55,076 research outputs found

    Secure Cloud Storage: A Framework for Data Protection as a Service in the Multi-cloud Environment

    Get PDF
    This paper introduces Secure Cloud Storage (SCS), a framework for Data Protection as a Service (DPaaS) to cloud computing users. Compared to the existing Data Encryption as a Service (DEaaS) such as those provided by Amazon and Google, DPaaS provides more flexibility to protect data in the cloud. In addition to supporting the basic data encryption capability as DEaaS does, DPaaS allows users to define fine-grained access control policies to protect their data. Once data is put under an access control policy, it is automatically encrypted and only if the policy is satisfied, the data could be decrypted and accessed by either the data owner or anyone else specified in the policy. The key idea of the SCS framework is to separate data management from security management in addition to defining a full cycle of data security automation from encryption to decryption. As a proof-of-concept for the design, we implemented a prototype of the SCS framework that works with both BT Cloud Compute platform and Amazon EC2. Experiments on the prototype have proved the efficiency of the SCS framework

    Role Based Secure Data Access Control for Cost Optimized Cloud Storage Using Data Fragmentation While Maintaining Data Confidentiality

    Get PDF
    The paper proposes a role-based secure data access control framework for cost-optimized cloud storage, addressing the challenge of maintaining data security, privacy, integrity, and availability at lower cost. The proposed framework incorporates a secure authenticity scheme to protect data during storage or transfer over the cloud. The framework leverages storage cost optimization by compressing high-resolution images and fragmenting them into multiple encrypted chunks using the owner's private key. The proposed approach offers two layers of security, ensuring that only authorized users can decrypt and reconstruct data into its original format. The implementation results depicts that the proposed scheme outperforms existing systems in various aspects, making it a reliable solution for cloud service providers to enhance data security while reducing storage costs

    Cloud Computing Security Framework - Privacy Security

    Get PDF
    Cloud computing is an emerging style of IT delivery that intends to make the Internet the ultimate home of all computing resources- storage, computations, and accessibility. It has an important aspect for the companies and organization to build and deploy their infrastructure and application. It changed the IT roadmap essential from service seeking infrastructure to infrastructure seeking services. It holds the promise of helping organizations because of its performance, high availability, least cost and many others. But the promise of the cloud cannot be fulfilled until IT professionals have more confidence in the security and safety of the cloud. Data Storage service in the cloud computing is easy as compare to the other data storage services. At the same time, cloud security in the cloud environment is challenging task. Security issues such as service availability, massive traffic handling, application security and authentication, ranging from missing system configuration, lack of proper updates, or unwise user actions from remote data storage. It can expose user’s private data and information to unwanted access. It consider to be biggest problem in a cloud computing. The focus of this research consist on the secure cloud framework and to define a methodology for cloud that will protect user’s data and highly important information from malicious insider as well as outsider attacks by using Kerberos, and LDAP identification

    Secure Framework in Data Processing for Mobile Cloud Computing

    Get PDF
    Generally Mobile Cloud storage enables users to remotely store their data and enjoy the on-demand high quality cloud applications without the burden of local hardware and software management. Though the benefits are clear, such a service is also relinquishing users ‘physical possession of their outsourced data, which inevitably poses new security risks towards the correctness of the data in cloud. In order to address this new problem and further achieve a secure and dependable cloud storage service, we propose in this paper a new secure framework. In addition to providing traditional computation services, mobile cloud also enhances the operation of traditional ad hoc network by treating mobile devices as service nodes, e.g., sensing services. The mobile services or sensed information, such as location coordinates, health related information, should be processed and stored in a secure fashion to protect user’s privacy in the cloud. In this paper, we present a new mobile cloud data processing framework through trust management and private data isolation. Finally, an implementation pilot for improving teenagers’ driving safety, which is called FocusDrive, is presented to demonstrate the solution

    Multi-Drive File Operation with Secure Authorized Data De-duplication

    Get PDF
    With the evolution of wireless communication technology, mobile devices have perform more and more important roles in the people's daily lives. However, data storage and sharing are hard for these devices due to the data inflation and natural extent of mobile devices, For this, we present a lightweight Multi-cloud-based storage framework, in which the data owner can access their data via network at any time and for anywhere by uploading data into the cloud. Generally speaking, each cloud drive will just free provide a small storage space. Thereby, a big one will come into start after adding all free space of this cloud drives together. For instance, if you have registered five Drop-box accounts and each one has offered 2GB free space, you can use the free 10GB space conveniently with the help of Multi-Cloud. To better protect data security, the first attempt to formally address the problem of authorized data de-duplication. Data de-duplication is one of the important data compression techniques for eliminating duplicate copies of repeating data and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth .We develop this project in ASP.net technology and also use O-Auth technique for authentication

    Secure Data Deduplication on Hybrid Cloud Storage Architecture

    Get PDF
    Data deduplication is one of the most important Data compression techniques used for to removing the identical copies of repeating data and it is used in the cloud storage for the purpose of reduce the storage space as well as save bandwidth. To retain the confidentiality of sensitive data while supporting the deduplication, to encrypt the data before outsourcing convergent encryption technique has been proposed . This project makes the first attempt to formally address the problem of authorized data deduplication giving better protect data security, Different from the traditional deduplication system, distinctive benefits of the user are further considered the duplicate check besides the data itself. Hybrid cloud architecture having various new deduplication constructions supporting authorized duplicate check. The proposed security models contain the illustration of security analysis scheme. As a proof of concept, contains the implementation framework of proposed authorized duplicate check scheme and conduct experiments using these prototype. In proposed system contain authorized duplicate check scheme sustain minimal overhead compared to normal operations. DOI: 10.17762/ijritcc2321-8169.15059

    Cloud computing sensitive data protection using multi layered approach

    Get PDF
    Cloud computing is a modern technology and it gives access to the network upon request to required computing resources (network, servers, storage, applications and services). This exciting computing model depends on data traffic and controlled by a third party. Despite the expected savings in infrastructure and the development cost for business flexibility, security is still the biggest challenge for the implementation of computing for many service-based companies. This paper discusses challenges related to data security and privacy implementation in cloud computing environment. A framework is proposed to accommodate the protection of sensitive data in cloud computing environment. This framework consists of three levels authorization, security and privacy and saves and verifies level. The main objective of this paper is to discuss the framework implementation and its architecture verification. It is expected from the research a verified framework to protect private and sensitive data in cloud environment

    A biometric based authentication and encryption Framework for Sensor Health Data in Cloud

    Get PDF
    Use of remote healthcare monitoring application (HMA) can not only enable healthcare seeker to live a normal life while receiving treatment but also prevent critical healthcare situation through early intervention. For this to happen, the HMA have to provide continuous monitoring through sensors attached to the patient's body or in close proximity to the patient. Owing to elasticity nature of the cloud, recently, the implementation of HMA in cloud is of intense research. Although, cloud-based implementation provides scalability for implementation, the health data of patient is super-sensitive and requires high level of privacy and security for cloud-based shared storage. In addition, protection of real-time arrival of large volume of sensor data from continuous monitoring of patient poses bigger challenge. In this work, we propose a self-protective security framework for our cloud-based HMA. Our framework enable the sensor data in the cloud from (1) unauthorized access and (2) self-protect the data in case of breached access using biometrics. The framework is detailed in the paper using mathematical formulation and algorithms. © 2014 IEEE

    Data security in cloud storage services

    Get PDF
    Cloud Computing is considered to be the next-generation architecture for ICT where it moves the application software and databases to the centralized large data centers. It aims to offer elastic IT services where clients can benefit from significant cost savings of the pay-per-use model and can easily scale up or down, and do not have to make large investments in new hardware. However, the management of the data and services in this cloud model is under the control of the provider. Consequently, the cloud clients have less control over their outsourced data and they have to trust cloud service provider to protect their data and infrastructure from both external and internal attacks. This is especially true with cloud storage services. Nowadays, users rely on cloud storage as it offers cheap and unlimited data storage that is available for use by multiple devices (e.g. smart phones, tablets, notebooks, etc.). Besides famous cloud storage providers, such as Amazon, Google, and Microsoft, more and more third-party cloud storage service providers are emerging. These services are dedicated to offering more accessible and user friendly storage services to cloud customers. Examples of these services include Dropbox, Box.net, Sparkleshare, UbuntuOne or JungleDisk. These cloud storage services deliver a very simple interface on top of the cloud storage provided by storage service providers. File and folder synchronization between different machines, sharing files and folders with other users, file versioning as well as automated backups are the key functionalities of these emerging cloud storage services. Cloud storage services have changed the way users manage and interact with data outsourced to public providers. With these services, multiple subscribers can collaboratively work and share data without concerns about their data consistency, availability and reliability. Although these cloud storage services offer attractive features, many customers have not adopted these services. Since data stored in these services is under the control of service providers resulting in confidentiality and security concerns and risks. Therefore, using cloud storage services for storing valuable data depends mainly on whether the service provider can offer sufficient security and assurance to meet client requirements. From the way most cloud storage services are constructed, we can notice that these storage services do not provide users with sufficient levels of security leading to an inherent risk on users\u27 data from external and internal attacks. These attacks take the form of: data exposure (lack of data confidentiality); data tampering (lack of data integrity); and denial of data (lack of data availability) by third parties on the cloud or by the cloud provider himself. Therefore, the cloud storage services should ensure the data confidentiality in the following state: data in motion (while transmitting over networks), data at rest (when stored at provider\u27s disks). To address the above concerns, confidentiality and access controllability of outsourced data with strong cryptographic guarantee should be maintained. To ensure data confidentiality in public cloud storage services, data should be encrypted data before it is outsourced to these services. Although, users can rely on client side cloud storage services or software encryption tools for encrypting user\u27s data; however, many of these services fail to achieve data confidentiality. Box, for example, does not encrypt user files via SSL and within Box servers. Client side cloud storage services can intentionally/unintentionally disclose user decryption keys to its provider. In addition, some cloud storage services support convergent encryption for encrypting users\u27 data exposing it to “confirmation of a file attack. On the other hand, software encryption tools use full-disk encryption (FDE) which is not feasible for cloud-based file sharing services, because it encrypts the data as virtual hard disks. Although encryption can ensure data confidentiality; however, it fails to achieve fine-grained access control over outsourced data. Since, public cloud storage services are managed by un-trusted cloud service provider, secure and efficient fine-grained access control cannot be realized through these services as these policies are managed by storage services that have full control over the sharing process. Therefore, there is not any guarantee that they will provide good means for efficient and secure sharing and they can also deduce confidential information about the outsourced data and users\u27 personal information. In this work, we would like to improve the currently employed security measures for securing data in cloud store services. To achieve better data confidentiality for data stored in the cloud without relying on cloud service providers (CSPs) or putting any burden on users, in this thesis, we designed a secure cloud storage system framework that simultaneously achieves data confidentiality, fine-grained access control on encrypted data and scalable user revocation. This framework is built on a third part trusted (TTP) service that can be employed either locally on users\u27 machine or premises, or remotely on top of cloud storage services. This service shall encrypts users data before uploading it to the cloud and decrypts it after downloading from the cloud; therefore, it remove the burden of storing, managing and maintaining encryption/decryption keys from data owner\u27s. In addition, this service only retains user\u27s secret key(s) not data. Moreover, to ensure high security for these keys, it stores them on hardware device. Furthermore, this service combines multi-authority ciphertext policy attribute-based encryption (CP-ABE) and attribute-based Signature (ABS) for achieving many-read-many-write fine-grained data access control on storage services. Moreover, it efficiently revokes users\u27 privileges without relying on the data owner for re-encrypting massive amounts of data and re-distributing the new keys to the authorized users. It removes the heavy computation of re-encryption from users and delegates this task to the cloud service provider (CSP) proxy servers. These proxy servers achieve flexible and efficient re-encryption without revealing underlying data to the cloud. In our designed architecture, we addressed the problem of ensuring data confidentiality against cloud and against accesses beyond authorized rights. To resolve these issues, we designed a trusted third party (TTP) service that is in charge of storing data in an encrypted format in the cloud. To improve the efficiency of the designed architecture, the service allows the users to choose the level of severity of the data and according to this level different encryption algorithms are employed. To achieve many-read-many-write fine grained access control, we merge two algorithms (multi-authority ciphertext policy attribute-based encryption (MA- CP-ABE) and attribute-based Signature (ABS)). Moreover, we support two levels of revocation: user and attribute revocation so that we can comply with the collaborative environment. Last but not least, we validate the effectiveness of our design by carrying out a detailed security analysis. This analysis shall prove the correctness of our design in terms of data confidentiality each stage of user interaction with the cloud

    Securing mHealth - Investigating the development of a novel information security framework

    Get PDF
    The deployment of Mobile Health (mHealth) platforms as well as the use of mobile and wireless technologies have significant potential to transform healthcare services. The use of mHealth technologies allow a real-time remote monitoring as well as direct access to healthcare data so that users (e.g., patients and healthcare professionals) can utilise mHealth services anywhere and anytime. Generally, mHealth offers smart solutions to tackle challenges in healthcare. However, there are still various issues regarding the development of the mHealth system. One of the most common diffi-culties in developing the mHealth system is the security of healthcare data. mHealth systems are still vulnerable to numerous security issues with regard to their weak-nesses in design and data management. Several information security frameworks for mHealth devices as well as information security frameworks for Cloud storage have been proposed, however, the major challenge is developing an effective information se-curity framework that will encompass every component of an mHealth system to secure sensitive healthcare data. This research investigates how healthcare data is managed in mHealth systems and proposes a new information security framework that secures mHealth systems. Moreover, a prototype is developed for the purpose of testing the proposed information security framework. Firstly, risk identification is carried out to determine what could happen to cause potential damage and to gain insight into how, where, and why the damage might happen. The process of risk identification includes the identification of assets those need to be protected, threats that we try to protect against, and vulnerabilities that are weaknesses in mHealth systems. Afterward, a detailed analysis of the entire mHealth domain is undertaken to determine domain-specific features and a taxonomy for mHealth, from which a set of the most essential security requirements is identified to develop a new information security framework. It then examines existing information security frameworks for mHealth devices and the Cloud, noting similarities and differences. Key mechanisms to implement the new framework are discussed and the new framework is then presented. Furthermore, a prototype is developed for the purpose of testing. It consists of four layers including an mHealth secure storage system, Capability system, Secure transactional layer, and Service management layer. Capability system, Secure transactional layer, and Service management layer are developed as main contributions of the research
    corecore