) such that xj lies on the b − w1 tree-path while qj ¹ next(w1). It follows that

next(b) ¹ next(w1) which implies that next(b) ≺ u. Similarly, as (w3, low2(w3)) interlaces with

(b, next(b)), next(low2(w3)) ¹ next(b) which implies that next(low2(w3)) ≺ u. For i, 4 ≤ i ≤ k, as

(wi, low2(wi)) interlaces with (low2(wi−1), next(low2(wi−1))), next(low2(wi)) ¹ next(low2(wi−1)).

But next(low2(wi−1)) ≺ u. Therefore, next(low2(wi)) ≺ u. Since low2(wk) = u, we thus have

next(u) ≺ u.

Suppose u is a representative node. By Theorem 5.2, the parent link of u forms a cut-pair with

some link in T (u) or having an end-node in T (u). Let the link be (v, w). By Theorem 4.3, there is

no (s, v) ∈ In(v) such that w ¹ s if w is the lowchild of v, and there is no non-tree link (s, t) such

13

that t ≺ u while u ¹ s and w ¹/ s. It follows that there is no incoming non-tree link of v interlacing

with some node-pair in Sw and u ¹ low2(v). As a result, u ¹ next(v). Let x be a proper ancestor

of v on the u− v tree-path. Suppose u ¹ next(y) for every proper descendant y of x lying on the

u−v tree-path. As with v, u ¹ low2(x) and there is no (s′, x) ∈ In(x), such that w ¹ s′. It follows

that every incoming non-tree link of x can only interlace with node pairs (xj , qj) in the sequence

of the lowchild of x such that xj lies on the x− v tree-path. Let f be the smallest index such that

(xf , qf) interlaces with some incoming non-tree link of x. Then u ¹ next(xf) by assumption. But

next(xf) = qf . Therefore, u ¹ qf . It follows that u ¹ min≺{low2(x), qf} = next(x). When x = u,

we have u ¹ next(u).

Since next(u) ¹ u by definition, we thus have next(u) = u.

6 Adoption of Self-Stabilization

Since our algorithm is based on depth-first search, we shall use the self-stabilizing depth-first

search algorithm of Collin and Dolev [4] to construct a depth-first search spanning tree of the given

network. To make our presentation self-contained, we shall give a brief overview of their algorithm.

In the self-stabilizing depth-first search algorithm of Collin and Dolev, every processor vi has a

field, denoted by pathi, in its register. At any point of time during the execution of the algorithm,

pathi contains the sequence of indices of the links on a path connecting the root v1 with node

vi. The algorithm uses a lexicographical order relation ≺ on the path representation. Specifically,

pathi ≺ pathj if and only if pathj = pathi ⊕ s, for some s, where ⊕ is the concatenation operator.

During the execution of the algorithm, the root processor v1 repeatedly writes ⊥ in its path1 field

and, in the lexicographical order relation, ⊥ is the minimal element. The remaining processors

repeatedly calculate the smallest (with respect to the lexicographical order ≺) path connecting v1

with themselves by reading the path values from the registers of their neighboring processors and

store the calculated result in the path field of their own registers. When the algorithm stabilizes,

the last links on the smallest paths of vi, i ≥ 2, form a depth-first search tree of the network, called

the first depth-first search tree.

Since in the first depth-first search tree, a node vj is an ancestor of a node vi if pathj ≺ pathi,

and vj is the parent node of vi if vj is the unique neighbor of vi such that pathi = pathj ⊕ αj(i),

pathi can play the role of dfs(vi). The definitions of low1 and low2 can thus be rewritten as follows

(where function min≺ returns the lexicographically minimum path): ∀vi, 1 ≤ i ≤ n,

14

Definition 9. low1i = min≺({pathi} ∪ {low1j |vj ∈ C(vi)} ∪ {pathj |(vi, vj) ∈ Out(vi)});

Definition 10. low2i =





min≺({low1j |vj ∈ C(vi)− {vk}} ∪ {pathj |(vi, vj) ∈ Out(vi)} ∪ {pathi}),

if ∃vk ∈ C(vi) such that low1i = low1k;

min≺({low1j)|vj ∈ C(vi)} ∪ {pathj |(vi, vj) ∈ Out(vi) ∧ pathj 6= low1i}∪

{pathi}), otherwise.

The degree of a node vi, denoted by δi, is the number of incident links on vi. A string s′ is a

prefix of a string s if (∃s′′)(s = s′ ⊕ s′′). Once the depth-first search tree is constructed, at each

node vi, the type of each incident link (vi, vj) (or (vj , vi)) can be determined by pathi, pathj , αi(j),

and αj(i) as follows:

• The link (vj , vi) is the parent link if and only if pathi = pathj ⊕ αj(i);

• The link (vi, vj) is a child link if and only if pathj = pathi ⊕ αi(j);

• The link (vi, vj) is an outgoing non-tree edge if and only if (∃s)((pathi = pathj ⊕ s)∧(s 6=
αj(i)));

• The link (vj , vi) is an incoming non-tree edge if and only if (∃s)((pathj = pathi⊕ s)∧(s 6=
αi(j))).

To incorporate our method of determining 3-edge-connected components into the self-stabilizing

algorithm of Collin et al. [4], we must explain how to compute the various values such as low1, low2,

and next based on the depth-first search tree, henceforth denoted by Tdfs, constructed by their

algorithm.

Along with the pathi field, every processor vi, i ≥ 2, maintains some additional fields: low1i

(Definition 9), low2i (Definition 10), nestedpathi, nexti, rtcci, tcci in its register. The special

processor v1 (root) maintains only the fields rtcc1 and tcc1 in addition to path1. When the algorithm

stabilizes, at every processor vi, 1 ≤ i ≤ n, the field tcci contains the path value of reprenode(vi).

The field nestedpathi is used to represent the node-pair sequence, Svi : (x1, q1), (x2, q2), · · · ,

(xk, qk), defined in the previous section. However, instead of representing the sequence with a

sequence of 2k path values, we shall represent the sequence in a compact form, using only one path

value. This is possible because x1 is a descendant of xi, 2 ≤ i ≤ k and qi, 1 ≤ i ≤ k. Therefore, the

path values of xi, 1 ≤ i ≤ k, and qi, 1 ≤ i ≤ k, can all be marked in a path value, path, such that

x1 ¹ path. The content of nestedpathi has the following structure:

15

• For xj , 1 ≤ j ≤ k, let path = pathxj ⊕ s. There is a $ symbol in between pathxj and s in

path;

• For qj , 1 ≤ j ≤ k, let path = pathqj ⊕ s. There is a $ symbol in between pathqj and s in path.

Specifically, for the node-pair, (xj , qj), in Svi , the prefix of nestedpathi terminated by the j-th

(from the beginning) $ symbol is pathqj while that terminated by the j-th (from the end) $ symbol

is pathxj after the intervening $ symbols are removed.

For example, let nestedpathi be α1α2$α3$α4α5$α6α7$α8$α9α10$, where each αj , 1 ≤ j ≤ 10,

denotes an edge index. Then,

pathx1 = α1α2α3α4α5α6α7α8α9α10 (the subsequence of indices up to the last $ symbol);

pathq1= α1α2 (the subsequence of indices up to the 1st $ symbol);

pathx2 = α1α2α3α4α5α6α7α8 (the subsequence of indices up to the 2nd last $ symbol);

pathq2= α1α2α3 (the subsequence of indices up to the 2nd $ symbol);

pathx3 = α1α2α3α4α5α6α7 (the subsequence of indices up to the 3rd last $ symbol);

pathq3 = α1α2α3α4α5 (the subsequence of indices up to the 3rd $ symbol).

Furthermore, the nested sequence of node-pairs is: (x1, q1), (x2, q2), (x3, q3).

If nexti = vi, then by Theorem 5.4, node vi is the representative node of the 3-edge-connected

component containing it. Node vi will use pathi as the identifier for the 3-edge-connected compo-

nent. Since vi is an ancestor of all the other nodes in that component, the identifier can thus be

propagated downward within Tdfs as follows: every node vi keeps the path values of its ancestors

that are representative nodes in a compact form in the field rtcci. The node reads the rtcc field

of its parent node and uses nexti to retrieve the path value of reprenode(vi) and stores it in the

field tccj in its register. When the algorithm stabilizes, all the nodes of the same 3-edge-connected

component contain the same distinct tcc value.

The following subsections describe the computation of different fields in the register of every

non-root node vi, i ≥ 2. For ease of presentation, we let vij , 1 ≤ j ≤ δi (the degree of vi), be the

neighboring processors of processor vi, 1 ≤ i ≤ n, such that αi(ij) = j, 1 ≤ j ≤ δi, 1 ≤ i ≤ n. The

functions read and write are the functions for reading from and writing to a register, respectively.

6.1 Computing pathi

Procedure ComputePath(vi, vij , 1 ≤ j ≤ δi) shows how every processor vi, i ≥ 2, computes

pathi. The function truncN returns the rightmost N items of its argument, where N(≥ n) is an

16

upper bound on the number of processors. The details about the computation of pathi are available

in [4].

ComputePath(vi, vij , 1 ≤ j ≤ δi): /* Procedure for computing pathi, i ≥ 2 */1

begin2

for j := 1 to δi do readpathj := read(pathij); /* read the path value of neighbor3

vij into local variable readpathj */
write pathi :=min≺{truncN (readpathj ⊕ αij(i))|1 ≤ j ≤ δi}; /* compute pathi */4

end5

Procedure ComputePath(vi, vij, 1 ≤ j ≤ δi)

Lemma 6.1. For every fair execution of Procedure ComputePath, given that path1 = ⊥ in every

configuration, where v1 is the root of Tdfs, there is a suffix Π in which, in every configuration,

pathi, 1 ≤ i ≤ n, is the smallest path connecting v1 and node vi.

Proof: Immediate from Theorem 3.3 in [4].

6.2 Computing low1i, low2i

Every processor vi, i ≥ 2, calls the procedure ComputeLow(vi, vij , 1 ≤ j ≤ δi) for computing

low1i and low2i. Each leaf node vi computes low1i and low2i based on the path values it reads

from its outgoing non-tree links (lines 11-14). Each non-leaf node vi computes low1i and low2i

based on the low1 values it reads from its children (lines 6-10) and the path values it reads from

its outgoing non-tree links (lines 11-14). The procedure also records a lowchild (Definition 4) for

vi. If low1i is defined from some outgoing non-tree link of vi, then lowchildi is recorded as null

meaning that vi has no lowchild (lines 12-13).

Lemma 6.2. For every fair execution of Procedure ComputeLow, if there is a suffix Π in which

pathi, 1 ≤ i ≤ n, contain the correct values in every configuration, then there is a suffix of Π in which

pathi, low1i, low2i, and lowchildi, 1 ≤ i ≤ n, contain their correct values in every configuration.

Proof: After the execution reaches the first configuration of Π, since pathi, 1 ≤ i ≤ n, contain

the correct values, therefore at every leaf node vi of Tdfs, after reading in the path values from

all the outgoing non-tree links, low1i, low2i are correctly computed. Moreover, lowchildi is also

correctly set to null as the to-low link is a non-tree link. Therefore, there is a suffix of Π in which

pathi, low1i, low2i and lowchildi, contain the correct values at every leaf-node vi of Tdfs. Suppose

there is a suffix Π′ of Π in which in every configuration, low1j , low2j , 1 ≤ j ≤ n, contain the correct

17

ComputeLow(vi, vij , 1 ≤ j ≤ δi): /* Procedure for computing low1i, low2i, i ≥ 2 */1

begin2

low1 := low2 := path := read(pathi); /* initialize low1, low2, and path */3

lowchild := null; /* initialize lowchild */4

for j := 1 to δi do5

if (readpathj = path⊕ j) then /* (vi, vij) is a child link */6

readlow1j :=read(low1ij) ; /* read low1 value of child vij */7

if (readlow1j ≺ low1) then /* update low1, lowchild */8

low2 := low1; low1 := readlow1j ; lowchild := readpathj ; /* and low2 */9

else low2 :=min≺(low2, readlow1j); /* update low2 */10

else if (∃s)((path = readpathj ⊕ s) ∧ (s 6= αij(i))) then /* the link (vi, vij) is11

an outgoing non-tree edge */
if (readpathj ≺ low1) then /* update low1, lowchild */12

low2 := low1; low1 := readpathj ; lowchild := null; /* and low2 */13

else low2 :=min≺(low2, readpathj); /* update low2 accordingly */14

end15

write low1i := low1; write low2i := low2;write lowchildi := lowchild;16

end17

Procedure ComputeLow(vi, vij, 1 ≤ j ≤ δi)

values at every node vj on level h or higher (i.e. farther from v1). For every node vi on level

h − 1, based on the correct low1 values of the child nodes (on level h) and the correct values of

pathj , 1 ≤ j ≤ n, low1i, low2i and lowchildi are correctly determined. Hence, there is a suffix of

the execution in which, for every node vi, 1 ≤ i ≤ n, pathi, low1i, low2i, and lowchildi, 1 ≤ i ≤ n,

contain their correct values.

6.3 Computing nestedpathi

For clarity, we shall use xj and qj to represent pathxj and pathqj , respectively, in the presentation

below.

Every processor vi, i ≥ 2, calls procedure ComputeNestedPath(vi, vij , 1 ≤ j ≤ δi) for

computing nestedpathi which is a compact representation of the sequence of nested node-pairs Svi .

In the procedure, the function mark(nestedpath, (path1, path2)) places in nestedpath, a $ symbol

right after path1 and a $ symbol right after path2 (ignoring the intervening $ symbols), so that

the pair (path1, path2) can be retrieved later. The function unmark(nestedpath, (path1, path2))

removes the $ symbol following path1 and the $ symbol following path2 in nestedpath.

Initially, at any node vi, the low2i and pathi values are used to initialize the local variables next

18

ComputeNestedPath(vi, vij , 1 ≤ j ≤ δi): /* Computing nestedpathi, i ≥ 2 */1

begin2

next := low2:= read (low2i); nestedpath := path:= read (pathi);3

lowchild:= read (lowchildi);4

if (lowchild 6= null) then5

Let lowchild = pathic be the lowchild ;6

nestedpath := read (nestedpathic); /* read nestedpathic from lowchild */7

Let the pairs of path values marked in nestedpath be (x1, q1), (x2, q2), · · · , (xk, qk) in8

nested order where for any pair (xl, ql), 1 ≤ l ≤ k, ql and xl are the path values up to
the l-th (from start) $ symbol and up to l-th (from end) $ symbol, respectively, in
nestedpath;
if (readpathc = qk) then /* unmark innermost pair */9

nestedpath := unmark(nestedpath, (xk, qk));10

/* Now unmark all pairs interlaced with (vi, low2i) */
for every (xl, ql), 1 ≤ l ≤ k, marked in nestedpath such that low2 ¹ ql ¹ path do11

nestedpath := unmark(nestedpath, (xl, ql));12

end13

for j := 1 to δi do14

/* If the link (vij , vi) is an incoming non-tree edge, then unmark all
pairs interlaced with (vij , vi) */
if (∃s)((readpathj = path⊕ s) ∧ (s 6= αi(ij))) then15

for every (xl, ql), 1 ≤ l ≤ k, in nestedpath such that path ¹ xl ¹ readpathj do16

nestedpath := unmark(nestedpath, (xl, ql));17

next =min≺(ql, next); /* update next */18

end19

end20

/* Insert innermost pair in nestedpath and write in register */
write nestedpathi := mark(nestedpath, (path, next)); write nexti := next;21

end22

Procedure ComputeNestedPath(vi, vij, 1 ≤ j ≤ δi)

and nestedpath, respectively (line 3). If vi has no lowchild, then no computation takes place in

lines 6-20 of the procedure. On line 21, pathi and nexti (which is low2i) are marked in nestedpath

and the resulting value is recorded into the field nestedpathi in the register. This effectively creates

the nested sequence Svi : (vi, low2(vi)) and the next value is also copied into the field nexti.

If vi has a lowchild vic, then nestedpathic is read into the local variable nestedpath (line 7).

Let the sequence in nestedpath be (x1, q1), (x2, q2), ..., (xk, qk), k ≥ 0. If pathic = qk, then vic is a

representative node. The pair (xk, qk) is thus unmarked in nestedpath (lines 9-10) which effectively

removes the node-pair from the sequence. Now, every pair (xl, ql) that interlaces with the pair

(vi, low2i) (i.e. low2i ¹ ql ¹ pathi) is unmarked in nestedpath (lines 12-13) as the node ql cannot

be a representative node owing to Theorem 4.3. Similarly, for each incoming non-tree link, (vij , vi),

of vi, every node-pair (xl, ql) interlacing with (vij , vi) (i.e. pathi ¹ xl ¹ pathij) is unmarked in

19

nestedpath (lines 15-18) because node ql cannot be a representative node owing to Theorem 4.3.

The ql’s are also used to update nexti accordingly (line 18). Finally, on line 21, pathi and nexti

are marked in nestedpath; the latter is then recorded into the field nestedpathi.

Lemma 6.3. For every fair execution of Procedure ComputeNestPath, if there is a suffix Π in

which pathi, low1i, low2i, and lowchildi, 1 ≤ i ≤ n, contain the correct values in every configura-

tion, then there is a suffix of Π in which, in every configuration, nestedpathi contains the correct

representation of Svi , 1 ≤ i ≤ n, and nexti contains the correct value.

Proof: After the execution reaches the first configuration of Π, since pathi, low1i, low2i, and

lowchildi, 1 ≤ i ≤ n, contain the correct values, at every leaf node vi of Tdfs, the local variables

next, nestedpath, and lowchild are correctly initialized to low2i, pathi, and lowchildi, respectively.

Furthermore, as vi is a leaf-node, lowchild must be null. As a result, pathi and nexti are correctly

marked in nestedpath (which is pathi) and nexti is correctly set to low2i on Line 21. Therefore,

there is a suffix of Π in which nestedpathi and nexti contain the correct values at every leaf-node

vi of Tdfs.

Suppose there is a suffix Π′ of Π in which, in every configuration, the fields pathj , low1j , low2j ,

lowchildj , and nestedpathj , 1 ≤ j ≤ n, contain the correct values at every node vj on level h

or higher (i.e. farther from v1). Let vi be a node on level h − 1. If the lowchild of vi is null,

then pathi and nexti are marked in nestedpath (which is pathi) which correctly represents the

sequence Svi : (vi, low2(vi)) and nexti is correctly set to low2i on Line 21. Otherwise, node vi reads

nestedpathc from the lowchild vic and stores the value in the local variable nestedpath. Since vic

is on level h, nestedpath thus contains the correct representation of Svic
. Node vi then updates

nestedpath by unmarking (removing) all those (xl, ql) pairs that interlace with (vi, low2i) or with

some incoming non-tree link, (vij , vi), of vi, and adding (vi, nexti) to nestedpath as the innermost

pair. Node vi also updates the local variable next to the smallest (w.r.t. ≺) pathql
of those (xl, ql)’s

that are unmarked, if pathql
≺ low2i for some l. Finally, the correct values of nestedpath and next

are written into the fields nestedpathi and nexti, respectively.

Hence, there is a suffix of the execution in which, for every node vi, 1 ≤ i ≤ n, nestedpathi and

nexti contain their correct values.

20

6.4 Computing 3-Edge-Connected Components

At every node vi, 1 ≤ i ≤ n, a field tcci is used to record the path value of reprenode(vi) and a

field rtcci is used to maintain an ordered list of the path values of the representative nodes that are

ancestors of vi and are 3-edge-connected to some descendants of vi. The tcc values are generated

at the representative nodes and are propagated downward in the Tdfs through the rtcc values.

Lemma 6.4. Let vi be a non-representative node and vj be the parent of vi. Then vi and vj

belong to different 3-edge-connected components if and only if nexti is a proper prefix of tccj (i.e.

nexti ≺ tccj).

Proof: Suppose nexti ≺/ tccj . Then the node-pairs (vj , tccj) and (vi, nexti) interlace. Since vj and

tccj are 3-edge-connected while vi and nexti are 3-edge-connected (Lemma 5.3), by Corollary 4.3.2

and Lemma 2.1, nodes vi and vj are 3-edge-connected.

Suppose nexti ≺ tccj . Then nexti is a proper ancestor of tccj . Therefore, tccj cannot be

3-edge-connected to nexti as it is a representative node. But nexti is 3-edge-connected to vi by

Lemma 5.3. Hence, vj is not 3-edge-connected to vi owing to Lemma 2.1.

The above lemma shows that for every non-representative node vi, if nexti ≺/ tccj , where vj

is the parent node, then tcci is tccj . Otherwise, owing to Corollary 4.3.2, tcci must be the closest

ancestor of vi in rtccj excluding tccj .

Since vj is an ancestor of vi if and only if pathj is a prefix of pathi, as with nestedpath, the

ordered list of ancestors of vi in rtcci can be represented in a compact form based on a path value

which is either pathi or the path value of the closest ancestor of vi in rtccj . Specifically, rtcci

consists of a path value with intervening $ symbols each corresponding to a distinct node in the

list such that vj is the h-th element in the list if and only if the prefix of rtcci terminating by the

h-th $ symbol is pathj (ignoring the intervening $ symbols). The following are the functions used

in the Procedure below for inserting or removing $ symbols in rtcc so as to trace the path values

of representative nodes:

1. remove$(rtcc): Returns the path value after removing all the $ symbols from rtcc.

For example, remove$(α1$α2α3$) = α1α2α3.

2. delnode(rtcc): Returns the prefix of rtcc that ends at (and including) the second right-

most $ symbol or returns the symbol ⊥ if there is no second rightmost $. For example,

21

delnode(α1$α2α3$α4α5$α6$) = α1$α2α3$α4α5$; delnode(α1$α2α3$α4α5α6$) = α1$α2α3$;

delnode(α1α2$) = ⊥.

3. track(path, rtcc): Let suf be the suffix of path such that remove$(rtcc)⊕ suf = path. Then

track(path, rtcc) returns rtcc⊕suf⊕$. For example, track(α1α2α3α4α5α6α7, α1$α2α3$α4α5$)

= α1$α2α3$α4α5$α6α7$.

ComputeID(vi, vij , 1 ≤ j ≤ δi): /* Procedure for computing tcci, i ≥ 2 */1

begin2

next := read(nexti); path :=read(pathi); nestedpath :=read(nestedpathi);3

for j := 1 to δi do4

if (path = readpathj ⊕ αij(i)) then /* (vij , vi) is the parent link */5

readrtccj :=read(rtccij); readtccj =remove$(readrtccj); /* read tccij */6

if (path = next) then /* vi is a representative node */7

tcc := path; /* copy its path value into its tcc */8

if (∃(xh, qh) in nestedpath such that pathqh
= readtccj) then9

rtcc :=track(path, readrtccj)10

else11

rtcc :=track(path,delnode(readrtccj)); /* remove tccj */12

else /* vi is not a representative node */13

if (readtccj ¹ next) then /* vi, vij are of same component */14

tcc := readtccj ; rtcc := readrtccj ; /* tcc of vi, vij are same */15

else /* vi, vij are of different component */16

rtcc :=delnode(readrtccj); tcc :=remove$(rtcc); /* extract tcc from17

tccij */

end18

end19

write tcci := tcc; write rtcci := rtcc; /* write tcc and rtcc into register */20

end21

Procedure ComputeID(vi, vij, 1 ≤ j ≤ δi)

The root v1 keeps the constant value ⊥ in tcc1 and ⊥$, representing the list consisting of v1,

in rtcc1 (see the main algorithm, Algorithm 5 below). Every processor vi, i ≥ 2, calls Procedure

ComputeID(vi, vij , 1 ≤ j ≤ δi) to compute tcci and rtcci as follows: The node vi reads the rtccij

field of the parent node vij into its local variable readrtccj (Line 6).

If nexti = pathi (Line 7), then vi is a representative node by Theorem 5.4. So, node vi stores

pathi in tcci (Line 8). Furthermore, if tccij appears in a node-pair in nestedpathi (Line 9), then it

indicates that tccij is 3-edge-connected to some descendant of vi. So vi simply adds itself to the list

rtccj and stores the resulting list in rtcci (Line 10). Otherwise, vij is removed from rtccj before vi

is added (Line 12).

22

If nexti 6= pathi, then vi is not a representative node. Moreover, if tccij ¹ nexti, then by

Lemma 6.4, vi and vij belong to the same 3-edge-connected component. So, node vi simply copies

tccij and rtccij into tcci and rtcci, respectively (Line 15). Otherwise, vi and vij belong to different

3-edge-connected components. Since vij cannot be 3-edge-connected to any descendant of vi owing

to Corollary 4.3.2, it is thus removed from rtccj and the resulting list is then written into rtcci

(Lines 17 and 20). Furthermore, as the second closest ancestor of vi in rtccj is reprenode(vi) which

has become the closest ancestor of vi in rtcci, rtcci, after all the intervening $ symbols are removed,

is the desired tcci and is thus stored in tcci (Lines 17 and 20).

Lemma 6.5. For every fair execution of Procedure ComputeID, if there is a suffix Π in which

pathi, nestedpathi, nexti, 1 ≤ i ≤ n, contain the correct values in every configuration, then there

is a suffix of Π in which, in every configuration, tcci = reprenode(vi), 1 ≤ i ≤ n.

Proof: Suppose the execution has reached a configuration in Π. Then pathi, nexti, nestedpathi, 1 ≤
i ≤ n, contain the correct values. We shall apply induction to prove the following assertion:

For every integer l ≥ 0, there is a suffix of Π in which, in every configuration, rtcci consists of

an ordered list of representative nodes q1, q2, · · · , qk such that each qi, 1 ≤ i < k, is 3-edge-connected

to some descendants of vi while qk is 3-edge-connected to vi, and tcci = reprenode(vi), for every

node vi on level h ≤ l in the Tdfs.

The root v1 is the only node on level 0. Since v1 always keeps the constant ⊥ and ⊥$ in tcc1

and rtcc1, respectively, the assertion clearly holds true for v1.

Suppose the assertion holds for all nodes on level l ≤ h.

Let vi be a node on level h + 1. Since vi reads rtccij from its parent node, vij , which is on

level h, by assumption, both rtccij and tccij satisfy the stated conditions. If pathi = nexti, then

pathi(= reprenode(vi)) is correctly written into tcci on Line 8 since the values pathi and nexti

are already correctly computed. Moreover, if there is a node-pair (xm, qm) in nestedpathi where

pathqm = tccij , then tccij is 3-edge-connected to some descendant of vi. Nodes vi thus correctly

executes Line 10 which adds tcci (which is pathi) to rtccij . Since rtccij satisfies the condition given

in the assertion, the resulting rtcci clearly satisfies the condition given in the assertion. On the

other hand, if there is no such node-pair (xm, qm) in nestedpathi, then tccij is not 3-edge-connected

to any descendant of vi. Nodes vi thus correctly executes Line 12 which removes tccij from rtccij

before adding tcci to rtccij . Again, the resulting rtcci clearly satisfies the condition given in the

assertion.

23

root v1:1

for forever do2

write path1 := ⊥; write tcc1 := ⊥; write rtcc1 := ⊥$;3

end4

non-root vi, i ≥ 2:5

Let vij , 1 ≤ j ≤ δi, be the neighboring processors of processor vi, 2 ≤ i ≤ n, such that6

αi(ij) = j, 1 ≤ j ≤ δi, 2 ≤ i ≤ n.
for forever do7

ComputePath(vi, vij , 1 ≤ j ≤ δi); /* Compute pathi */8

ComputeLow(vi, vij , 1 ≤ j ≤ δi); /* Compute low1i, low2i */9

ComputeNestedPath(vi, vij , 1 ≤ j ≤ δi); /* Compute nestedpathi */10

ComputeID(vi, vij , 1 ≤ j ≤ δi); /* Compute tcci */11

end12

Algorithm 5: 3-EDGE-CONNECTIVITY

If pathi 6= nexti, then by Theorem 5.4, vi is not a representative node. Furthermore, if tccij ¹
nexti, then by Lemma 6.4, vi and vij belong to the same 3-edge-connected component. Node vi

thus correctly copies tccij and rtccij into tcci and rtcci, respectively on Line 15. The assertion

clearly holds true for node vi. On the other hand, if nexti ≺ tccij , then vi and vij belong to

different 3-edge-connected components by Lemma 6.4. It then follows from Corollary 4.3.2 that no

descendant of vi can be 3-edge-connected to tccij . As a result, node vi correctly removes tccij from

rtccij and writes the resulting list into rtcci on Line 17. Again, by Corollary 4.3.2, tcci must be

the closest ancestor of vi in rtcci. The path value of this ancestor is rtcci with all the $ symbols

removed. Hence, tcci is correctly assigned the value remove$(rtcci) on Line 17. The assertion

thus holds for all nodes on level h + 1.

6.5 The Self-Stabilizing Algorithm

The task of determining the 3-edge-connected components is defined by the set of legal executions

in which, in every configuration, tcci = reprenode(vi), 1 ≤ i ≤ n.

The special processor v1 (root) executes Lines 2 to 4 of Algorithm 3-EDGE-CONNECTIVITY.

Since v1 must be a representative node, it therefore repeatedly writes its path value (⊥) into the

path1 and tcc1 fields and its lists of ancestors that are representative nodes (⊥$) into the rtcc1 field.

Every non-root processor vi, i ≥ 2, executes Lines 7 to 12 of Algorithm 3-EDGE-CONNECTIVITY.

The processor repeatedly calls Procedures ComputePath, ComputeLow, ComputeNested-

Path, and ComputeID in that order for computing pathi, low1i and low2i, nestedpathi, tcci,

respectively. In each procedure, processor vi reads from its neighboring processors vij , 1 ≤ j ≤ δi,

24

and writes into its own register. When the algorithm stabilizes, the path value of reprenode(vi) is

kept in tcci.

Theorem 6.6. For every fair execution of Algorithm 3-EDGE-CONNECTIVITY, there is

a suffix in which for every node vi, 1 ≤ i ≤ n, tcci is the path value of reprenode(vi) in every

configuration.

Proof: The 3-EDGE-CONNECTIVITY algorithm is developed by embedding new instructions

in the self-stabilizing depth-first search algorithm of Collin and Dolev [4]. These new instructions

do not affect the original function of the depth-first search algorithm. The depth-first search part

of the algorithm thus correctly constructs a depth-first search spanning tree Tdfs of the network.

The theorem then follows from Lemma 6.1, Lemma 6.2, Lemma 6.3, and Lemma 6.5.

Theorem 6.7. Algorithm 3-EDGE-CONNECTIVITY stabilizes in O(dn∆) rounds and every

processor requires O(n log ∆) bits, where ∆ is an upper bound on the degree of a processor and d is

the diameter of the network.

Proof: It is easily verified that the new instructions added to the depth-first search algorithm of

Collin and Dolev [4] increase the time complexity for constructing a depth-first search tree only by

a constant factor. Therefore, the time required by Algorithm 3-EDGE-CONNECTIVITY to

construct a depth-first search tree remains as O(dn∆) rounds. The for loop for computing low1

and low2 requires O(∆) rounds. The for loop for computing the nestedpath takes O(∆) rounds,

the for loop for computing the tcc values takes O(1) rounds. By applying an induction on the level

of the nodes in the spanning tree, it is easily verified that, once the Tdfs is constructed, O(H∆)

rounds later, where H(< n) is the height of Tdfs, every node vi, 1 ≤ i ≤ n, correctly determines the

path value of reprenode(vi).

In the depth-first search algorithm of Collin and Dolev [4], the space required by every processor

is O(n log ∆) bits. This is the space required to store the path value of the processor. In Algorithm

3-EDGE-CONNECTIVITY, each of the fields path, low1, low2, tcc is also a path value and

each of the fields nestedpath and rtcc is at most twice the size of the largest path value. The space

complexity per processor is thus O(n log ∆) bits.

Figure 3 shows a depth-first search spanning tree Tdfs constructed by 3-EDGE-CONNECTIVITY

algorithm for an undirected graph whose nodes are v1, v2, · · · , v11. For every node vi, 2 ≤ i ≤ 11,

25

 root v1

 [v1, v2] v2

 [v1, v3] v3

 [v1, v4] v4

 [v1, v5] v5

 [v1, v3] v6

 [v1, v4] v7

 [v1, v2] v8

 [v1, v1] v9

 [v1, v11] v11 [v1, v10] v10

 Tree edge (directed from

 child to parent)

 Non-tree edge

 The values on the left of each
 node vi show [low1i, low2i]

Figure 3: A Depth-First Search Spanning Tree Tdfs. In this graph, cut-pairs are:
{(v9, v10), (v10, v1)}; {(v9, v11), (v11, v1)}; {(v8, v9), (v1, v2)}; {(v7, v8), (v2, v3)}; {(v5, v6), (v4, v5)} and 3-edge-

connected components are: {v10}; {v11}; {v9, v1}; {v8, v2}; {v7, v6, v4, v3}; {v5}

the figure also shows the values of low1i and low2i calculated by the algorithm. The sequence of

ordered node-pairs represented by the field nestedpath at v11, v10, v9, v8, v7, v6, v5, v4, v3, and

v2 are: {(v11, v11)}, {(v10, v10)}, {(v9, v1)}, {(v9, v1), (v8, v2)}, {(v9, v1), (v8, v2), (v7, v4)}, {(v9, v1),

(v8, v2), (v6, v3)}, {(v9, v1), (v8, v2), (v6, v3), (v5, v5)}, {(v9, v1), (v8, v2), (v4, v3)}, {(v9, v1), (v8, v2),

(v3, v3)}, and {(v9, v1), (v2, v2)}, respectively. When the algorithm stabilizes, tcc1 = tcc9 = path1;

tcc10 = path10; tcc11 = path11; tcc5 = path5; tcc2 = tcc8 = path2; tcc3 = tcc4 = tcc6 = tcc7 =

path3. Therefore, the 3-edge-connected components are: {v1, v9}, {v10}, {v11}, {v5}, {v2, v8}, and

{v3, v4, v6, v7}.

7 Conclusion

We have presented a self-stabilizing algorithm for the 3-edge-connectivity problem. The algorithm

constructs a depth-first search tree in O(dn∆) rounds and determines the 3-edge-connected com-

ponents based on the depth-first search tree in O(H∆) additional rounds, where H < n. Clearly,

our algorithm will work correctly if the first depth-first search spanning tree is replaced by another

type of depth-first search spanning tree. Therefore, the time complexity of our algorithm is actually

max{Tdfs(n), O(H∆)}, where Tdfs(n) is the time complexity of the self-stabilizing algorithm that is

used to construct the depth-first spanning tree. Since Tdfs(n) = O(dn∆) for the algorithm of Collin

26

et al. [4], we thus have the time bound O(dn∆). Should there be an improvement made on Tdfs(n),

the time complexity of our algorithm will automatically be improved.

Although our algorithm is designed for read/write atomicity, it had been pointed out that any

algorithm designed to work in read/write atomicity also works in any system that has a central

or distributed scheduler (daemon) [8]. Therefore, our algorithm also works under a distributed

scheduler. Although we assume that the given network is bridgeless, our algorithm, with slight

modifications, will also work for network with bridges. This is based on the observation that

the intersection of the depth-first search tree with each bridge-connected component is a depth-

first search tree of that bridge-connected component. Therefore, the 3-edge-connected components

belonging to the same bridge-connected component can be generated after the construction of the

depth-first search tree within that bridge-connected component stabilizes.

References

[1] Antonoiu, G., and Srimani, P. K. A self-stabilizing distributed algorithm to find the median of a
tree graph. Journal of Computer and System Science 58, 1 (February 1999), 215–221.

[2] Chaudhuri, P. A self-stabilizing algorithm for detecting fundamental cycles in a graph. Journal of
Computer and System Science 59, 1 (August 1999), 84–93.

[3] Chaudhuri, P. An O(n2) self-stabilizing algorithm for computing bridge-connected components. Com-
puting 62, 1 (February 1999), 55–67.

[4] Collin, Z., and Dolev, S. Self-stabilizing depth-first search. Information Processing Letters 49, 6
(March 1994), 297–301.

[5] Devismes, S. A silent self-stabilizing algorithm for finding cut-nodes and bridges. Parallel Processing
Letters 15, 1&2 (March & June 2005), 183–198.

[6] Dijkstra, E. W. Self-stabilizing systems in spite of distributed control. Communications of the ACM
17, 1 (November 1974), 643–644.

[7] Dijkstra, E. W. A belated proof of self-stabilization. Distributed Computing 1, 1 (January 1986),
5–6.

[8] Dolev, S. Self-stabilization. MIT Press, Cambridge, Massachusetts, 2000.

[9] Even, S. Graph Algorithms. Computer Science Press, Potomac, Maryland, 1979.

[10] Ghosh, S., and Karaata, M. H. A self-stabilizing algorithm for coloring planar graphs. Distributed
Computing 7, 1 (1993), 55–59.

[11] Gradinariu, and Tixeuil, S. Self-stabilizing vertex coloring of arbitrary graphs. In International
Conference on Principles of Distributed Systems (OPODIS’2000) in Paris, France (2000).

[12] Karaata, M. H. A self-stabilizing algorithm for finding articulation points. International Journal of
Foundations of Computer Sciences 10, 1 (1999), 33–46.

[13] karaata, M. H. A stabilizing algorithm for finding biconnected components. Journal of Parallel and
Distributed Computing 62, 5 (May 2002), 982–999.

[14] Karaata, M. H., and Chaudhuri, P. A self-stabilizing algorithm for bridge finding. Distributed
Computing 12, 1 (March 1999), 47–53.

[15] Lin, J.-C., and Huang, T. C. An efficient fault-containing self-stabilizing algorithm for finding a
maximal independent set. In IEEE Transactions on Parallel and Distributed Systems (August 2003),
vol. 14, pp. 742–754.

27

[16] Nagamochi, H., and Ibaraki, T. A linear time algorithm for computing 3-edge-connected compo-
nents in a multigraph. Japan J. Indust. Appl. Math. 8 (1992), 163–180.

[17] Saifullah, A. M., and Tsin, Y. H. A self-stabilizing algorithm for 3-edge-connectivity. In Parallel
and Distributed Processing and Applications, 5th International Symposium, ISPA 2007 (LNCS 4742),
Niagara Falls, Canada. (August 2007). Also to appear in a special issue of the International Journal of
High Performance Computing and Networking (IJHPCN).

[18] Tarjan, R. E. Depth-first search and linear graph algorithms. SIAM J. Computing 1 (1972), 146–160.

[19] Tsin, Y. H. An efficient distributed algorithm for 3-edge-connectivity. International Journal of Foun-
dations of Computer Science 17, 3 (2006), 677–701.

[20] Tsin, Y. H. An improved self-stabilizing algorithm for biconnectivity and bridge-connectivity. Infor-
mation Processing Letters 102 (2007), 27–34.

28

	Self-Stabilizing Computation of 3-Edge-Connected Components
	Recommended Citation

	tmp.1415131658.pdf.82rrf

