618 research outputs found

    Security Analysis of Vehicular Ad Hoc Networks (VANET)

    Full text link
    Vehicular Ad Hoc Networks (VANET) has mostly gained the attention of today's research efforts, while current solutions to achieve secure VANET, to protect the network from adversary and attacks still not enough, trying to reach a satisfactory level, for the driver and manufacturer to achieve safety of life and infotainment. The need for a robust VANET networks is strongly dependent on their security and privacy features, which will be discussed in this paper. In this paper a various types of security problems and challenges of VANET been analyzed and discussed; we also discuss a set of solutions presented to solve these challenges and problems.Comment: 6 pages; 2010 Second International Conference on Network Applications, Protocols and Service

    Communications in Vehicular Ad Hoc Networks

    Get PDF

    Fixed Cluster Based Cluster Head Selection Algorithm in Vehicular Adhoc Network

    Get PDF
    The emergence of Vehicular Adhoc Networks (VANETs) is expected support variety of applications for driver assistance, traffic efficiency and road safety. For proper transmission of messages in VANET, one of the proposed solutions is dividing the network into clusters and then selecting a cluster head (CH) in each cluster. This can decrease the communication overhead between road side units (RSUs) and other components of VANETs, because instead of every node communicating with RSU, only CH communicates with RSU and relays relevant messages. In clustering, an important step is the selection of CH. In this thesis, we implemented vehicle to vehicle (V2V), cluster head to road side unit and road side unit to trusted authority authentication for the clustered network. We also presented a heuristic algorithm for selecting a suitable vehicle as the cluster head in a cluster. For the selection of head vehicle, we used weighted fitness values based on three parameters; trust value, position from the cluster boundary and absolute relative average speed. Simulation results indicate that the proposed approach can lead to improvements in terms of QoS metrics like delay, throughput and packet delivery ratio

    Survey on Congestion Detection and Control in Connected Vehicles

    Full text link
    The dynamic nature of vehicular ad hoc network (VANET) induced by frequent topology changes and node mobility, imposes critical challenges for vehicular communications. Aggravated by the high volume of information dissemination among vehicles over limited bandwidth, the topological dynamics of VANET causes congestion in the communication channel, which is the primary cause of problems such as message drop, delay, and degraded quality of service. To mitigate these problems, congestion detection, and control techniques are needed to be incorporated in a vehicular network. Congestion control approaches can be either open-loop or closed loop based on pre-congestion or post congestion strategies. We present a general architecture of vehicular communication in urban and highway environment as well as a state-of-the-art survey of recent congestion detection and control techniques. We also identify the drawbacks of existing approaches and classify them according to different hierarchical schemes. Through an extensive literature review, we recommend solution approaches and future directions for handling congestion in vehicular communications

    On The Security And Quality Of Wireless Communications In Outdoor Mobile Environment

    Get PDF
    The rapid advancement in wireless technology along with their low cost and ease of deployment have been attracting researchers academically and commercially. Researchers from private and public sectors are investing into enhancing the reliability, robustness, and security of radio frequency (RF) communications to accommodate the demand and enhance lifestyle. RF base communications -by nature- are slower and more exposed to attacks than a wired base (LAN). Deploying such networks in various cutting-edge mobile platforms (e.g. VANET, IoT, Autonomous robots) adds new challenges that impact the quality directly. Moreover, adopting such networks in public outdoor areas make them vulnerable to various attacks (regardless of the attacker motive). Therefore, the quality and security of the communications cannot be neglected especially when developing outdoor wireless applications/networks. While some wireless applications and platforms aim to provide comfort and infotainment, others are more critical to protect and save lives. Thus, the need for mobile broadband connections has been increased to accommodate such applications. The FCC took the first step to regulate and assure the quality when using these technologies by allocating spectrums and issuing standards and amendments (e.g. IEEE802.11a, b, g, n, and p) to deliver reliable and secure communications. In this dissertation, we introduce several problems related to the security and quality of communications in outdoor environments. Although we focus on the ISM-RF bands UHF and SHF (licensed and unlicensed) and their applications when solving quality and security issues nevertheless, the concept of propagating signals through the air for communications remain the same across other ISM bands. Therefore, problems and their solutions in this work can be applied to different wireless technologies with respect to environment and mobility

    An overview of VANET vehicular networks

    Full text link
    Today, with the development of intercity and metropolitan roadways and with various cars moving in various directions, there is a greater need than ever for a network to coordinate commutes. Nowadays, people spend a lot of time in their vehicles. Smart automobiles have developed to make that time safer, more effective, more fun, pollution-free, and affordable. However, maintaining the optimum use of resources and addressing rising needs continues to be a challenge given the popularity of vehicle users and the growing diversity of requests for various services. As a result, VANET will require modernized working practices in the future. Modern intelligent transportation management and driver assistance systems are created using cutting-edge communication technology. Vehicular Ad-hoc networks promise to increase transportation effectiveness, accident prevention, and pedestrian comfort by allowing automobiles and road infrastructure to communicate entertainment and traffic information. By constructing thorough frameworks, workflow patterns, and update procedures, including block-chain, artificial intelligence, and SDN (Software Defined Networking), this paper addresses VANET-related technologies, future advances, and related challenges. An overview of the VANET upgrade solution is given in this document in order to handle potential future problems

    On Board unit based authentication for V2V communication in VANET

    Get PDF
    The recent developments in wireless communication technologies along with the plummeting costs of hardware allow both V2V and V2I communications for information exchange. Such a network is called Vehicular ad Hoc Network (VANET) which is very important for various road safety and non-safety related applications. However, Due to the wireless nature of communication in VANETs, it is also prone to various security attacks which are originally present in wireless networks. Hence to realize the highest potential of VANET, the network should be free from attackers, there by all the information exchanged in the network must be reliable i.e. should be originated from authenticated source. However, authentication of vehicles using a PKI based architecture which is mostly based on V2I communication and solely depends on Road side Units, might fail in case of absence of proper infrastructure. Moreover PKI based solutions incur more communication overhead due to repeated connections with the Trusted Authority every time you want to authenticate a vehicle. Hence, this thesis work gives an OBU based authentication mechanism which allows the vehicle to authenticate each other for V2V communication when there is lack of proper infrastructure. Here each vehicle is capable of generating a pair of self-certified public/private key pair which can be verified by any other vehicle using a predefined secret key given by Trusted Authority. The grouping concept used in order to lower the communication overheads. The Vehicle in close proximity of each other form a group. A vehicle can obtain the group key by authenticating itself to the group leader. Our proposed scheme also preserves the privacy of the vehicle but can reveal the identity in liability issues. The security analysis of the proposed scheme shows that it can indeed operate with limited support of infrastructure and can become a fully self-organized system
    corecore