52 research outputs found

    The Decentralized File System Igor-FS as an Application for Overlay-Networks

    Get PDF

    The future is coming : research on maritime communication technology for realization of intelligent ship and its impacts on future maritime management

    Get PDF

    Advances in Modeling and Management of Urban Water Networks

    Get PDF
    The Special Issue on Advances in Modeling and Management of Urban Water Networks (UWNs) explores four important topics of research in the context of UWNs: asset management, modeling of demand and hydraulics, energy recovery, and pipe burst identification and leakage reduction. In the first topic, the multi-objective optimization of interventions on the network is presented to find trade-off solutions between costs and efficiency. In the second topic, methodologies are presented to simulate and predict demand and to simulate network behavior in emergency scenarios. In the third topic, a methodology is presented for the multi-objective optimization of pump-as-turbine (PAT) installation sites in transmission mains. In the fourth topic, methodologies for pipe burst identification and leakage reduction are presented. As for the urban drainage systems (UDSs), the two explored topics are asset management, with a system upgrade to reduce flooding, and modeling of flow and water quality, with analyses on the transition from surface to pressurized flow, impact of water use reduction on the operation of UDSs, and sediment transport in pressurized pipes. The Special Issue also includes one paper dealing with the hydraulic modeling of an urban river with a complex cross-section

    Machine Learning and Data Mining Applications in Power Systems

    Get PDF
    This Special Issue was intended as a forum to advance research and apply machine-learning and data-mining methods to facilitate the development of modern electric power systems, grids and devices, and smart grids and protection devices, as well as to develop tools for more accurate and efficient power system analysis. Conventional signal processing is no longer adequate to extract all the relevant information from distorted signals through filtering, estimation, and detection to facilitate decision-making and control actions. Machine learning algorithms, optimization techniques and efficient numerical algorithms, distributed signal processing, machine learning, data-mining statistical signal detection, and estimation may help to solve contemporary challenges in modern power systems. The increased use of digital information and control technology can improve the grid’s reliability, security, and efficiency; the dynamic optimization of grid operations; demand response; the incorporation of demand-side resources and integration of energy-efficient resources; distribution automation; and the integration of smart appliances and consumer devices. Signal processing offers the tools needed to convert measurement data to information, and to transform information into actionable intelligence. This Special Issue includes fifteen articles, authored by international research teams from several countries

    Proceedings of the Workshop on Space Telerobotics, volume 1

    Get PDF
    These proceedings report the results of a workshop on space telerobotics, which was held at the Jet Propulsion Laboratory, January 20-22, 1987. Sponsored by the NASA Office of Aeronautics and Space Technology (OAST), the Workshop reflected NASA's interest in developing new telerobotics technology for automating the space systems planned for the 1990s and beyond. The workshop provided a window into NASA telerobotics research, allowing leading researchers in telerobotics to exchange ideas on manipulation, control, system architectures, artificial intelligence, and machine sensing. One of the objectives was to identify important unsolved problems of current interest. The workshop consisted of surveys, tutorials, and contributed papers of both theoretical and practical interest. Several sessions were held on the themes of sensing and perception, control execution, operator interface, planning and reasoning, and system architecture

    4D Simulation of Capital Construction Projects: Levels of Development and Ontology for Delay Claims Applications

    Get PDF
    4D simulation is commonly used in building construction projects as part of Building Information Modeling (BIM) processes. A construction project progresses through different phases. At each of these phases, the project schedules and 3D models have various levels of development (LODs) ranging from summarized to detailed models. Therefore, 4D simulation should consider multiple LODs. However, the literature does not define 4D-LODs adequately. On the other hand, there is limited research related to the visualization of complex delay claims using 4D simulation. Moreover, although BIM, 4D simulation, Delay Effects and Causes (DEC), and claims are knowledge domains with active research in the construction industry, there is a gap in integrating these domains in a more formal and overarching ontology-based approach to link essential concepts such as liability, causality and quantum in a delay claim using 4D simulation. The long-term goal of this thesis is to propose a systematic approach for the development of 4D simulation to fulfill the needs of different applications focusing on the area of delay claims. The thesis has the following specific objectives: (1) Providing a guideline about 4D-LODs definitions that are based on needs and project progress; (2) Introducing a formal method for developing 4D simulation of capital construction projects considering different time horizons; (3) Investigating the current usage, efficiency and value of 4D simulation in construction delay claims and applications such as analyzing delay DEC and assigning responsibilities; (4) Developing a multidisciplinary ontology for linking delay claims with 4D simulation to analyze DEC and responsibilities; and (5) Developing a method for delay claim visualization and analysis using 4D simulation. The selection of the suitable 4D-LOD based on the proposed guideline enables an effective simulation considering the needs of the project and the available information. The proposed 4D-LODs are useful in identifying the different representations of workspaces created at each LOD. Furthermore, the proposed 4D simulation development method is efficient and useful for project owners and contractors to streamline the simulation process by focusing on needs. This method has been applied in several large-scale projects, and resulted in reducing project cost and duration by quickly identifying feasible scenarios, as well as avoiding claims and minimizing site conflicts. A survey has been conducted to understand the potential applications of 4D simulation in forensic investigation of delay claims in construction projects. The results of the survey show that 4D simulation is efficient for all roles involved in delay claims negotiations and litigations including judges, lawyers, experts and witnesses. However, 4D simulation would provide more benefits if it is required in the contract. 4D simulation can facilitate the identification, visualization, quantification and responsibility assignment of delay events by identifying spatio-temporal conflicts and generating a better collaboration environment for finding appropriate mitigation measures. Finally, an ontology (called Claim4D-Onto) has been developed for linking delay claims with 4D simulation to analyze effects-causes and responsibilities. Claim4D-Onto has been validated with legal experts and delay claims professionals considering the criteria of clarity and completeness. Claim4D-Onto can facilitate a systematic and clear representation of the DEC and responsibilities in 4D simulation for delay claims management and avoidance. Using the concepts of Claim4D-Onto, it has been demonstrated that visual analytics based on 4D simulation can clarify the causality and analyze delay responsibilities and entitlements as a complementary tool to the cause-effect matrix. The main contributions developed in the context of this thesis are: (1) Defining 4D-LODs with a guideline based on the available information and needs; (2) Introducing the development of 4D simulation with a formal method considering different time horizons; (3) Identifying the efficiency and value of 4D simulation in construction claims as a tool for supporting legal arguments, stakeholder’s viewpoints and interrogatory considerations; (4) Developing a visualization method to facilitate the identification and quantification of events in delay claims using 4D simulation; (5) Developing a multidisciplinary ontology (Claim4D-Onto) for linking delay claims with 4D simulation; and (6) Extending the benefits of 4D simulation in the area of delay claims with visual analytics of DEC and responsibilities

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation

    Graphics Technology in Space Applications (GTSA 1989)

    Get PDF
    This document represents the proceedings of the Graphics Technology in Space Applications, which was held at NASA Lyndon B. Johnson Space Center on April 12 to 14, 1989 in Houston, Texas. The papers included in these proceedings were published in general as received from the authors with minimum modifications and editing. Information contained in the individual papers is not to be construed as being officially endorsed by NASA

    Next Generation Supply Chains

    Get PDF
    This open access book explores supply chains strategies to help companies face challenges such as societal emergency, digitalization, climate changes and scarcity of resources. The book identifies industrial scenarios for the next decade based on the analysis of trends at social, economic, environmental technological and political level, and examines how they may impact on supply chain processes and how to design next generation supply chains to answer these challenges. By mapping enabling technologies for supply chain innovation, the book proposes a roadmap for the full implementation of the supply chain strategies based on the integration of production and logistics processes. Case studies from process industry, discrete manufacturing, distribution and logistics, as well as ICT providers are provided, and policy recommendations are put forward to support companies in this transformative process
    • …
    corecore