77 research outputs found

    Logistic Map-Based Fragile Watermarking for Pixel Level Tamper Detection and Resistance

    Get PDF
    An efficient fragile image watermarking technique for pixel level tamper detection and resistance is proposed. It uses five most significant bits of the pixels to generate watermark bits and embeds them in the three least significant bits. The proposed technique uses a logistic map and takes advantage of its sensitivity property to a small change in the initial condition. At the same time, it incorporates the confusion/diffusion and hashing techniques used in many cryptographic systems to resist tampering at pixel level as well as at block level. This paper also presents two new approaches called nonaggressive and aggressive tamper detection algorithms. Simulations show that the proposed technique can provide more than 99.39% tamper detection capability with less than 2.31% false-positive detection and less than 0.61% false-negative detection responses

    A Feature-Based Fragile Watermarking of Color Image for Secure E-Government Restoration

    Get PDF
    this research developed a method using fragile watermarking technique for color images to achieve secure e-government tamper detection with recovery capability. Before performing the watermark insertion process, the RGB image is converted first into YCbCr image. The watermark component is selected from the image feature that approximates the original image, in which the chrominance value features as a watermark component. For a better detection process, 3-tuple watermark, check bits, parity bits, and recovery bits are selected. The average block in each 2 x 2 pixels is selected as 8 restoration bits of each component, the embedding process work on the pixels by modifying the pixels value of three Least Significant Bit (LSB) . The secret key for secure tamper detection and recovery, transmitted along with the watermarked image, and the algorithm mixture is used to extract information at the receiving end. The results show remarkably effective to restore tampered image

    Tampering with a watermarking-based image authentication scheme

    Get PDF
    We analyse a recent image authentication scheme designed by Chang et al. [A watermarking-based image ownership and tampering authentication scheme, Pattern Recognition Lett. 27 (5) (2006) 439–446] whose first step is based on a watermarking scheme of Maniccam and Bourbakis [Lossless compression and information hiding in images, Pattern Recognition 37 (3) (2004) 475–486]. We show how the Chang et al. scheme still allows pixels to be tampered, and furthermore discuss why its ownership cannot be uniquely binding. Our results indicate that the scheme does not achieve its designed objectives of tamper detection and image ownership

    Towards a Systematic Approach of Relational Database Watermarking

    Get PDF
    Nowadays more and more data of socio-technical systems become available online to anyone interested to access it or process it (without data alteration or copyright infringement). Generally, these data are stored in relational databases. However, to comply with this new paradigm new models of data access and security are necessary. One upcoming trend for relational databases is to watermark the database instance, i.e. to compute a secret code, which can be either embedded directly into the database or registered to a trusted authority. Current watermarking schemes only apply to either a particular database relation or index and, generally, distort the data. In this paper, we propose a methodology for distortion-free watermarking of both the database schema and instance that takes into account the database semantics, its dynamic, and also ensuring various security levels within the database. A possible scenario on using this methodology on a real-world database is also available
    • …
    corecore