3,259 research outputs found

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Autonomic Wireless Sensor Networks: A Systematic Literature Review

    Get PDF
    Autonomic computing (AC) is a promising approach to meet basic requirements in the design of wireless sensor networks (WSNs), and its principles can be applied to efficiently manage nodes operation and optimize network resources. Middleware for WSNs supports the implementation and basic operation of such networks. In this systematic literature review (SLR) we aim to provide an overview of existing WSN middleware systems that address autonomic properties. The main goal is to identify which development approaches of AC are used for designing WSN middleware system, which allow the self-management of WSN. Another goal is finding out which interactions and behavior can be automated in WSN components. We drew the following main conclusions from the SLR results: (i) the selected studies address WSN concerns according to the self-* properties of AC, namely, self-configuration, self-healing, self-optimization, and self-protection; (ii) the selected studies use different approaches for managing the dynamic behavior of middleware systems for WSN, such as policy-based reasoning, context-based reasoning, feedback control loops, mobile agents, model transformations, and code generation. Finally, we identified a lack of comprehensive system architecture designs that support the autonomy of sensor networking

    Simulation study of routing protocols in wireless sensor networks

    Get PDF
    Wireless sensor networks, a distributed network of sensor nodes perform critical tasks in many application areas such as target tracking in military applications, detection of catastrophic events, environment monitoring, health applications etc. The routing protocols developed for these distributed sensor networks need to be energy efficient and scalable. To create a better understanding of the performance of various routing protocols proposed it is very important to perform a detailed analysis of them. Network simulators enable us to study the performance and behavior of these protocols on various network topologies. Many Sensor Network frameworks were developed to explore both the networking issues and the distributed computing aspects of wireless sensor networks. The current work of simulation study of routing protocols is done on SensorSimulator, a discrete event simulation framework developed at Sensor Networks Research Laboratory, LSU and on a popular event driven network simulator ns2 developed at UC Berkeley. SensorSimulator is a discrete event simulation framework for sensor networks built over OMNeT++ (Objective Modular Network Test-bed in C++). This framework allows the user to debug and test software for distributed sensor networks. SensorSimulator allows developers and researchers in the area of Sensor Networks to investigate topological, phenomenological, networking, robustness and scaling issues, to explore arbitrary algorithms for distributed sensors, and to defeat those algorithms through simulated failure. The framework has modules for all the layers of a Sensor Network Protocol stack. This thesis is focused on the simulation and performance evaluation of various routing protocols on SensorSimulator and ns2. The performance of the simulator is validated with a comparative study of Directed Diffusion Routing Protocol on both ns2 and SensorSimulator. Then the simulations are done to evaluate the performance of Optimized Broadcast Protocols for Sensor Networks, Efficient Coordination Protocol for Wireless Sensor Networks on SensorSimulator. Also a performance study of Random Asynchronous Wakeup protocol for Sensor Networks is done on ns2
    • 

    corecore