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ABSTRACT The adoption of third-party machine learning (ML) cloud services is highly dependent on
the security guarantees and the performance penalty they incur on workloads for model training and
inference. This paper explores security/performance trade-offs for the distributed Apache Spark framework
and its ML library. Concretely, we build upon a key insight: in specific deployment settings, one can
reveal carefully chosen non-sensitive operations (e.g. statistical calculations). This allows us to considerably
improve the performance of privacy-preserving solutions without exposing the protocol to pervasive ML
attacks. In more detail, we propose Soteria, a system for distributed privacy-preserving ML that leverages
Trusted Execution Environments (e.g. Intel SGX) to run computations over sensitive information in isolated
containers (enclaves). Unlike previous work, where all ML-related computation is performed at trusted
enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves.
The experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41%
when compared to previous related work. Our protocol is accompanied by a security proof and a discussion
regarding resilience against a wide spectrum of ML attacks.

INDEX TERMS Privacy-preserving, machine learning, distributed systems, apache spark, trusted execution
environments, Intel SGX.

I. INTRODUCTION
The ubiquitous environment provided by cloud comput-
ing providers offers a scalable, reliable, and performant
environment to deploy compute-intensive Machine Learning
(ML) workloads. However, many of these workloads operate
over users’ sensitive information (e.g., medical records,
financial information). Regulations like HIPAA and GDPR
enforce strong security policies when processing or storing
sensitive data at untrusted third-party infrastructures [1], [2].
As such, outsourcing ML data storage and computation to
third-party services leave users vulnerable to attacks that
may compromise the integrity and confidentiality of their
data [3], [4]. Indeed, the ML pipeline encompasses several
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stages, both for model training and inference, in which users’
data is known to be susceptible to different attacks such
as adversarial attacks, model extraction, and inversion, and
reconstruction attacks [5], [6], [7].

Recent works have addressed these attacks with solutions
based on homomorphic encryption or secure multi-party
computation schemes [8], [9]. However, these cryptographic
schemes impose a significant performance toll that restricts
their applicability to practical scenarios [10]. To circumvent
this performance penalty, another line of research is that of
exploring hardware technologies enabling Trusted Execution
Environments (TEEs), such as Intel SGX [11]. These
technologies allow the execution of code within isolated
processing environments (i.e., enclaves) where data can be
securely handled in its original form (i.e., plaintext) at
untrusted servers.
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The latter approach typically deploys full ML workloads
inside TEEs [12], [13], [14]. However, as the amount of
computational and I/O operations performed at the enclaves
increases, the performance of ML training and inference
is noticeably affected by hardware limitations, limiting the
design’s applicability in practice [15].

This paper builds upon the idea that ML runtime per-
formance could be improved by reducing the number of
operations done at enclaves. In fact, this insight is backed up
by previous work [16], [17], [18] exploring the partitioning of
computation across trusted and untrusted environments, but
in contexts (e.g., SQL processing, MapReduce, distributed
coordination) with different security requirements and pro-
cessing logic than the ones found for ML workloads.

Therefore, the key challenge addressed by this paper
is to understand and define the set of ML operations to
run inside/outside TEEs. Ideally, these operations should
significantly reduce the enclaves’ overall computational and
I/O load for different ML workloads, and doing so should not
leak critical sensitive information during the execution of ML
workloads.

Our reasoning is twofold: i.) the majority of current
attacks on the ML pipeline are only successful if the attacker
has some knowledge about the datasets or the models
being used [6], [19]; and ii.) previous work shows that
such knowledge cannot be inferred from the information
leaked by statistical operations, such as the calculation
of confidence results, table summaries, ROC/AUC curves,
and probability distributions for classes, without additional
knowledge regarding the dataset or the model [20]. As a
result, these operations are ideal candidates to be offloaded
from enclaves. We support these claims by analyzing the
security and performance implications of different ML
workloads and attacks.

A. SOLUTION
Thus, we propose Soteria,1 an open-source system for
distributed privacy-preserving ML that leverages the scal-
ability and reliability of Apache Spark and its ML library
(MLlib) [21]. Unlike previous solutions [22], [23], Soteria
supports a wide variety of ML algorithms without changing
how users build and run these within Spark. Further, it ensures
that critical operations, which enable existing attacks to reveal
sensitive information from ML datasets and models, are
exclusively performed in secure enclaves. This means that the
sensitive data being processed only exists in plaintext inside
the enclave and is encrypted in the remainder of the dataflow
(e.g., network, storage). This solution enables robust security

1This is an extended version of the work published in [21]. We improved
our earlier publication by refining the paper’s structure, contributions, and
background work, adding a new discussion about Soteria’s design goals,
introducing the analysis of our secure mechanisms for a concrete ML
algorithm, providing new experiments with more ML workloads and their
analysis, improving the comparison of Soteria against related work, and
adding a formal security proof for Soteria.

guarantees, ensuring data privacy during ML training and
inference.

Soteria introduces a new computation partitioning
scheme for Apache Spark’s MLlib, Soteria-P, that offloads
non-critical statistical operations from the trusted enclaves
to untrusted environments. Soteria-P is accompanied by a
formal security proof for how data remains private during
ML workloads and an analysis of how this guarantee
ensures resilience against various ML attacks. Furthermore,
Soteria offers a baseline scheme, Soteria-B, where all
ML operations are done inside trusted enclaves without
a fine-grained differentiation between critical and non-
critical operations. Soteria-B provides a performance and
security baseline for comparison against our new partitioned
scheme.

We compare experimentally both approaches with a
non-secure deployment of Apache Spark and a state-of-
the-art solution, namely SGX-Spark [22]. Our experiments,
resorting to the HiBench benchmark [24] and including
seven different ML algorithms, show that Soteria-P, while
considering a more significant subset of ML attacks, reduces
training time by up to 41% for Gradient Boosted Trees
workloads and up to 4.3 hours for Linear Regression
workloads, when compared to SGX-Spark. Also, compared
to Soteria-B, Soteria-P reduces execution time by up to 37%
for the Gradient Boosted Trees workloads and up to 3.3 hours
for the Linear Regression workloads.

B. CONTRIBUTIONS
Our contributions are summarized as follows:
• A new system tailored for Apache Spark, which
leverages Intel SGX for the secure execution of a
wide range of ML algorithms while not requiring any
changes to how users typically implement and run their
workloads.

• A novel computation partitioning scheme, named
Soteria-P, builds upon the insight that the computation
over non-critical information can be offloaded from
trusted enclaves to reduce the performance impact of
these secure mechanisms on ML processing.

• An open-source prototype, implemented by resorting
to the Gramine Library OS, overcoming the complex-
ity of supporting both Java and Scala programming
languages in Intel’s SGX while offering additional
security guarantees (i.e., security isolation, host platform
compatibility).

• An extensive evaluation, including seven ML algo-
rithms, demonstrates the feasibility and usability of our
system. The experimental evaluation validates that our
approach reduces the runtime of ML algorithms by up
to 41% compared to previous related work.

C. OUTLINE
The remainder of this paper is organized as follows. Section II
gives brief background information on Apache Spark, MLlib,
Intel SGX, and Gramine. Then, Section III presents the
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threat model of Soteria and a description of current ML
attacks. In Section IV, we concretely define the design
goals and architecture of Soteria. Section V discusses the
conducted experimental testbed, the main observations, and
their analysis and discussion. Next, Section VI presents
the current state-of-the-art solution, emphasizing their main
differences with Soteria. Finally, Section VII concludes and
highlights the main contributions proposed in this paper.

II. BACKGROUND
Next, we provide background on the key technologies
that work as building blocks for our solution. Namely,
in Subsection II-A, we overview the core concepts of Apache
Spark and MLlib. Finally, Subsection II-B exposes key
concepts of Intel SGX, while Subsection II-C describes
Gramine, the chosen LibOS to implement Soteria.

A. APACHE SPARK
Apache Spark is a distributed cluster computing framework
that supports Extract, Transform, and Load (ETL), analytical,
ML, and graph processing workloads over large volumes
of data. Spark can be deployed on a cluster of servers,
at a private infrastructure, or in the cloud and supports
different data sources (e.g., HBase, HDFS) for reading
the data to be processed and storing the corresponding
output and logs. The framework performs most of the
computation in-memory, thus promoting better performance
for data-intensive applications when compared to Hadoop’s
MapReduce [25].

Spark follows a master-worker distributed architecture.
Users interact with the master node by submitting jobs
(i.e., processing workloads) and collecting the corresponding
outputs. The master is then responsible for submitting jobs
to the worker nodes by resorting to a job scheduler and
resource negotiator named Spark Driver. This driver splits the
jobs into tasks (i.e., map phase) and defines which workers
will compute a given set of tasks. Finally, each worker
performs the designed task(s) and reports the resulting output
to the master, which then aggregates (i.e., reduce phase) and
forwards the response back to the user. Further details about
Spark’s flow are discussed in Section IV-B.
Apache Spark’s ML library (MLlib) [26] enables Spark

users to build end-to-end ML jobs. Its workflow is similar
to the one found in other ML solutions, with the addition
of an initial data treatment stage. The library also provides
a set of tools and utilities for feature extraction and model
persistence.

Figure 1 shows the typicalMLworkflow for data engineers
and scientists. The first stage is typically known as the process
of ETL, where data is collected and extracted in a pre-
determined format, treated accordingly, and loaded in the
needed format (e.g., CSV, Parquet, Text File). In the second
stage, data is split into train and test datasets, and a given
ML algorithm is chosen. The third stage is the training stage,
where data is iterated to deliver an optimized trained model

FIGURE 1. Machine Learning process flow.

at the fourth stage. In the fifth stage, the trained model can be
saved (persisted) and loaded (accessed) for inference.

B. INTEL SOFTWARE GUARD EXTENSIONS
Intel SGX provides a set of new instructions available on
Intel processors that applications can use to create trusted
memory regions. These regions (enclaves) are isolated from
any other code on the host system, preventing other processes,
including those with higher privilege levels (such as the host
OS, hypervisor, and BIOS), from accessing their content [11],
[27].

Since SGX protects code and data from privileged access,
sensitive plaintext data can be processed at the enclave
without compromising its privacy. Thus, TEEs outperform
typical traditional cryptographic computational techniques
(e.g., searchable encryption, homomorphic encryption) [27].
Nonetheless, even though the second generation of SGX
has improved the size of the protected memory region,
it still defines the Enclave Page Cache (EPC) to 128MB per
CPU [28]. Memory swapping occurs when such a limitation
is met, which is a performance-costing mechanism [15].
Thus, SGX-based solutions must balance the number of I/O
operations, the amount of data handled by enclaves, and the
Trusted Computing Base (TCB) to optimize performance.

In this paper, we chose Intel SGX over other TEE’s (e.g.,
ARMTrustZone [29]) due to its general use in academia [14],
[16], [17] and industry [30], availability, as well as its security
guarantees and computing reliability. However, our solution
is generic and can be applied to other TEE technology that
follows similar design principles to SGX.

C. GRAMINE
Porting existing source code into TEEs is a non-trivial and
error-prone task. Initially, applications’ source code needed
to be rewritten in C/C++ to run inside enclaves, thus requiring
manual intervention. This inefficient approach led to the
proposal of solutions to port unmodified applications to run
inside TEEs automatically.

In this paper, we resort to Gramine [31] (previously
named Graphene-SGX), an open-source library OS designed
to run unmodified applications inside Intel SGX enclaves.
Gramine’s architecture (Figure 2) is based on Drawbridge’s
picoprocess [32], which provides an isolated address space.
Its architecture contains three main components: i) the
unmodified binary application and corresponding libraries,
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to be ported into SGX; ii) the LibOS, a custom operating
system implemented by Gramine; and iii) the Enclave
Platform Adaptation Layer (PAL).

FIGURE 2. Gramine’s architecture based on [31]. The enclave includes an
OS shield, a library OS, libc, and other user binaries.

a: PAL
This is a core component of Gramine, which acts as an
intermediary between the LibOS and the underlying hardware
platform to provide the necessary abstractions and interfaces
that enable Gramine to run efficiently [33]. In detail, this
layer:
• Abstracts the low-level hardware details, allowing
Gramine to be portable across different hardware
platforms without requiring extensive modifications to
its core codebase.

• Handles the initialization and management of the SGX
enclaves and sets up the enclave memory layout.

• Facilitates communication between the Gramine
enclave and the host system.

• Provides mechanisms for securely passing data and
invoking system calls from the enclave to the host and
vice versa.

• Manages the resources allocated to the enclave, ensuring
it has access to the necessary memory, CPU, and other
resources.

b: MANIFEST FILE
Through this configuration file, developers specify the
application libraries to be deployed inside a secure enclave,
the paths for files that the enclave will need to access
securely, and trusted system libraries. It also contains the
environment’s specifications (e.g., the CPU and memory
resources for each enclave) [34].
In sum, the Gramine library works similarly to a

paravirtualization environment, taking advantage of the
standard virtualization benefits such as security isolation,

host platform compatibility, and migration while mapping
high-level APIs onto a few paravirtual interfaces to the host
kernel [31].
By resorting to this framework, one can take full advantage

of the application’s native performance while potentiating
the use of trusted execution environments. Moreover, with
a growing community focused on confidential computing
with Intel SGX, Gramine is supported by Intel and several
universities [35].

III. THREAT MODEL AND ATTACKS
This section provides an overview of Soteria’s threat model,
where we define its deployment setting (§III-A) and present
the ML attacks covered by our solution (§III-B).

A. SOTERIA THREAT MODEL
Soteria enables the secure outsourcing of ML training and
inference workloads. These are scenarios where the data
owner holds sensitive information (a private dataset and/or
model) and wants to perform some ML workload on it using
an external cloud provider.

This is a typical setting in health-related contexts, such
as rare disease identification [36]. Hospitals and clinics are
unwilling to (or outright unable to) offload patient data to
a potentially malicious cloud service, even if such service
provides computational resources to process large quantities
of data more efficiently. Alternatively, insurance companies
also collect large quantities of data and leverage it to
forecast traffic accidents [37]. These companies would also
significantly benefit from using the resources of third-party
cloud infrastructures. However, risking the leakage of said
predictive model entails losing valuable market advantage.

Our deployment model is depicted in Figure 3 and is
as follows. The client (data owner) will be trusted and
will provide input for ML tasks. Then, a Spark master
node and N worker nodes will be deployed in an untrusted
environment (cloud provider) equipped with Intel SGX
technology. Externally, we also consider a distributed data
storage backend. The protocol assumes an implicit setup
where the client securely stores its input data within this
backend, which is also considered untrusted throughout the
protocol execution.

FIGURE 3. Soteria deployment model.

We consider semi-honest adversaries, meaning that secu-
rity is defined according to a threat that attempts to break
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the confidentiality of data and model but will not actively
deviate from the protocol specification. This is a good fit
for cloud-based systems, where data breaches are common
and malicious entities can read internal processing data
temporarily [3]. In brief, our security goal is to allow clients
to provide input data for training and inference in a way that
is not vulnerable to confidentiality breaches.

B. ML WORKFLOW ATTACKS
Throughout the paper, we consider the black-box setting
proposed by [38], which is as follows. When an adversary
is given black-box access to a model, it means that it can
query any input x and receive the predicted class probabilities
P(y|x) for all classes y. This allows the adversary to
interact with the trained model without retrieving additional
information, e.g., computing the gradients. Ensuring security
against attacks under this threat model entails including
countermeasures against a wide array of attack vectors. Given
this context, we now further detail pervasive attacks on the
ML pipeline and establish their adversarial assumptions.
A scheme summarizing these attacks is depicted in Figure 1.

1) ADVERSARIAL ATTACKS
These attacks are characterized by injecting malicious data
samples to manipulate the model and disclose information
about the original data used for training or inference purposes.
Successful attacks in the literature require the attacker to have
direct access to the training dataset (data poisoning, transfer-
based, and gradient-based attacks), the model and gradients
(gradient-based attacks), or the full results (i.e., the output
of inference) and class probabilities (score-based attacks)
[19], [39].

2) MODEL EXTRACTION
These attacks aim at learning a close approximation to an
objective function of the trained model. This approximation
is based on the exact confidence values and response labels
obtained by inference. To obtain the desired result, the
attacker must know the dimension of the original training
dataset (equation-solving attacks), the dimension of the
decision trees, the data features, and the final confidence
values (path-finding attacks) or hold actual samples from the
training dataset (class-only attacks and data-free knowledge
distillation (DFKD)) [5], [20], [40].

3) MODEL INVERSION AND MEMBERSHIP INFERENCE
These attacks target the recovery of values from the training
dataset. Both consider an adversary that queries the ML
system in a black-box fashion, and both are currently based on
ML services, which publicly disclose their trainedmodels and
confidence values. In model inversion attacks, the adversary
must have partial knowledge of the training dataset’s features
to infer and query the model with specific queries [5], [6].
Membership inference aims to test whether a specific data
point d was used as training data and requires the adversary

to know a subset of samples used to train the model (that does
not contain d) [41].

4) RECONSTRUCTION ATTACKS
The goal of this attack is similar to that of membership
inference. However, instead of testing for the existence of
a specific data point, the adversary intends to reconstruct
raw data used for training the model. To be successful,
some attacks require the adversary to have model-specific
information, namely feature vectors (e.g., Support Vector
Machines or K-Nearest Neighbor) [42], others only require
black-box access to the model [43]. Nonetheless, in this
setting, the attacker needs to have access to another dataset
with the same distribution as the original training dataset (i.e.,
local dataset and training dataset are subsets from a larger
dataset).

TABLE 1. Comparison between state-of-the-art solutions and Soteria
regarding the safety against ML attacks.

5) SUMMARY
Unlike previous works [12], [13], [22], [23], which typically
consider a small subset of ML attacks, our proposal aims
at providing mechanisms that cover the full range of the
exploits as mentioned above. Table 1 presents relevant
state-of-the-art solutions, the security attacks covered by
these, and the attacks addressed by Soteria. Intuitively,
the resilience of our system is the result of combining
several mechanisms, which are only partially ensured by
other systems: i) authenticity verification of inputs excludes
injections necessary for adversarial attacks; ii) isolation
guarantees of our protocol ensure that malicious workers
gather no additional information other than statistical data,
an essential aspect for preventing most attacks, and iii)
query input via a secure channel prevents the adversary from
performing arbitrary queries to our system, which is also
a central requirement for model inversion or reconstruction
attacks. This resiliency is analyzed in detail in Section IV-F.
TEE-related security issues such as side-channel and

memory access pattern attacks are considered orthogonal
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and complementary to our design goals. Indeed, mechanisms
such as ObliviousRAM [44] can be layered over Soteria
to address these at the cost of additional performance
overhead [45].

IV. SOTERIA
In this section, we present the design goals of Soteria (§IV-A)
and describe its architecture and flow of requests (§IV-B to
§IV-D). The novel partitioned scheme is presented in detail
in Subsection IV-E, while Subsection IV-F provides Soteria’s
security analysis. Finally, we overview the prototype of our
solution (§IV-G).

A. DESIGN GOALS
Soteria is a distributed privacy-preserving machine learning
system that avoids changing the architecture and processing
flow of Apache Spark and MLlib, retaining its usability,
scalability, and fault tolerance properties. It is built under the
assumption that ML runtime performance can be improved
if one can diminish the number of operations done inside
secure enclaves. Thus, Soteria proposes a partitioning scheme
to split the computation to be performed inside and outside
these.
Soteria builds upon four core principles:

a: GENERAL APPLICABILITY FOR ML WORKLOADS
Soteria aims to offer an encompassing solution for severalML
algorithms by relying on Apache Spark’s MLlib.

b: PRIVACY-BY-DESIGN
In Soteria, sensitive data is only on plaintext inside the
enclaves, being encrypted in the remaining workflow. This is
achieved by resorting to trusted execution environments and
encryption mechanisms that safeguard data privacy.

c: BALANCED OVERHEAD
Soteria offers a partitioning scheme that balances the imposed
performance overhead of the privacy measures and the
leakage of such a solution.

d: LOW INTRUSIVENESS
Both the processing flow of Apache Spark and the user’s
interaction with the system remain unchanged or require
minor changes.

B. ARCHITECTURE AND FLOW
As depicted in Figure 4, Apache Spark’s operational flow
is as follows. Before submitting ML tasks (e.g., model
training, and/or inference operations) to the Spark cluster,
usersmust load their local datasets andmodels to a distributed
storage backend. Users can then submit ML processing tasks,
specified as ML task scripts, to the Spark client, which is
responsible for forwarding these scripts to the master node.
At the master node, tasks are forwarded to the Spark Driver,
which generates a Spark Context that then distributes the
tasks to a set of worker nodes.

As workers may be executing different steps of a given
task, they need to be able to transfer information among each
other through the network. For instance, in a distributed ML
training task, this information can contain model parameters
that must be exchanged across workers. After finishing the
desired computational steps, workers return their outputs to
the master node, which merges the outputs and replies to the
client.

Similar to the regular flow of Apache Spark, Soteria
can be divided into two main environments or sides: the
Soteria Client, trusted side, and the Soteria Cluster, untrusted
side, (e.g., cloud environment). Next, we describe the main
modifications required by Soteria to the original Apache
Spark’s design, depicted in Figure 4 by the white dashed and
solid line boxes.

FIGURE 4. Soteria architecture and flow of operations.

C. CLIENT
Users use Soteria’s client module for three main opera-
tions: i) loading data into the distributed storage backend,
ii) sending ML training tasks to the Spark cluster, and
iii) sending ML inference tasks to the Spark cluster. Soteria
does not change how users typically specify and perform the
previous operations. The only exception is that users need
to provide additional information in aManifest configuration
file, as described next.

a: DATA LOADING
First, the user must specify the data to be loaded to the storage
backend for the first operation. However, such data has to
be encrypted before leaving the trusted user premises. This
step is done by extending Spark’s data-loading component
with a transparent encryption module (Figure 4-①). This
module encrypts the data being loaded into the distributed
storage backend with a symmetric-key encryption scheme
(Figure 4-②).

b: TASKS SUBMISSION
ML training and inference operations include two main files:
the ML task script and the Manifest file. The transparent
encryption module, also integrated within MLlib, is used
to encrypt the ML task script (Figure 4-➊), which contains
sensitive arguments (i.e., model parameters) and the ML’s
workload processing logic, and to decrypt the outputs (e.g.,
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trained model or inference result) returned by Spark’s master
node to the client.

The Manifest file contains the libraries to be used by the
ML task script, as well as the path at the storage backend
where the training or inference data for that specific task is
kept (Figure 4-➋). Briefly, and as explained in the following
sections, this file ensures that different Spark components can
attest to the integrity of libraries and data being used/read by
them and cannot access other libraries or data that these are
not supposed to.

The encryption module is in charge of securely exchanging
theManifest file and the user’s symmetric encryption keywith
the SGX enclave on the master node (Figure 4-➊➋). This is
done once, at theML task’s bootstrapping phase, and requires
establishing a secure channel between the client and master’s
enclave. This channel guarantees the security and integrity of
the user’s encryption key and the Manifest file. At the same
time, the encrypted ML task scripts can be safely sent via an
unprotected channel.

With the previous design, sensitive data is only accessed
in plaintext format at trusted user premises or inside
trusted enclaves. This includes users’ encryption keys, the
information in the Manifest file and ML task scripts, as well
as the final output.

D. CLUSTER
Training and inference ML task scripts are sent encrypted to
Spark’s master node to avoid revealing sensitive information.
However, the node requires access to the plaintext informa-
tion contained in these cryptograms to distribute the required
computational load across workers. So, the Spark Driver and
Context modules must be deployed in a secure SGX enclave
where the cryptograms can be decrypted, and the plaintext
information can be securely accessed. The cryptograms,
however, can only be decrypted if the secure enclave has
access to the user’s encryption key, thus explaining why
the key must be sent through a secure channel established
between the client module and the enclave.

For inference operations, the master node also needs to
access the distributed storage backend to retrieve the stored
ML model. The user’s encryption key is necessary, so the
encrypted model is only decrypted and processed at the
secure enclave. TheManifestfile ensures that only the storage
locations specified in the file are accessible to the master
Node (Figure 4-➋).

After processing the ML task scripts, the master’s enclave
establishes secure channels with the enclaves of a set of
workers to send the necessary computational instructions2

along with the user’s encryption key and Manifest file
(Figure 4-➌). The user’s encryption key is needed at the
worker nodes so that these can read encrypted data (e.g.,
train dataset or data to be inferred) from the storage backend
while decrypting and processing it in a secure enclave

2The same metadata sent by a vanilla Spark deployment so that workers
know the computational operations to perform.

environment (Figure 4-➍). Once again, the Manifest file
prevents unwanted access to stored data. Furthermore, the
enclaves at the worker nodes establish secure channels
between themselves to transfer sensitive metadata informa-
tion such as model training parameters (Figure 4-➎).

Finally, after completing the desired computational tasks,
the workers send the corresponding inference or training
outputs to the master node through the established secure
channel (Figure 4-➏). The master node then merges the
partial outputs into the final result, which is done inside
a trusted enclave, and sends it encrypted, with the user’s
encryption key, to the trusted client module (Figure 4-➐).
At the latter, the result (i.e., trained model or inference
output) is decrypted by the transparent encryption module
and returned to the user in plaintext.

E. PARTITIONED DESIGN
Soteria proposes a novel partitioning scheme, Soteria-P, that
does fine-grained partitioning, of which operations execute
inside and outside secure enclaves. Note that this partitioning
is only done for ML operations executed at Spark worker
nodes. The remaining operations performed at other Spark
components (i.e., master) are always executed inside trusted
enclaves.

To better understand the novelty of our partitioning
scheme, we first introduce a common state-of-the-art
approach, Soteria-B, which is also supported by our system
and is used in this paper as a security and performance
baseline.

FIGURE 5. Comparison between Soteria-B and Soteria-P schemes.

a: SOTERIA BASELINE ( SOTERIA-B)
In Soteria-B, all computation done by Spark workers is
included in a trusted environment. Namely, the executor
processes launched by each worker node are deployed inside
an enclave, as depicted in Figure 5. Outside the enclave, data
is always encrypted in an authenticated fashion, allowing
the worker to decrypt and validate data integrity within the
enclave.

b: SOTERIA PARTITIONING SCHEME ( SOTERIA-P)
Our novel scheme is based on the observation that ML work-
loads are composed of different computational steps. Some
must operate directly over sensitive plaintext information
(e.g., train and inference data and model), while others do
not require access to this type of data and are just calculating
and collecting general statistics about the operations being
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made. For instance, in a multiclass ML task, where the user
may want to predict multiple classes, the evaluation of such
an algorithm would need to measure the precision and the
probability of each individual class. These measurements can
be performed independently of other operations over sensitive
information.

Therefore, Soteria-P decouples statistical processing, used
for assessing the performance of inference and training
tasks, from the actual computation of the ML algorithms
done over sensitive plaintext information. This decoupling
builds directly upon MLlib and refactors its implementation
without requiring changes to how users submit ML tasks.
As depicted in Figure 5, statistical processing is done by
executor processes in the untrusted environment, while the
remaining processing endeavors are done by another set of
executors inside a trusted enclave (SGX-executors).

This decoupled scheme leads Soteria-P to reveal the
following statistical information during the execution of
ML workloads: the calculation of confidence results, which
encompass the loss values and calculations of accuracy,
precision, recall, and F1-scores, table summaries, ROC/AUC
curves, and probability distributions for classes.

To provide a more concrete example, Algorithm 1 depicts
the pseudo-code of a Linear Regression algorithm under
the Soteria-P scheme and behaves as follows. The goal is
to minimize the loss function, in this particular example,
the Root Mean Squared Error. First, in the SGX-executor,
an instance of Spark loads the dataset, creating a dataframe
(X , y). This dataframe is further split into train and test
data, (Xtrain, ytrain,Xtest , ytest ). After this first pre-processing,
an instance of a Linear Regression algorithm (lrM ) is trained
with the training data, and with the testing data, the first
predicted values are inferred (P).

With these values, the Root Mean Squared Error (RMSE)
is calculated at the non-secure executor (rmse). This com-
putation is depicted in Algorithm 2, which intends to find
the minimum error value. If no initial error is available, the
algorithm returns the calculated RMSE. Otherwise, it returns
the newly calculated RMSE (newRMSE). This is the only
part of the computation within Soteria-P that is done outside
trusted hardware, and thus, it is highlighted in orange.
After receiving the result, the SGX-executor continues

the model training according to the number of maximum
iterations (maxIter) defined by the user. In each iteration,
it trains a new model (lrM ′) and predicts new values (P′),
which are iteratively used to calculate a new RMSE. If the
new RMSE is lower than the previous, the worker keeps
the newly trained model. The master node then collects
the results from the workers, maps and reduces the model
parameters, and returns the encrypted final model to the
client.

The statistical information that can be computed outside
the secure enclave may differ and must be decided on a per-
algorithm basis. For instance, Principal Component Analysis
(PCA), a dimensionality reduction algorithm, performs its
computation mostly on top of raw data. However, this

Algorithm 1 LinearRegression(DS, prms, lrM ):
1: (X , y) = Spark.load(DS)
2: (Xtrain, ytrain), (Xtest, ytest) = (X , y).split()
3: lrM .fit(Xtrain, ytrain, prms)
4: P← lrM .transform(Xtest, ytest)
5: rmse← Untrusted(ytest,P, ϵ)
6: for i = 1 to maxIter do
7: lrM ′← lrM .fit(Xtrain, ytrain, prms)
8: P′← lrM ′.transform(Xtest, ytest)
9: rmse′← Untrusted(ytest,P′, rmse)
10: if rmse′ < rmse then
11: lrM ← lrM ′

12: rmse← rmse′

13: end if
14: end for
15: return lrM , rmse

Algorithm 2 Untrusted(ytest, ynew, rmse):
1: n← len(ytest)
2: newRMSE←

√
1
n

∑n
i=1(ytesti − ynewi)2

3: if rmse = ϵ then
4: return newRMSE
5: else
6: return min(rmse, newRMSE)
7: end if

algorithm performs an initial validation based on the number
of features and principal components to understand if the
remaining computation can be done. This validation is done
by a statistical function defined in MLlib as memorycost ,
which in Soteria is done outside the enclave.

As with other examples, loss algorithms such as Root
Mean Squared Error (RMSE) or Absolute Error (L1), used
in Linear Regression, Alternating Least Squares, or Gradient
Boosted Trees, are also offloaded from the secure enclaves.
Similarly, the optimization algorithms, such as Expectation-
Maximization (EM), implemented in Latent Dirichlet Alloca-
tion, the cost functions to evaluate the centroids of K-means,
and the accuracy calculations in Naive Bayes are decoupled
from the main algorithms to run outside of enclaves.

F. SECURITY
Our security goal is formally defined using the real-versus-
ideal world paradigm, similar to the Universal Composability
framework [46]. Succinctly, we prove that Soteria is indistin-
guishable from an idealized service for running ML scripts
in an arbitrary external environment that can collude with
a malicious insider adversary. We then use that abstraction
to demonstrate how Soteria is resilient to real-world ML
attacks. This idealized service is specified as a functionality
parameterized with the input data, which executes the tasks
described in the ML task script and returns the output to the
client via a secure channel.
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The full proof of Soteria-P and Soteria-B schemes can be
found in Appendix A. The outline is as follows. The role
played by the master node can be seen as an extension of
the client, establishing secure channels, providing storage
encryption keys, and receiving outputs. We follow the
reasoning of [47] and replace the master node with a reactive
functionality performing the same tasks. Similarly, each
Soteria worker behaves simultaneously as a processing node
and as a client node, providing inputs to the computation
of other workers (e.g., model training parameters). This
enables us to do a hybrid argument, where worker nodes
are sequentially replaced by idealized reactive functionalities
executing their roles in the task script.

Finally, all processing is done in ideal functionalities, and
all access to external storage is fixed by the ML task script
and the Manifest file, so we can refactor the functionalities
to process over hard-coded client data and replace the secure
data storage with dummy encryptions. We have now reached
the ideal world, where all ML computation is done in
an isolated service, and all other protocol interactions are
simulated, given the ML task script and Manifest files. Our
analysis refers to Soteria-B and thus establishes the baseline
security result when no computation is done outside the
enclave (no leakage). The reasoning for Soteria-P is identical,
with the caveat that statistical data is explicitly revealed as
leakage in the ideal world.

1) SECURITY IMPLICATIONS OF STATISTICAL LEAKAGE
To show that our system is resilient against ML attacks,
we must consider a common prerequisite for such attacks
to be successful: the adversary must have black-box access
to the model (as per definition on Section III-B). Our result
implies that adversaries cannot infer internal data from the
workers, and the secure channel between the client and
master prevents adversaries from injecting queries into the
system. This would intuitively suggest that our adversary
is unable to perform queries to the model in a black-
box fashion. However, Soteria-P has the aforementioned
additional leakage of statistical information.

As such, a crucial security question to answer is: how does
statistical information relate to black-box model access, i.e.,
does the first imply the second in any way? Specifically, our
argument is by reduction: if an attack based on black-box
access to the model occurs in Soteria-P, then the adversary
must have been able to extract such access from the
statistical information revealed. Indeed, a recent work by
Chandrasekaran et al. [20] shows that, by only basing the
attack on statistical information not directly associated with
the raw data (i.e., training and validation dataset, ML model),
one cannot perform attacks that disclose sensitive information
from such raw information.

Given how statistical data depends on the underlying
ML script, consider the concrete example provided in
Algorithm 1. Here, the leakage can be defined as the
sum of all data revealed to the untrusted execution, namely the
set of predictive labels ytest, and the results ofmaxIter number

of predictions after lrM .fit(Xtrain, ytrain, prms). Concretely,
the leakage l of an execution of Algorithm 1 can be defined
as:

l = (ytest,

maxIter∑
lrM .transform(Xtest, ytest)) (1)

Equation 1 quantifies the amount of information explicitly
revealed to the adversary of Soteria. As such, attacks
requiring black-box access to the model can only occur if
there exists an efficient algorithm that can take l and produce
a sufficient approximation to lrM for black-box attacks to be
conducted.

For the general case, extracting model access from
statistical data is an ongoing area of research. However,
current attacks suggest one is unable to do this in any
successful way [20]. This supports our thesis that statistical
values are not sensitive information, so their leakage does
not expose our system to these types of attacks. From this,
it follows that Soteria-P scheme is resilient to any attack
requiring black-box access to the model to succeed.

2) RELATION TO ML ATTACKS
We now overview the four types of attacks referred to in
Section III-B on a case-by-case basis. Appendix B contains a
more in-depth analysis of these attacks.

Soteria achieves resistance against input forgery through
authenticated data encryption. This means that the input
dataset is authenticated by the data owner and explicitly
defined in the Manifest file, allowing the SGX-executors to
check the authenticity of all input data. Thus, no forged data
is accepted for processing, which is necessary for performing
any adversarial attack.
The secure channels between the TEE at the master node

and the client ensure that an external adversary cannot
observe legitimate query input/outputs and cannot submit
arbitrary queries to Soteria. This query privacy feature is
crucial to block illegitimate model access, which allows
us to protect against model extraction, model inversion,
membership inference as well as instances of reconstruction
attacks that require black-box access to the model.
Finally, reconstruction attacks require additional knowl-

edge about internal ML model data. Our security result
shows that Soteria is indistinguishable from an idealized
ML service, which does not reveal the trained model.
This includes the critical feature vectors required for this
attack, which cannot be inferred from confidence values
and class probabilities alone. Alternatively, reconstruction
attacks requiring black-box access to the model are strictly
stronger, but this, as we have argued, is not possible only
with knowledge of confidence values, class probabilities,
ROC/AUC curves, and table summaries (the explicit leakage
of Soteria-P, as defined in Appendix A).

G. IMPLEMENTATION
Soteria’s prototype is built on top of Apache Spark 2.3.0 and
implemented using both Java and Scala. Spark’s data loading
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library was extended to include Soteria’s transparent encryp-
tionmodule. The latter uses theAES-GCM-128 authenticated
encryption cipher mode, providing data privacy and integrity
guarantees.

Our prototype supports both Soteria-B and Soteria-P
schemes. For Soteria-P’s implementation, Spark’s MLlib
implementation was decoupled into two sub-libraries, one
with the statistical processing (to be executed outside SGX)
and another with the remaining ML computational logic (to
be executed inside SGX).

Gramine 1.0 was used for the overall management of Intel
SGX enclaves’ life cycle, for specifying the computation (i.e.,
internal Spark and MLlib libraries) to run at each enclave,
and for establishing secure channels (i.e., with the TLS-PSK
protocol) between the enclaves at the master and worker
nodes [31]. Soteria’s Manifest file was also provided by
Gramine.

V. EVALUATION
Our evaluation answers three main questions:
i) How does Soteria impact the execution time of ML

workloads?
ii) How does the Soteria-P scheme compares, in terms

of performance, with state-of-the-art approaches (i.e.,
Soteria-B and SGX-Spark)?

iii) Can Soteria efficiently handle different algorithms and
dataset sizes?

We split our evaluation into three different stages to present
our results more clearly. In detail, Subsection V-A presents
the methodology used for the testbed, Subsection V-B sum-
marizes themain evaluation observations, and SubsectionV-C
analyzes these observations and provides key insights.

A. METHODOLOGY
1) ENVIRONMENT
The experiments use a cluster with eight servers, a 6-core
3.00 GHz Intel Core i5-9500 CPU, 16 GB RAM, and
a 256GB NVMe. The host OS is Ubuntu 18.04.4 LTS,
with Linux kernel 4.15.0. Each machine uses a 10Gbps
Ethernet card connected to a dedicated local network.
We use Apache Spark 2.3.0 and version 2.6 of the Intel
SGX Linux SDK (driver 1.8). The client and Spark Master
run on one server, while Spark Workers are deployed on
the remaining seven servers. Moreover, due to hardware
limitations, the memory of the enclaves was defined
as 4GB.

2) WORKLOADS
As depicted in Table 2, we resort to the HiBench bench-
mark [24] for evaluating seven ML algorithms that are
broadly used and natively implemented on top of MLlib.
Further, the benchmark suite offers different workload
sizes for each algorithm ranging from Tiny to Gigantic
configurations. Next, we describe each of the algorithms in
more detail.

a: ALTERNATING LEAST SQUARES (ALS)
ALS is an algorithm mainly used in recommendation
systems, such as the ones used by Amazon and Facebook,
among others. The algorithm is usually formulated as the
factorization of anm x nmatrix R, wherem can be seen as the
users and n the items. In this setting, the items’ ratings given
by the users are not all filled, and the ALS algorithm is used to
fill those blank spaces, recommending new items to the users.
According to [48], the time complexity of this algorithm is
dependent on m, n, and hidden k dimension, which results in
a complexity of O((m+ n)k3 + mnk2).

b: LINEAR REGRESSION (LR)
Linear Regression is broadly used in statistics to understand
the correlation between one dependent variable and one or
more independent variables. The outcome of this algorithm is
supposed to follow a Gaussian distribution. The computation
of a Linear Regression algorithm is based on matrix
multiplications and inversions in a matrix of m x n, where
m is the number of samples and n is the number of features,
the time complexity equals O(m ∗ n2 + n3) [49].

c: K-MEANS CLUSTERING (K-MEANS)
K-means is an algorithm used in clustering tasks (unsuper-
vised learning tasks). Giving a dataset R (x1, . . . , xm), data
should be grouped into clusters. For each data point xi,
a feature vector is given with no labels yi. Here, for each data
point, the goal is to predict k centroids and the label yi. For
this matter, K-means has a quadratic time complexity, O(n2),
with n being the size of the input dataset [50].

d: GRADIENT BOOSTED TREES (GBT)
With a fundamental basis in decision trees, GBT merges
decision trees with gradient boosting. Overall, an ensemble
of trees is used for predicting the target label. A first model is
created and followed by a second model that should surpass
the first one’s results. Combining the best model with the
previous models should minimize the error [51]. For each
tree, there is a time complexity dependent on the number of
training samples, n, and the number of labels, y, O(nyntrees)
[52].

e: LATENT DIRICHLET ALLOCATION (LDA)
As a dimensionality reduction algorithm, the goal of LDA is
to lower the high-dimensional space, recurring to eigenvalue
decomposition, increasing the usability of data and the
feasibility of other algorithms. The complexity of this
algorithm is given as O(mnt + t3), where m is the number
of samples, n is the number of features, and t = min(m, n)
[53].

f: PRINCIPAL COMPONENTS ANALYSIS (PCA)
Being a classic method for dimensionality reduction, PCA,
in a dataset of n observations and m variables, tries to
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TABLE 2. Representation of each ML algorithm’s tasks, time complexity, and data sizes for different workloads.

compute a target dimensionality y based on the eigenvalue
decomposition of its covariance matrix [54]. The time
complexity of PCA, as similar to other algorithms, depends
on the size of matrix nxm, O(nm ∗ min(n,m)+ m3) [55].

g: SPARSE NAIVE BAYES (NAIVE BAYES)
Used for multi-class classification tasks, Naive Bayes is
a highly efficient algorithm that only needs to compute
one time over the dataset where, given a matrix of n
training examples and m attributes, the time complexity is
O(nm) [56].

3) SETUPS AND METRICS
To validate Soteria’s performance and the benefits of
fine-grained differentiation of secure ML operations,
we compare the implementations of our system with the
Soteria-B and Soteria-P schemes. These setups are compared
with a deployment of Apache Spark that does not offer
privacy guarantees (Vanilla).

Moreover, we test SGX-Spark [22], a state-of-the-art
SGX-based solution that protects both analytical and ML
computation done with Apache Spark. It is designed to
process sensitive information inside SGX enclaves, so it can
be considered the most similar system to Soteria. However,
SGX-Spark can only guarantee that User Defined Functions
(UDFs) are processed in secure enclaves. This decision
leaves a large codebase of Spark outside the protected
memory region and, consequently, limits the users to only
being able to execute privacy-preserving ML algorithms
based on UDFs.3

For each experiment discussed in the next section,
we include the average algorithm execution time and standard
deviation for three independent runs. The dstat monitoring
tool was used to collect the CPU, RAM, and network
consumption at each cluster node.

B. PERFORMANCE OVERVIEW
Figure 6 shows the execution time of all the setups for
the seven algorithms when using a huge-sized workload
configuration. Moreover, Figures 7b, 7c, 7a and 7d present

3Another similar solution to Soteria is Uranus [17]. Although Uranus
is open-source, it currently does not provide enough information on how
Apache Spark and all the tested ML algorithms could be deployed using this
system, limiting a possible comparison against Soteria.

the performance evaluation for PCA, GBT, ALS and LR
algorithms for different workload sizes. Next, we list our
main observations to aid in the characterization of these
results. Unless stated otherwise, the performance overhead
values discussed in this section correspond to the number
of times that the algorithm’s execution time increases for a
given setup when compared to the Vanilla Spark deployment
results. Observations 1 to 8 correspond to Figure 6, whilst
Observations 9 to 12 refer to Figure 7.

FIGURE 6. Execution time for each algorithm with Huge workload. The
legend is as follows: Vanilla Spark; Soteria-B; Soteria-P;

SGX-Spark.

a: OBSERVATION 1
Vanilla Spark’s execution times for ALS, PCA, LR, and GBT
algorithms are 55, 655, 657, and 189 seconds.

b: OBSERVATION 2
The execution time for ALS increases by 3.62x and 4.35x
for Soteria-P and Soteria-B, respectively. SGX-Spark incurs
an execution overhead of 4x. Thus, the three setups have
similar results, requiring approximately 150 seconds more
processing time than the vanilla deployment. Neverthe-
less, Soteria-P performs slightly better than the other two
approaches.

c: OBSERVATION 3
For PCA, Soteria-B and Soteria-P have an execution
overhead of 3.67x and 2.85x, while SGX-Spark increases
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FIGURE 7. Runtime execution for PCA, GBT, ALS, and Linear Regression for Tiny, Large, Huge and Gigantic workloads. The legend is as follows: Vanilla
Spark; Soteria-B; Soteria-P; SGX-Spark.

the computational time by 3.95x. When compared to
SGX-Spark, Soteria-P decreases the execution time by
12 minutes (27.8%).

d: OBSERVATION 4
For LR, Soteria-B and SGX-Spark exhibit an overhead
of 27.31x, while Soteria-P reduces this value to 18.2x.
This reduction of 29.6% allows Soteria-P to complete this
workload 1.4 hours earlier.

e: OBSERVATION 5
With the GBT algorithm, Soteria-B shows similar exe-
cution times compared to SGX-Spark, with a 7.04x and
6.64x increase, respectively. Soteria-P outperforms both
approaches, with an overhead of 4.79x, 27.8% less than
SGX-Spark.

f: OBSERVATION 6
The LDA algorithm exhibits higher execution overhead of
17.40x, 8.89x, and 15.08x for Soteria-B, Soteria-P, and
SGX-Spark setups, respectively. Soteria-P outperforms
SGX-Spark by a difference of 41.5 minutes (i.e., reduces
execution time by 41%).

g: OBSERVATION 7
When compared with the vanilla deployment, Soteria-B
increases execution time of KMeans by 9.37x and Soteria-P
by 6.68x. SGX-Spark has an overhead of 9.7x, which means
that, in comparison with Soteria-P, it requires an additional
468 seconds (7.8 minutes) to execute, i.e., Soteria-P is 31%
faster.

h: OBSERVATION 8
With Huge workload and Naive Bayes, Soteria exhibits an
overhead of 6.24x for Soteria-B, which is higher than the
5.33x observed for SGX-Spark. Also, Soteria-P presents
a lower overhead (3.58x) compared to SGX-Spark. The
absolute difference in execution time between Soteria-P and
Soteria-B is 88 seconds, while, with SGX-Spark, Soteria-P
decreases execution time by 61 seconds (34%).

i: OBSERVATION 9
For Tiny and Large workloads with the PCA algorithm,
Soteria performs similarly for our two schemes while
outperforming SGX-Spark. With larger workload sizes, the
overhead imposed by our solutions increases. However, Sote-
ria continues to show better performance than SGX-Spark.
Soteria-B has an overhead of 1.96x to 5.15x for Tiny and
Gigantic workloads, whilst Soteria-P incurs an overhead of
1.72x to 3.79x. When compared with SGX-Spark, the results
show an absolute difference of 4 seconds and 7 minutes (7%)
for Soteria-B and 7 seconds and 33 minutes (19% and 31%),
respectively, for Soteria-P.

j: OBSERVATION 10
Regarding the GBT algorithm, and the Tiny workload,
the overhead of Soteria-B, Soteria-P, and SGX-Spark
are similar. However, the difference between the three
approaches is more visible when increasing the workload
size. Soteria-P (Tiny-2.13x and Gigantic-5.88x) outperforms
both approaches, while Soteria-B (Tiny-2.18x, Gigantic-
9.35x) and SGX-Spark (Tiny-2.3x, Gigantic-10.34x) have
similar results. Soteria-P surpasses SGX-Spark’s execution
time in the Gigantic workload by up to 41%.

k: OBSERVATION 11
With ALS, Soteria-P shows an execution time overhead
of 2.04x and 3.28x, for the Tiny and Gigantic workloads,
respectively. Soteria-P achieves lower overhead than Soteria-
B and SGX-Spark for all dataset sizes, with the execution
time decreasing by 8 seconds (9%) for the Tiny and
191 seconds (27%) for the Gigantic workloads.

l: OBSERVATION 12
For LR, with the Tiny workload, Soteria-B and Soteria-P
increase execution time by 14.39x and 12.95x, respectively.
As for the Gigantic workload, Soteria-B incurs an overhead
of 30.04x and Soteria-P of 23.89x. Compared to SGX-Spark,
Soteria-P decreases the execution time by 43 seconds for the
Tiny workload and by 4.31 hours for the Gigantic workload
(22.6%).
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TABLE 3. Mean CPU usage (in %) for ALS, PCA, GBT, LR, Naive Bayes, LDA,
and Kmeans algorithms with the Huge workload.

m: OBSERVATION 13
The overall CPU usage for all the experiments is similar for
Vanilla, Soteria-B, Soteria-P, and SGX-Spark. In more detail,
Soteria-B with LR presents the upper-bound limit for CPU,
showing an increase of 9% compared with Vanilla (20,7%
CPUusage) as seen in Table 3. The standard deviation is never
above 10%.

TABLE 4. Mean Memory usage (in %) for ALS, PCA, GBT, LR, Naive Bayes,
LDA, and Kmeans algorithms with the Huge workload.

n: OBSERVATION 14
The mean memory consumption for each algorithm is similar
across the different setups. As depicted in Table 4, Soteria-B
presents an increase of± 20% when compared to the Vanilla
setup, which is explained by the extra memory needed when
fetching data to the enclaves. The standard deviation is never
above 9%.

TABLE 5. Mean Network usage (in MB/s) for ALS, PCA, GBT, LR, Naive
Bayes, LDA, and Kmeans algorithms with the Huge workload.

o: OBSERVATION 15
The network shows an upper-bound increase of 10% in
Soteria-B with PCA due to extra encrypted data paddings
being sent between Spark workers, as seen in Table 5. Vanilla

Spark shows an upper-bound network usage of 133MB/s for
the PCA algorithm. Interestingly, it is possible to see a slight
increase (± 3 MB/s) in the network bandwidth usage on
the Soteria-P scheme when compared to vanilla and Soteria-
B, which is explained by the extra communication between
SGX-executors and non-secure executors. The standard
deviation is never above 10%.

p: OBSERVATION 16
Soteria does not impact the accuracy of ML workloads. For
all experiments, we measured the corresponding accuracy
metrics (e.g., accuracy, root mean square error, or ROC). The
results corroborate that both Soteria-B and Soteria-P show
accuracy values similar to the vanilla Spark setup.

C. ANALYSIS
We now further analyze the experimental observations
according to three topics, i) dataset size; ii) algorithm
complexity; iii) size of trusted computing base (TCB).

1) DATASET SIZE
Figure 7 shows the performance degradation for the PCA,
GBT, ALS, and Linear Regression algorithmswith increasing
dataset sizes. Results show that, for PCA, GBT, and ALS
workloads with smaller datasets, Soteria-B and Soteria-
P perform similarly. However, as the size of the datasets
increases, more operations and data must be transferred to
the SGX enclave, thus having a more noticeable toll on the
overall performance. Indeed, the page swapping mechanism
of SGX, which occurs due to its memory limitations, incurs
a significant performance penalty [15], [57]. For example,
when compared to the vanilla setup, the PCA algorithm over-
head for Soteria-B varies between 1.96x for Tiny workload
and 5.15x for Gigantic workload. While for Soteria-P, the
execution time increases by 1.78x in the Tiny workload and
3.79x in theGiganticworkload. Linear Regression is themost
expensive algorithm in terms of performance as it processes
more data for the distinct workload sizes (Table 2). Compared
with SGX-Spark, Soteria-P deals better with the data volume
increase. Indeed, as seen in Observations 9-12, we reduce
the execution time from 9% up to 41% when compared to
SGX-Spark. Also, compared with our baseline, Soteria-P
achieves up to 33% less execution time.

2) ALGORITHM COMPLEXITY
The execution times of ALS and LDA algorithms are very
different even though their dataset size is similar. The
computational complexity of each algorithm explains these
results. For ALS, the synthetic workload data generated
by the benchmark has a low hidden k dimension with a
low ranking of 10, simplifying the required computation
and decreasing execution time. For the LDA algorithm, the
computational complexity, and consequently the execution
time, are increased due to the higher number of dependencies
between values at the generated synthetic workload data.
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Observations 2 and 6 emphasize the performance of these
two algorithms for a similar workload size. Like LDA,
Observations 3 and 9 show that PCA complexity and
performance overhead increase with the processed data
volume. Commonly classified as regression and classification
algorithms, Bayes and GBT have similar performance,
as seen in Observation 8 and Observation 5. The data sizes
of these two algorithms are entirely different, where GBT
uses 91.7MB, and Bayes has 5.2GB. However, the Bayes
algorithm iterates over the data only once, while GBT iterates
over several decision trees to find its best model. Kmeans’
performance is highly dependent on the chosen dataset
size. This is also true for the Linear Regression algorithm
(Observations 4 and 12).

3) SIZE OF TCB
The results discussed in Section V-B show that SGX-Spark
outperforms Soteria-B for some of the evaluated algorithms
(Observation 2, 4-6, 8). As SGX-Spark only protects UDFs,
the performance overhead imposed by our solution’s larger
trusted computing base is naturally higher. Nevertheless,
when compared to SGX-Spark, Soteria-B covers a wider
range of machine learning attacks while keeping performance
overhead below 1.59x. Indeed, for algorithms such as PCA
and Kmeans, Soteria-B has a similar or slightly inferior
execution time (Observations 3 and 7). This happens because,
for these algorithms, both SGX-Spark and Soteria-B perform
similar computations at the secure enclaves, while the UDF
mechanism is not themost optimized choice for running some
of these workloads.

Finally, due to the TCB reduction by our second scheme,
Soteria-P consistently outperforms SGX-Spark and Soteria-B
(Observations 2-12). The results show that this solution can
reduce the training time by up to 41%, namely for the LDA
algorithmwith theHugeworkload (Observation 6). Although
the statistical information outsourced from secure enclaves
differs for each algorithm, in general, Soteria-P outperforms
Soteria-B from 1.1x to 1.9x (Observation 6 and 10). In detail,
for GBT with the Tiny workload, the gains of Soteria-P over
Soteria-B are low, 1.1x. The small difference in gain is due to
the dataset size but also because the computation offloaded
from the enclave (i.e., Absolute Error for calculating the
model’s loss) is only executed once after the entire tree is
constructed (Observation 10).

Conversely, when running LDA with both Soteria-B
and Soteria-P with workload Huge, we observe a gain in
performance by Soteria-P of 1.9x. In this particular case, the
optimization of LDA, which resorts to the EM algorithm and
is done outside of the trusted enclave, is performed in several
stages of the model training process. This further shows
the performance impact of offloading different amounts of
statistical computation from secure enclaves.

4) DISCUSSION
The results show that Soteria-P outperforms other state-of-
the-art approaches, namely SGX-Spark, for all the considered

ML algorithms. Also, Soteria-P achieves better performance
than the Soteria-B setup while offering similar security guar-
antees when considering distinct ML attacks (Section IV-F).
This is made possible by filtering key operations to be done
outside enclaves.

In detail, when compared to Soteria-B, Soteria-P reduces
ML workloads’ execution time by up to 37%. When
compared with SGX-Spark, the execution time is reduced
by up to 41%. Interestingly, for the LR algorithm using a
Gigantic workload (894GB), Soteria-P decreases computa-
tion time by 4.3 hours and 3.3 hours when compared with
SGX-Spark and Soteria-B, respectively. The performance
overhead of Soteria-P for the four different algorithms
ranges from 1.7x to 23.8x when compared to Vanilla
Spark.

VI. RELATED WORK
This section is split into two subjects. First, we overview
solutions for deploying generic applications on trusted
execution environments (§VI-A). Then, we discuss solutions
targeting privacy-preserving ML and analytics on TEEs
(§VI-B).

A. TRUSTED EXECUTION ENVIRONMENTS
The challenges associated with deploying applications on
TEEs have been studied since this technology became
available. Here, we expose two alternative approaches that are
the basis of Soteria generic architecture: i) full deployment
of an unmodified application on TEEs (§VI-A1) and
ii) partitioning of computation between trusted and untrusted
environments (§VI-A2).

1) GENERIC APPLICATIONS ON TEES
The full deployment of applications inside a TEE is a
challenging task, and solutions commonly resort to LibOses
and similar approaches that shield the application on the TEE.
While Panoply [62], SCONE [63], and Ryoan [64] ease the
process of porting applications into secure enclaves, these
solutions are still intrusive as they require changing the code
base of targeted applications.

On the other hand, Gramine, SGX-LKL [65] and Occlum
[66] allow users to run unmodified applications on SGX by
specifying the application libraries that should be deployed
on trusted enclaves. Enarx [67] and Veracruz [68] emerged
as alternative solutions that provide users with a sandboxing
environment to run their applications. Both Veracruz and
Occlum are based on Apache Teaclave’s confidential com-
puting platform [69]

Soteria differs from these approaches because it does not
aim to offer a generic solution to deploy applications at
enclaves. Namely, our system is focused on ML workloads
running on top of Apache Spark, which, as shown in
Section IV, enables specific optimizations in terms of
computation partitioning that allow for reducing performance
overhead.
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TABLE 6. Taxonomy of Related Work systems.

2) COMPUTATION PARTITIONING ON TEES
Recently, a different group of solutions have emerged to
address the challenge of partitioning and selecting specific
code from applications that should run in trusted execution
environments.

Glamdring [70] proposes a static analysis tool that infers
a partition between trusted and untrusted code in an applica-
tion. It tries to achieve a balanced distribution of partitions to
minimize the number of edges crossing between components.
Another approach, Civet [71], focuses solely on parti-
tioning Java applications. It provides an annotation-based
approach for partitioning Java applications and ensures
inter-object communication and consistent garbage collection
across the partitioned components. Finally, Uranus [17]
and Montsalvat [72] propose two automatic partitioning
tools. Uranus [17] addresses the challenges of automatic
partitioning between trusted and untrusted code in Intel
SGX enclaves. However, unlike Glamdring, Uranus tries
to enforce the trusted and untrusted code partition at
runtime. Conversely, Montsalvat [72] provides an automatic
partitioning tool for GraalVM images that automatically
annotates trusted and untrusted code to be computed inside
trusted execution environments.

Soteria is different from these solutions as it does not
aim at proposing a generic partitioning tool. Namely, Soteria
proposes a specific partitioning scheme optimized to balance
the security and performance trade-offs for workloads using
Apache Spark’s MLlib.

B. PRIVACY-PRESERVING MACHINE LEARNING AND
ANALYTICS ON TEES
Privacy-preserving ML solutions can be classified into
four main groups based on the techniques being used:
i) encryption-based [8], [9], [10], ii) secure multi-party
computation [73], [74], iii) differential privacy [75], [76] and,
iv) trusted execution environments (TEEs) [12], [13], [27],
[58]. This paper is included in group iv).

1) PRIVACY-PRESERVING ML WITH TEES
Chiron [12] enables training ML models on a cloud service
without revealing information about the training dataset.
Also, once the model is trained, only the data owners can
query it. It supports launching multiple enclaves while each
operates on different shards of training data, keeping the
enclaves synchronized via a parameter server to ensure they
all collaboratively converge to the same model. As such, this
framework, besides providing a privacy-preserving approach,
also provides data parallelism based on a parameter server
for training the model faster. Myelin [13] offers a similar
solution to Chiron while adding differential privacy (DP)
and data oblivious protocols to the algorithms to mitigate
the exploits from side-channels and the information leaked
by the model parameters. Soteria differs from these works
as it can cover both the training and inference phases while
providing additional protection against adversarial samples,
reconstruction, and membership inference attacks (Table 1).

In [27], five ML algorithms are re-implemented with data
oblivious protocols.4 Combined with TEEs, these protocols
ensure strong privacy guarantees while preventing exploiting
side-channel attacks that observe memory, disk, and network
access patterns to infer private information. Unlike this
solution, Soteria aims to support all ML algorithms built with
MLlib transparently.

2) PRIVACY-PRESERVING ANALYTICS WITH TEES
TEEs have also been used to ensure privacy-preserving
computation for general-purpose analytical frameworks [23].
In comparison to SGX-Spark [22], detailed in Section V-A,
Soteria supports a broader set of algorithms (i.e., any
algorithm that can be built with the MLlib API), while
protecting users from a more complete set of ML attacks
(Table 1).

4A data oblivious algorithm guarantees that its control flow and memory
access patterns are non-dependent of the input data [77].
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Opaque [16], and Uranus [17] resort to SGX to provide
secure general-purpose analytical operations while only
supporting a restricted set of ML algorithms. Opaque
combines SGX with oblivious protocols (OP) and requires
the re-implementation and rewriting of the default Apache
Spark UDF operators. This solution tries to mitigate the
access pattern leakage by sorting and shuffling the entirety of
the database, which represents an overhead of 1.6-46x when
adding obliviousness to the system. Uranus is also based
on porting UDF processing to SGX enclaves but includes a
single ML workload. Differently, Soteria is targeted at ML
and is not limited by UDF-based algorithms that, compared
with MLlib-based ones, exhibit lower performance for some
ML workloads [78]. Therefore, the design, implementa-
tion, and security requirements are distinct compared to
Soteria.

Like the above solutions, SGX-Big Matrix [23] combines
SGX and oblivious protocols (OP) to deliver a framework
to process large encrypted datasets while hiding their access
patterns. This solution proposed a new processing framework
based on a generic language optimized for data analytic tasks.
Unlike this work, Soteria relies on a widely-used framework,
namely Apache Spark, maintaining its easy-to-use interface
while increasing its privacy guarantees.

3) PRIVACY-PRESERVING DEEP LEARNING WITH TEES
TEEs have also been applied to the training and inference of
deep neural networks [58], [59], [60], [61]. However, there
is a substantial difference between the internals of ML and
DL frameworks and algorithms, thus requiring significantly
different privacy-preserving designs for each scenario. Since
MLlib does not natively support DL workloads, the focus of
Soteria is solely on ML algorithms.

4) SUMMARY
As shown in Table 1, current solutions related to Soteria
(i.e., addressing privacy-preserving ML) cover a smaller
spectrum of ML exploits. The table does not include
Opaque [16] and Uranus [17] since the first only covers
SQL queries, while the second only supports a single ML
workload. The works in this section are summarized in
Table 6, categorized by cryptographic primitive, distribution,
workload, applicability to Apache Spark, and availability.
The type of distribution here refers to centralized, distributed,
and collaborative computation. For instance, multi-party
computation is depicted as collaborative computation, while
outsourcing the computation to the cloud or other third-party
infrastructure to perform the intended computation in a
single server is named centralized, and approaches similar
to the deployment setup of Apache Spark are depicted as
distributed.

In detail, the works proposed by [12], [22], and [13] aim at
protecting sensitive data’s privacy during the model training
stage while being resilient to model extraction attacks.
However, these are vulnerable to adversarial and membership

inference attacks because the dataset used for training is not
encrypted at rest. Moreover, [22] is vulnerable to path-finding
and class-only model extraction attacks because only UDF
processing is offloaded to trusted enclaves.

Conversely, [23] supports encryption at rest for the dataset,
as in Soteria, but it does not provide encryption for the
trained model, thus being susceptible to model extraction and
membership inference attacks.

To the best of our knowledge, Soteria is the first privacy-
preserving ML framework that proposes an alternative
TEE-based scheme (Soteria-P), which can improve the
performance of training and inference workloads by reducing
the number of operations done at secure enclaves. As such,
Soteria is the first solution that covers a large spectrum of
ML exploits and supports various ML algorithms while not
changing how users build and run their algorithms within
Spark MLlib.

Moreover, while orthogonal to this work, we acknowledge
the increasing focus of the community on privacy-preserving
DL-based solutions [58], [59], [60], [61]. To apply Soteria to
these algorithms, one would need to profile which operations
could be offloaded to run outside the secure enclaves. Also,
one would need to support third-party APIs, as Apache Spark
(v2.3.4) does not natively support DL workloads. We defer
such tasks to future work.

VII. CONCLUSION
We propose Soteria, a system for distributed privacy-
preserving ML. Our solution builds upon the combination
of Apache Spark and TEEs to protect sensitive information
being processed at third-party infrastructures during the ML
training and inference phases.

The innovation of Soteria stems from a novel partitioning
scheme (Soteria-P) that allows specific ML operations to be
deployed outside trusted enclaves. Namely, we show that it
is possible to offload non-sensitive operations (i.e., statistical
calculations) from enclaves while still covering a larger
spectrum of ML attacks than in previous related work. Also,
this decision enables Soteria to perform better than existing
solutions, such as SGX-Spark, while reducingMLworkloads
execution time by up to 41%.

APPENDIX A
SOTERIA SECURITY PROOF
We now discuss the privacy-preserving security of the Soteria
protocol. The goal is to reduce the security of our system to
the security of the underlying security mechanisms, namely
the isolation guarantees of Intel SGX and the bootstrapped
secure channels, and the indistinguishability properties of
encryption.

The security goal consists in demonstrating that Soteria
ensures privacy-preserving machine learning. Concretely,
this means that the real-world behavior displayed by Soteria
is indistinguishable from the one displayed by an idealized
functionality in the ideal-world, which simply computes over
the task script and provides an output via a secure channel.
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The only information revealed during this process is the
length of I/O, the number of computation steps, and the access
patterns to the external storage where data is kept.

Formally, this security goal is defined using the real-
versus-ideal world paradigm, similar to the Universal
Composability [46] framework.

We begin with a more formal description of our security
model. Then, we present an intermediate result for ensuring
the security of enclaves relying on external storage. We can
finally specify the behavior of the Client, Master and
Workers, and present the full proof.

A. FORMAL SECURITY MODEL
Our model considers external environment Z and internal
adversary A. 5 denotes the protocol running in the real
world, and S and F denote the simulator and functionality,
respectively, running in the ideal-world. The real-world
considers a Client C , a Master node M , and 2 Worker
nodes W1 and W2. This is for simplicity, as the definition
and proof can be easily generalized to consider any number
of Worker nodes. We also consider global storage G,
which is initialized by Z before starting the protocol. The
Ideal functionality is parametrised by this external storage
F<G>, and will reveal the access patterns via leakage
function L.5
In the real-world, Z begins by providing public inputs to

C in the form of (s,m), where s is the task script and m is
the manifest detailing data in G to be retrieved.6 The Client
will then execute protocol5, sending messages toM ,W1 and
W2. When the script is concluded, the output is provided toC ,
finally being returned toZ .A can observe all communication
between C,M ,W1,W2 and G.

In the ideal world, (s,m) are provided to dummy Client C ,
which in turn forwards them toF<G>. The functionality will
simply run the protocol and forward the output to C , which
in turn is returned to Z . All the communication observed by
A must be emulated by simulator S, which receives (s,m),
leakage L produced from the functionality interaction with
storage G, and the output size.

Security is predicated on ensuring that S does not require
any sensitive information (contained in G) to emulate the
communication to A. Given that we consider a semi-honest
adversary, we can simplify the interaction with the system
and instead discuss equality of views, as Z and A are unable
to deviate the system from its expected execution. This is
captured by the following definition.
Definition 1: Let Real denote the view of Z in the real-

world, and let Ideal denote the view of Z in the ideal-world.
Protocol 5 securely realises F for storage G if, for all

5Reasoning for the security of Soteria-P instead would only require this
function to also reveal statistical data to the simulator, which we consider to
be non-sensitive.

6Soteria Clients are trusted. As such, we assume (s,m) to both be valid,
in the sense that they are correct ML scripts and data sets in G, and thus can
be interpreted by ideal functionality F .

environments Z and all adversaries A,

RealZ,A,5(G) ≈ IdealZ,A,S,F (G)

B. INTERMEDIATE RESULT
For convenience, Soteria does not require the Client to
provide input data at the time of the ML processing, and
instead, theWorkers are given access to external storage from
which they retrieve the data. When discussing the security
in the context of secure outsourced computation for SGX,
this is functionally equivalent to classical scenarios where the
Client provides these inputs via a secure channel (Theorem
3 in [79]). The reasoning is simply that if a protocol securely
realizes a functionality with a given input provided via a
secure channel, then the same functionality can be securely
realized with the same input fixed in an external storage,
securely accessed by the enclave.

FIGURE 8. Secure external storage setup.

Consider a protocol 51 that securely realises some
functionality F with simulator S1 according to Theorem
3 of [46]. We construct protocol 52 built on top of this
secure protocol 51, where input data is pre-established and
provided to the enclave via an initial Setup stage where inputs
are stored in an encrypted fashion (Figure 8 describes a
simplified version of the process for a single entry). Inputs to
52 are exactly the same as those for 51, but instead of being
transmitted via the secure channel established with Attested
Computation, they are retrieved from storage using a key
sent via the same channel. The Client-server communication
increases by a constant (the key length), which can be trivially
simulated, and the rest of the input can be simulated in
a similar way using the IND-CPA properties of 2. This
protocol behavior will be key for all Soteria Workers. Our
theorem is as follows.
Theorem 1: Let 51 be a protocol that securely realises

functionality F according to Theorem 3 in [79]. Then 52,
constructed as discussed above, securely realisesF according
to Definition 1.
Proof. To demonstrate this result, we construct simulator
S2 using S1, then argue that, given that S1 is a valid
simulator for the view of 51, then the simulated view must
be indistinguishable from the one of the real world of 52.

We begin by deconstructing S1 in two parts: S1.AC() will
produce the view for establishing a secure channel, while
S1.Send(l) will produce a simulated view of Client inputs,
given their length. In turn, our simulator will share the same
functions, but also include a third S2.Get(l) to simulate
information being retrieved from G, given its length. Our
simulator is depicted in Figure 9.
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FIGURE 9. Simulator for 52.

The view presented to A is composed of three different
types of messages:
• Messages exchanged during the secure channel estab-
lishment are exactly the same as in51. Thus they remain
indistinguishable from 52.

• Outputs received via the secure channel follow the
exact same simulation strategy than 51, and thus are
indistinguishable from 52.

• Messages produced fromG in 52 are encryption of data
in G[m], while the values presented by S2 are dummy
encryptions with the same length. We can thus reduce
the advantage of A to distinguish these views to the
advantage of the same adversary to attack the IND-CPA
guarantees of encryption scheme2, which is negligible.

As such, if S1 is a valid simulator for 51 to A, then the view
presented by S2 must also be indistinguishable for 52 to A.
Let

AdvDist
Z,A,5,S,F (G) (2)

= Pr[RealGZ,A,52
⇒ T]− Pr[IdealGZ,A,S2,F ⇒ T] (3)

To conclude, we have that, for negligible function µ,

AdvDist
Z,A,52,S2,F (G) = AdvDist

Z,A,51,S1,F ()+ AdvIND-CPA
2,A ()

(4)

≤ µ() (5)

and Theorem 1 follows.

C. SOTERIA CLIENT, MASTER AND WORKERS
The Soteria components follow standard methodologies for
ensuring secure outsourced computation using SGX.As such,
and given the complexity of ML tasks described in the script,
we consider the following set of functions.
Secure channels are established with enclaves. We define

init(P) as the bootstrapping process, establishing a channel
with participant P. This produces an object that can be used
to send and receive data via send and receive. Untrusted
storage is not protected with secure channels and can be
accessed using the call uGet(G,m), which retrieves data from
G considering manifest file m. Concretely, this is achieved
using the open-source library Gramine, which we assume
to implement this mechanism correctly. Finally, the script
s defines the actual computation that must be performed
by the system and will be executed collaboratively with
both Workers. As such, we define s as a stateful object
with the main method Run(id, i1, i2), where input id is
the identifier of the Worker, i1 is input from storage and
i2 is intermediate input (e.g., model parameters), returning
(o1, o2), where o1 is the (possibly) final output, and o2 is

the (optional) intermediate output for dissemination. For
simplicity, we also define method Complete that returns T
if the task is complete, or F otherwise.
The Soteria components can be analyzed in Figure 10

and are as follows. The Client C (left of Figure 10)
simply establishes the channel with M , sends the parameters
(manifest file, task script, and storage key), and awaits
computation output. Observe that we assume that the key
k has been previously initialized and that the actual data
has been previously encrypted in G using it. The Master M
(middle of Figure 10) will receive the parameters from C and
establish channels withW1 andW2, forwarding them the same
parameters and awaiting computation output.When it arrives,
it is forwarded to the Client.7 WorkerW1 (right of Figure 10)
receives the parameters from M and starts processing the
script: retrieves encrypted data from G, decrypts, processes
and exchanges intermediate results with the other Worker.
When the script is concluded, it returns its output to M . The
behavior ofW2 is the same, but the connection is established
instead withW1.

FIGURE 10. Soteria Components. Client C (left), Master node M (middle),
and Worker node 1 W (right).

D. FULL PROOF
Given the description of Soteria components in Figure 10,
the Soteria protocol 5xyz is straightforward to describe.
Considering a pre-encrypted storage G, the Client C , Master
M , and Workers W1,W2 execute following their respective
specifications. Our theorem for the security of Soteria is as
follows.
Theorem 2: 5xyz, assuming the setup of Figure 8 and

constructed as discussed above, securely realisesF according
to Definition 1.
The proof is presented as a sequence of four games.

We begin in the real-world, and sequentially adapt our setting
until we arrive in the ideal world. We then argue that all steps
up to that point are of negligible advantage toA, and thus the
views must be indistinguishable to Z .
The first is a simplification step, where, instead of using

a single storage G, we slice the storage to consider G1 and
G2. Figure 11 represents this change. This enables us to split
the execution environment ofW1 andW2 seamlessly and can
be done trivially since manifest file m by construction will

7In the actual protocol, the Master has additional steps to process the
output. We describe it like this for simplicity, as it does not change the proof.

127924 VOLUME 11, 2023



C. V. Brito et al.: Privacy-Preserving Machine Learning on Apache Spark

FIGURE 11. Soteria Workers with split storage.

never require different Workers to access the same parts ofG.
Since these two games are functionally equal, the adversarial
advantage is exactly 0.

The second step is a hybrid argument, where we
sequentially replace both Workers by ideal functionalities
performing partial steps of the ML script. Concretely,
we argue as follows. Replace W1 with a functionality for
its part of the ML script FW1, according to Definition 1.
From Theorem 1, we can establish that this adaptation entails
negligible advantage to A provided that the protocol without
external access realizes the same functionality. However, this
is necessarily the case, as it follows the exact structure as the
constructions in [79]. We can repeat this process forW2.8 As
such, using the intermediate result, we can thus upper bound
the advantage adversary to distinguish these two scenarios by
applying twice the result of Theorem 1.
The third step replaces the Master with an ideal func-

tionality FM that simply forwards requests to the Worker
functionalities. This one follows the same logic as the
previous one, without requiring external storage, as the
protocol also follows the exact structure as the constructions
in [79].

In the final step, we have 3 functionalities (FM ,FW1,FW2)
playing the roles of (M ,W1,W2), respectively. We finalize
by combining them into a single functionality F for ML
script processing. This can be done by constructing a big
simulator S that builds upon the simulators for the individual
components (SM , SW1, SW2). The simulator S behaves as
follows:
• Run SM to construct the communication trace that
emulates the first part of F .

• Run the initial step of SW1 and SW2 to construct the
communication trace for establishing secure channels
between Workers and Master.

• Call leakage function L to retrieve the access patterns
to G. Use the result to infer which part of the storage
is being accessed, and run SW1 or SW2 to emulate the
computation stage.

Given that the view produced by S is exactly the same as the
one provided by the combination of SM , SW1, and SW2, the
adversarial advantage is exactly 0.

8Again, this technique extends for an arbitrary number of Workers. N
number of Workers would just require us to adapt the multiplication factor
in the final formula, which would still be negligible.

We are now exactly in the ideal world specified for
Definition 1.
Let

AdvDist
Z,A,5,S,F (G) (6)

= Pr[RealGZ,A,5xyz
⇒ T]− Pr[IdealGZ,A,S,F ⇒ T]

(7)

To conclude, we have that, for the negligible function µ,

AdvDist
Z,A,5,S,F (G) = 2 · AdvDist

Z,A,5W1,SW1,FW1
(G) (8)

+ AdvDist
Z,A,5M ,SM ,FM () (9)

≤ µ() (10)

and Theorem 2 follows.

APPENDIX B
ML WORKFLOW ATTACKS
This section presents the attacks in Section III-B in further
detail and argues in which circumstances Soteria is secure
against each attack. First, we will describe a general
adversarial model against Soteria that follows the security
restrictions justified in Appendix A. Then, we will present
an experiment that captures what constitutes a valid attack
under each definition, as described in Section III-A. For
each attack, we consider our protocol to be secure if we
can demonstrate that one cannot rely on a valid adversary
against the experiment of said attack under the constraints of
Soteria. In some instances, this will depend on known attack
limitations, which we detail case-by-case.

E. ATTACKER AGAINST SOTERIA
Our goal is to present a model that details the conditions in
which these attacks are possible. As such, it must be both
generic to capture the multiple success conditions of attacks,
as well as expressive, so that it can be easy to relate to each
specific attack.

In this definition, we will also consider an adversary that
can play the role of an honest client and thus will have
black-box access to the produced model. We stress that,
in practice, this will not be the case in many circumstances.
In those scenarios, since queries to the model are made via a
secure channel, an external adversary is unable to arbitrarily
request queries to the model without causing it to abort. This
means that any attack that requires black-box access to the
model is not possible if Soteria assumes external adversaries.

FIGURE 12. Adversary interacting with Soteria.

Let 5xyz denote the full training protocol of Soteria.
It receives external storage G and task script s as inputs,
and produces a model m, which can then be queried. Based
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on the security result of Appendix A, the interaction of an
adversary with our system can be described in Figure 12. The
adversary A = {A1,A2} can first try and manipulate the
input dataset G to G′. This is then used for 5xyz, which will
produce the model m and the additional leakage l (Soteria-B
has no additional leakage, so l = ϵ). Finally, the adversary
can interact black-box with the model until a conclusion r
is produced. This will be provided to a Success predicate,
which will state if the attack was successful. This predicate
is specific to the attack and allows us to generally describe
attacks such as adversarial samples, where the goal is tomake
the resulting model deviate, as well asmembership inference,
where the goal is to retrieve information from the original
dataset.
Remark Observe that A1 and A2 do not share state. This
is because they play different roles within this experiment:
the first influence the system by attempting to manipulate the
training dataset G, while the second interacts with the model
m and leakage l to try and extract information. Indeed, our
first step will be to show that A1 is unable to rely on G′

to meaningfully convey any additional knowledge gained by
observing (G, s).

F. DATASET MANIPULATION
Datasetmanipulation attacks are defined by an adversarywith
the capability of inserting, removing or manipulating dataset
information. These align with the setting considered for
attacks via adversarial samples. Figure 13 is an experiment
that describes what constitutes a successful attack for dataset
manipulation. The adversary A is given full knowledge of
G,9 and must produce an alternative input datasetG′. We then
train the model (protocol 5) over that data to produce model
m, and the adversary is successful if said model satisfies some
attack success criteria T/F← Success.

FIGURE 13. Model for dataset manipulation attack.

We now argue that the integrity guarantees of the authenti-
cated encryption used by our external storage G ensure that
these attacks do not occur for 5xyz. We do this by showing
that any adversary that performs an adversarial samples
attack on 5xyz can be used to construct a successful attack
on the security of the authenticated encryption scheme. First,
observe that no attack can be successful if the adversary
makes no changes on the input dataset, so if G = G′,
then F ← Success. Furthermore, if 5xyz aborts, then no

9Realistically, an attacker would have less information, but for our
purposes we can go for the worst case and give him all the information
regarding the computation and its input.

model is produced, so it naturally follows that the attack is
unsuccessful F← Success.10

As such, the only cases in which T← Success are those in
which G′ ̸= G and 5xyz do not abort. But this means that the
adversary was able to forge an input that correctly decrypts,
breaking the integrity of the underlying encryption scheme.
Since the security guarantees of authenticated encryption
ensure that the probability of existing such an adversary is
negligible, the probability of such an attacker in Soteria will
also be negligible.

G. BLACK-BOX ATTACKS
All the remaining attacks, with the exception of some
reconstruction attacks, follow a similar setting, where the
adversary leverages a black-box access to the trained model,
depicted in the experiment of Figure 14. We begin by
running 5 to produce our model and leakage and then
run an additional procedure Extract to obtain additional
information from the original dataset, which cannot be
retrieved by simply querying the model. This procedure
captures whatever knowledge regarding the underlying ML
training might be necessary for the attack to be successful
(e.g., information about data features). We then provide this
additional information to the adversary and give it black-box
access to the model. The success criteria depends on the
specific attack and is validated with respect to the original
dataset, model, and the task script being run. E.g., for model
extraction attack, the goal might be to present a modelm′ that
is similar to m, evaluated by the Success predicate.
For simplicity, we first exclude all attacks for an external
adversary, which does not have black-box access to the model
of Soteria. This is true if we can show that one cannot
emulate black-box access to the model using confidence
values and class probabilities. Albeit an interesting research
topic, current attacks are still unable to do this in an efficient
way [20]. We now go case-by-case, assuming an adversary
can play the role of a genuine client in our system.
Our arguments for 5xyz depend on being able to rely on a
successful adversary A of Figure 14 to perform the same
attack in Figure 12. As such, the security of our system will
depend on the amount of additional information z, on how it
can be extracted from the view of the adversary of Soteria.
• For membership inference, reconstruction attacks based
on black-box access to the model, model inversion, and
model extraction via data-free knowledge distillation,
no additional information z is required. This means
that any successful adversary in Figure 14 will also be
successful in Figure 12, meaning that both for Soteria-B
and Soteria-P are vulnerable. Preventing these attacks
requires restricting access to the model to untrusted
participants.

• Class-only attacks for model extraction require addi-
tional knowledge from the dataset. Specifically, z must

10The only circumstance in which this could be considered a successful
attack was if the goal was to perform a denial-of-service attack, which we
consider to fall outside the scope of an adversarial sample attack.
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TABLE 7. Summary of attacks against Soteria. ✓ means Soteria is resilient to the attacks, ✗ means Soteria is vulnerable to the attacks, and {X} means
Soteria is secure if argument {X} is also true.

contain concrete training dataset samples. This means
that to leverage such an adversary A, one must first
be able to use Am

2 (l) to extract such a z. This exactly
matches the setting of model inversion attacks. This
means that Soteria is vulnerable to class-only attacks for
model extraction in Soteria-B or Soteria-P if there is also
an efficient attack for model inversion in Soteria-B or
Soteria-P, respectively.

• Equation-solving model extraction requires knowledge
of the dimension of the training dataset G. This is
additional information z that is not revealed by querying
themodel, whichmeans no adversaryAm

2 (ϵ) can retrieve
z, and thus Soteria-B is secure against said attacks.
However, combining public data with confidence values
might allow for Am

2 (l) to extract a sufficient z to
perform the attack, which makes Soteria-P vulnerable
to equation-solving model extraction.

• Path-finding model extraction attacks require infor-
mation regarding leaf count, tree depth and leaf ID.
As such, all this must be encapsulated in z. Reference
[5] suggests that such information is not retrievable from
only black-box access to the model [5], which means
no adversary Am

2 (ϵ) can produce z and thus Soteria-
B is secure. However, this is information that can be
extracted from confidence values, which suggests that
an efficient adversary z←$ Am

2 (l) is likely to exist, and
thus Soteria-P is vulnerable to such attacks under these
assumptions.

We can generalize the security of our system to these types of
attacks as follows. If no additional information z is required,
then 5xyz is vulnerable to an adversary that can play the
role of an honest client. If z can be extracted from black-box
access to the model, then we can still rely on said adversary to
attack 5xyz. Otherwise, Soteria-B is secure, as no additional
information is leaked. Furthermore, the security of Soteria-P
will depend on whether one can infer z from l and from the
black-box access to the model. Concretely, if we can show
that no (efficient) function F exists, such that z←$ Fm(l),
then 5xyz for leakage l is secure against attacks requiring
additional data z.

FIGURE 14. Model for black-box attacks.

H. WHITE-BOX ATTACKS
White-box attacks capture a scenario where an adversary
requires white-box access to the model. These align with
the setting of reconstruction attacks that explicitly require
white-box access to the model. Figure 15 is an experiment
that describes what constitutes a successful reconstruction
attack in this context. We begin by training the model
(protocol 5) over the original dataset to produce the model.
We then provide the trained model directly to the adversary,
which will reconstruct raw data r . Finally, the success of the
attack is validated with respect to the original dataset.

FIGURE 15. Model for white-box attacks.

We now argue that these attacks do not occur for 5xyz,
as long as it is not possible to extract the model from the
confidence values and from black-box access to the model.
This is because the attacker of Figure 15 receives explicitly
the model m, whereas the adversaryA2 in Figure 12 receives
the confidence values in l, and black-box access to the model.
To rely on such an attacker, A2 must therefore be able to
produce input m from its own view of the system. As such,
relying on such an adversary implies there is an efficient
way m←$ Am

bb(l) to retrieve the model m from confidence
values l and black-box access to the model m, which is
exactly the setting of model extraction attacks in the previous
section. This adversary Abb can then be called by A2 to
produce input m, which is then forwarded to the adversary of
Figure 15 to produce a successful attack r . As such, Soteria
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is vulnerable to white-box reconstruction attacks if there
exists an efficient adversary A′ that successfully wins the
experiment of Figure 14 for the model extraction attack.

I. SUMMARY
Table 7 summarizes the attacks discussed. These are divided
between all the identified classes of attacks, as well as
whether the adversary is external or if it can query the
model as a client. In many instances, the security of our
system hinges on another argument over specific restrictions
assumed for the adversary.
We now list the arguments that propose the security of our
system in different contexts.

{1}: an adversary is unable to retrieve the (white-box) model
from confidence values {1a}, black-box access to the
model {1b}, or both {1c}.

{2}: an adversary is unable to emulate black-box access to
the model from confidence values.

{3}: an adversary is unable to retrieve the dimension of the
dataset from black-box access to the model {3a} and
confidence values {3b}.

{4}: an adversary is unable to retrieve information of leaf
count, depth, and ID from black-box access to the model
{4a} and confidence values {4b}.

{5}: no model inversion attack exists for retrieving dataset
samples for Soteria-B {5a} and Soteria-P {5b}.

White-box-based attacks explicitly require additional infor-
mation, such as feature vectors, over black-box access to the
model [43]. This is something that supports {1b} directly,
and since confidence values are not computed from feature
vectors, so would be {1a} and {1c}. Extracting model access
from only confidence values is an active area of research, but
current attacks [20] are still unable to do this in an efficient
way {2}. Typically, one cannot infer dimension from simply
querying the model, which suggests {3a} is true, but this is
unclear for confidence values, and thus one might consider
{3b} is false. Reference [5] suggests {4a} is true, but {4b}
is not. {5} will fundamentally depend on the application [5],
[20].
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