1,184 research outputs found

    A Secure Implementation of a Symmetric Encryption Algorithm in White-Box Attack Contexts

    Get PDF
    In a white-box context, an adversary has total visibility of the implementation of the cryptosystem and full control over its execution platform. As a countermeasure against the threat of key compromise in this context, a new secure implementation of the symmetric encryption algorithm SHARK is proposed. The general approach is to merge several steps of the round function of SHARK into table lookups, blended by randomly generated mixing bijections. We prove the soundness of the implementation of the algorithm and analyze its security and efficiency. The implementation can be used in web hosts, digital right management devices, and mobile devices such as tablets and smart phones. We explain how the design approach can be adapted to other symmetric encryption algorithms with a slight modification

    Software Obfuscation with Symmetric Cryptography

    Get PDF
    Software protection is of great interest to commercial industry. Millions of dollars and years of research are invested in the development of proprietary algorithms used in software programs. A reverse engineer that successfully reverses another company‘s proprietary algorithms can develop a competing product to market in less time and with less money. The threat is even greater in military applications where adversarial reversers can use reverse engineering on unprotected military software to compromise capabilities on the field or develop their own capabilities with significantly less resources. Thus, it is vital to protect software, especially the software’s sensitive internal algorithms, from adversarial analysis. Software protection through obfuscation is a relatively new research initiative. The mathematical and security community have yet to agree upon a model to describe the problem let alone the metrics used to evaluate the practical solutions proposed by computer scientists. We propose evaluating solutions to obfuscation under the intent protection model, a combination of white-box and black-box protection to reflect how reverse engineers analyze programs using a combination white-box and black-box attacks. In addition, we explore use of experimental methods and metrics in analogous and more mature fields of study such as hardware circuits and cryptography. Finally, we implement a solution under the intent protection model that demonstrates application of the methods and evaluation using the metrics adapted from the aforementioned fields of study to reflect the unique challenges in a software-only software protection technique

    SGXIO: Generic Trusted I/O Path for Intel SGX

    Full text link
    Application security traditionally strongly relies upon security of the underlying operating system. However, operating systems often fall victim to software attacks, compromising security of applications as well. To overcome this dependency, Intel introduced SGX, which allows to protect application code against a subverted or malicious OS by running it in a hardware-protected enclave. However, SGX lacks support for generic trusted I/O paths to protect user input and output between enclaves and I/O devices. This work presents SGXIO, a generic trusted path architecture for SGX, allowing user applications to run securely on top of an untrusted OS, while at the same time supporting trusted paths to generic I/O devices. To achieve this, SGXIO combines the benefits of SGX's easy programming model with traditional hypervisor-based trusted path architectures. Moreover, SGXIO can tweak insecure debug enclaves to behave like secure production enclaves. SGXIO surpasses traditional use cases in cloud computing and makes SGX technology usable for protecting user-centric, local applications against kernel-level keyloggers and likewise. It is compatible to unmodified operating systems and works on a modern commodity notebook out of the box. Hence, SGXIO is particularly promising for the broad x86 community to which SGX is readily available.Comment: To appear in CODASPY'1

    Efficient and Provable White-Box Primitives

    Get PDF
    International audienceIn recent years there have been several attempts to build white-box block ciphers whose implementations aim to be incompress-ible. This includes the weak white-box ASASA construction by Bouil-laguet, Biryukov and Khovratovich from Asiacrypt 2014, and the recent space-hard construction by Bogdanov and Isobe from CCS 2015. In this article we propose the first constructions aiming at the same goal while offering provable security guarantees. Moreover we propose concrete instantiations of our constructions, which prove to be quite efficient and competitive with prior work. Thus provable security comes with a surprisingly low overhead

    Garbling Schemes and Applications

    Get PDF
    The topic of this thesis is garbling schemes and their applications. A garbling scheme is a set of algorithms for realizing secure two-party computation. A party called a client possesses a private algorithm as well as a private input and would like to compute the algorithm with this input. However, the client might not have enough computational resources to evaluate the function with the input on his own. The client outsources the computation to another party, called an evaluator. Since the client wants to protect the algorithm and the input, he cannot just send the algorithm and the input to the evaluator. With a garbling scheme, the client can protect the privacy of the algorithm, the input and possibly also the privacy of the output. The increase in network-based applications has arisen concerns about the privacy of user data. Therefore, privacy-preserving or privacy-enhancing techniques have gained interest in recent research. Garbling schemes seem to be an ideal solution for privacy-preserving applications. First of all, secure garbling schemes hide the algorithm and its input. Secondly, garbling schemes are known to have efficient implementations. In this thesis, we propose two applications utilizing garbling schemes. The first application provides privacy-preserving electronic surveillance. The second application extends electronic surveillance to more versatile monitoring, including also health telemetry. This kind of application would be ideal for assisted living services. In this work, we also present theoretical results related to garbling schemes. We present several new security definitions for garbling schemes which are of practical use. Traditionally, the same garbled algorithm can be evaluated once with garbled input. In applications, the same function is often evaluated several times with different inputs. Recently, a solution based on fully homomorphic encryption provides arbitrarily reusable garbling schemes. The disadvantage in this approach is that the arbitrary reuse cannot be efficiently implemented due to the inefficiency of fully homomorphic encryption. We propose an alternative approach. Instead of arbitrary reusability, the same garbled algorithm could be used a limited number of times. This gives us a set of new security classes for garbling schemes. We prove several relations between new and established security definitions. As a result, we obtain a complex hierarchy which can be represented as a product of three directed graphs. The three graphs in turn represent the different flavors of security: the security notion, the security model and the level of reusability. In addition to defining new security classes, we improve the definition of side-information function, which has a central role in defining the security of a garbling scheme. The information allowed to be leaked by the garbled algorithm and the garbled input depend on the representation of the algorithm. The established definition of side-information models the side-information of circuits perfectly but does not model side-information of Turing machines as well. The established model requires that the length of the argument, the length of the final result and the length of the function can be efficiently computable from the side-information function. Moreover, the side-information depends only on the function. In other words, the length of the argument, the length of the final result and the length of the function should only depend on the function. For circuits this is a natural requirement since the number of input wires tells the size of the argument, the number of output wires tells the size of the final result and the number of gates and wires tell the size of the function. On the other hand, the description of a Turing machine does not set any limitation to the size of the argument. Therefore, side-information that depends only on the function cannot provide information about the length of the argument. To tackle this problem, we extend the model of side-information so that side-information depends on both the function and the argument. The new model of side information allows us to define new security classes. We show that the old security classes are compatible with the new model of side-information. We also prove relations between the new security classes.Tämä väitöskirja käsittelee garblausskeemoja ja niiden sovelluksia. Garblausskeema on työkalu, jota käytetään turvallisen kahden osapuolen laskennan toteuttamiseen. Asiakas pitää hallussaan yksityistä algoritmia ja sen yksityistä syötettä, joilla hän haluaisi suorittaa tietyn laskennan. Asiakkaalla ei välttämättä ole riittävästi laskentatehoa, minkä vuoksi hän ei pysty suorittamaan laskentaa itse, vaan joutuu ulkoistamaan laskennan toiselle osapuolelle, palvelimelle. Koska asiakas tahtoo suojella algoritmiaan ja syötettään, hän ei voi vain lähettää niitä palvelimen laskettavaksi. Asiakas pystyy suojelemaan syötteensä ja algoritminsa yksityisyyttä käyttämällä garblausskeemaa. Verkkopohjaisten sovellusten kasvu on herättänyt huolta käyttäjien datan yksityisyyden turvasta. Siksi yksityisyyden säilyttävien tai yksityisyyden suojaa lisäävien tekniikoiden tutkimus on saanut huomiota. Garblaustekniikan avulla voidaan suojata sekä syöte että algoritmi. Lisäksi garblaukselle tiedetään olevan useita tehokkaita toteutuksia. Näiden syiden vuoksi garblausskeemat ovat houkutteleva tekniikka käytettäväksi yksityisyyden säilyttävien sovellusten toteutuksessa. Tässä työssä esittelemme kaksi sovellusta, jotka hyödyntävät garblaustekniikkaa. Näistä ensimmäinen on yksityisyyden säilyttävä sähköinen seuranta. Toinen sovellus laajentaa seurantaa monipuolisempaan monitorointiin, kuten terveyden kaukoseurantaan. Tästä voi olla hyötyä etenkin kotihoidon palveluille. Tässä työssä esitämme myös teoreettisia tuloksia garblausskeemoihin liittyen. Esitämme garblausskeemoille uusia turvallisuusmääritelmiä, joiden tarve kumpuaa käytännön sovelluksista. Perinteisen määritelmän mukaan samaa garblattua algoritmia voi käyttää vain yhdellä garblatulla syötteellä laskemiseen. Käytännössä kuitenkin samaa algoritmia käytetään usean eri syötteen evaluoimiseen. Hiljattain on esitetty tähän ongelmaan ratkaisu, joka perustuu täysin homomorfiseen salaukseen. Tämän ratkaisun ansiosta samaa garblattua algoritmia voi turvallisesti käyttää mielivaltaisen monta kertaa. Ratkaisun haittapuoli kuitenkin on, ettei sille ole tiedossa tehokasta toteutusta, sillä täysin homomorfiseen salaukseen ei ole vielä onnistuttu löytämään sellaista. Esitämme vaihtoehtoisen näkökulman: sen sijaan, että samaa garblattua algoritmia voisi käyttää mielivaltaisen monta kertaa, sitä voikin käyttää vain tietyn, ennalta rajatun määrän kertoja. Tämä näkökulman avulla voidaan määritellä lukuisia uusia turvallisuusluokkia. Todistamme useita relaatioita uusien ja vanhojen turvallisuusmääritelmien välillä. Relaatioiden avulla garblausskeemojen turvallisuusluokille saadaan muodostettua hierarkia, joka koostuu kolmesta komponentista. Tieto, joka paljastuu garblatusta algoritmista tai garblatusta syötteestä riippuu siitä, millaisessa muodossa algoritmi on esitetty, kutsutaan sivutiedoksi. Vakiintunut määritelmä mallintaa loogisen piiriin liittyvää sivutietoa täydellisesti, mutta ei yhtä hyvin Turingin koneeseen liittyvää sivutietoa. Tämä johtuu siitä, että jokainen yksittäinen looginen piiri asettaa syötteensä pituudelle rajan, mutta yksittäisellä Turingin koneella vastaavanlaista rajoitusta ei ole. Parannamme sivutiedon määritelmää, jolloin tämä ongelma poistuu. Uudenlaisen sivutiedon avulla voidaan määritellä uusia turvallisuusluokkia. Osoitamme, että vanhat turvallisuusluokat voidaan esittää uudenkin sivutiedon avulla. Todistamme myös relaatioita uusien luokkien välillä.Siirretty Doriast
    corecore