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Fragile watermarking using Karhunen-Loève transform: 
the KLT-F approach 
Marco Botta, Davide Cavagnino, Victor Pomponiu 

 
Abstract   The paper presents a fragile watermarking 
technique that may be used to discover image 
manipulations at block level. The proposed 
algorithm, based on the Karhunen-Loève linear 
transform (KLT), modifies some of the KLT 
coefficients obtained from a secret base (defined by a 
secret key image) so that they contain a binary 
pseudo-random message. A genetic algorithm (GA) 
is used to compensate for rounding errors introduced 
by inverse transforming in the integer pixel domain. 
An extensive experimentation has been performed to 
test the effectiveness of the method and to show the 
sensitivity of the algorithm to single pixel 
modifications (also as a function of the number of 
modified coefficients). A comparison with other 
fragile watermarking methods is reported. It should 
be noted that the proposed approach results in both a 
high PSNR (more than 53 dB on average) and a high 
subjective quality. The system may be tested online 
by submitting images to be watermarked and 
subsequently verifying the presence of modifications 
in a previously marked image. 
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1 Introduction 

The wide use and diffusion of digital multimedia 
contents like images and sounds, has given rise to the 
necessity of developing methodologies and techniques 
that may guarantee the protection of the digital 
content. In fact it is possible, if appropriate solutions 
are not adopted, to copy, modify or in some way 
misuse a multimedia object taking advantage of the 
digital nature of the object itself. Depending on the 
application context, different techniques may be used 
to protect digital objects. One example are digital 
signatures. Another possibility are watermarks. The 
main difference between a signature and a watermark 
is that the latter is contained into the digital object 
itself. Moreover, invisible watermarks are hidden by 
modifying some features of the digital object. 

Watermarks have many applications; for example, 
they may be used for copyright protection, content 
authentication, track of origin (Cox et al. 2008). 
Depending on the field of application, the various 
watermarking algorithms differ in the properties and 
characteristics they possess. A first classification of 
watermarking algorithms is between informed or blind 
systems, and refers to the detection part of the 
algorithm: an informed (or non-blind) system needs 
the original digital object (or some features derived 
from it) to perform the detection of the watermark. On 
the contrary, if only the watermarked object (and 
possibly a secret key) is used for the detection then the 
watermarking algorithm is called blind. 

The application that will use the watermarking 
system also defines the requirement for the watermark 
to be robust or fragile. A robust watermark is 
designed to survive modifications to the digital object 
aimed at removing the watermark itself and keeping 
high the quality of the object. On the contrary, a 
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fragile watermark is designed to be removed by the 
minimal modification of the digital object (and 
possibly specifying the position of the modification). 
A class of watermarking algorithms are designed to be 
semi-fragile, in the sense that it is possible to detect 
heavy modifications to the digital object whilst light 
processing operations (like mild filtering or 
compression with high quality) still allow the 
detection of the watermark (Fridrich 2002). 

The present work is aimed at presenting a fragile 
watermarking algorithm, so we detail here the most 
important characteristics required by this class of 
algorithms: 

• invisibility: the watermark should not 
degrade the quality of the object it is 
protecting; in particular, its presence 
should not be perceived by the application 
using the object (human or automatic); 

• detection and localization: any 
alteration(s) to the digital object should be 
revealed by a check, and possibly the 
position(s) of the modification(s) should 
be enlightened; 

• security against intentional attacks: the 
watermark should reveal cut-and-paste 
(Fridrich 2002; Wong and Memon 2001), 
transplantation and birthday attacks. 

Barreto et al. (2002) propose to use a technique 
called hash block chaining to deal with the mentioned 
security attacks: the idea is to make the authentication 
information of each block of the image dependent on 
one of its neighbors. 

In general, the watermark embedding is performed 
by modifying some features of the digital object; the 
features may be extracted from many different spaces, 
leading to many different algorithms with peculiar 
characteristics and properties. For example, the 
watermark may be directly inserted into the spatial 
domain (e.g. pixels of an image) or time domain (e.g. 
samples of an audio), or both domains (e.g. frames of 
a video). Other algorithms insert the watermark into a 
transformed domain, like the Discrete Cosine 
Transform domain (Cox et al. 1997), or the Fourier 

Transform domain (Premaratne 1999), or in the 
vectors and singular values of the Singular Value 
Decomposition (Pomponiu et al. 2010). A 
comprehensive description of various aspects of 
digital watermarking may be found in (Cox et al. 
2008). 

A first classification of fragile watermarking 
algorithms may be established considering at which 
level the localization of tampered areas is performed: 
block-wise methods allow the identification of 
tampered blocks (in which at least one pixel is 
tampered): examples of these algorithms are presented 
in (Bravo-Solorio and Nandi 2011; Barreto et al. 
2002; Liu et al. 2008; Shih and Wu 2005a; Usman et 
al. 2007); differently, pixel-wise methods allow for 
the identification of single altered pixels: for example, 
(Bravo-Solorio and Nandi 2011; Yeung and Mintzer 
1997) discuss algorithms of this kind. 

Han et al. (2011) devised several fragile 
watermarking methods for securing RFID data 
networks, in particular the RFID data streams and 
databases. Essentially, they adapted several well-
known CDMA and chain-based watermarking 
schemes to cope with the restrictive constraints of 
wireless environments, such as limited resources, 
reliability and lack of protection. 

The algorithm discussed in this paper is developed 
to ensure content authentication of digital grey-scale 
images. Its main characteristics are: 

• the use of a secret key image to define a feature 
space based on the Karhunen-Loève transform 
(KLT); 

• the use of a watermark that is dependent on both 
the key image and the image to be authenticated; 
and 

• the use of a genetic algorithm to compensate 
pixel rounding errors. 

This paper extends the work presented in (Botta et 
al. 2011) improving the approach along several 
directions. Moreover, we performed systematic and 
extensive tests to yield a deeper insight of the 
properties of the proposed algorithm. 

The paper is organized as follows: Section 2 
presents the terminology and recalls the main 
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concepts related to the Karhunen-Loève transform 
and to the genetic algorithms. Then, Section 3 
presents related works. Section 4 details our 
algorithm and its parameters, and Section 5 presents 
an analysis of the performance of the system, also 
comparing it with other fragile watermarking 
systems. Conclusions and future developments are 
discussed in the final section. 

2 Background 

2.1 Notations 
Before describing the fragile watermarking 

algorithm in detail, we present here the two 
fundamental tools we used to obtain a secure and 
precise authentication: the Karhunen-Loève 
transform (KLT), which provides a simple method to 
define a secret space where the authentication 
information is hidden, and the genetic algorithms 
(GAs), that are used to fine tune the image pixels in 
such a way they store the desired authentication 
information. 

These tools make a heavy use of vectors and 
matrices, so we recall the notation used to represent 
them. The convention employed in this work is to 
denote vectors as boldface lowercase letters (as f), 
matrices as boldface capital letters (as B) and matrix 
transposition with the symbol ' (prime). If f is a 
vector, then fi is the i-th element of vector f. 
Similarly, Bij is the element in row i and column j of 
matrix B. 

2.2 The Karhunen-Loève Transform (KLT) 
In this work the authentication information is 

inserted into a secret space on which the pixels are 
linearly projected. That is, the features in which to 
store the bits used to verify the integrity of the image 
are obtained by a linear transformation of the form: =  (1) 

where x is a column vector of pixels, y is a column 
vector of features (which will be called transform 
coefficients) and A, called kernel, is a square matrix 
defining the linear transformation. The rows of A are 
an orthonormal basis for the space in which the 

vectors x are represented. Examples of linear 
transformations are the Discrete Cosine Transform, 
the Fourier Transform, the Hadamard Transform; 
from this, the space in which the vector y is expressed 
is called frequency domain. 

These transformations are defined by fixed 
kernels, so their mapping is the same for every image 
to which they are applied. Nonetheless, there is a 
linear transformation, the Karhunen-Loève transform 
(KLT) that does not have a fixed kernel. On the 
contrary, the kernel is computed from a set of vectors 
considered as a random field. The resulting basis is 
made of vectors with directions along the maximum 
data spread. We recall here the main points of this 
transform, but a more detailed description of the KLT 
may be found in (Gonzalez and Woods 1992). 

Consider a random field of column vectors f, and 
compute the mean vector m = E{f}. Then compute 
the covariance matrix C = E{(f ‒ m) (f ‒ m)'} and 
evaluate its eigenvectors ei and their associated 
eigenvalues λi. 

Each eigenvalue is a measure of the data spread 
along the direction defined by its eigenvector. Sorting 
the eigenvectors by non-increasing order of their 
eigenvalues moves into the first positions the 
eigenvectors having, on average, a large contribution 
in the construction of the vectors f. If the 
eigenvectors are combined as the rows of a matrix B, 
then y = B (x ‒ m) is the KLT of the vector x. The 
components of y are called the transform coefficients. 
The vector x may be perfectly recovered from y as x 
= B‒1 y + m. For each component yi of y, i is called 
the order of the coefficient. 

In general, the KLT may be used to reduce the 
number of features by exploiting the correlation 
among vector components: this is useful, for 
example, in compression algorithms. In our 
algorithm, the KLT is used to create a hidden space 
in which the bits used for the authentication are 
stored: this increases the security of the method 
because an attacker is not able to determine the 
values of the secret bits. And even if it could be 
possible to generate an orthonormal basis with a 
method based on a key, the KLT allows to 
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immediately generate a basis from a real (secret) 
image: this has the advantage that the coefficients in 
which the bits will be inserted are related to 
frequencies of images and are not completely random 
reducing, with a wise choice of the order of the 
coefficients, the visual distortion. 

2.3 Genetic Algorithms 
Genetic Algorithms (GAs) are a computational 

model inspired by the evolution of biological beings, 
that has proved to be quite effective at solving 
optimization problems. Mimicking nature, a GA 
represents problem solutions as individuals, and by 
implementing a natural selection schema, it makes 
the best individuals survive and reproduce through 
the use of genetic operators. In this way, GAs may 
find (quasi) optimal solutions to optimization 
problems. A problem solution is encoded, as a 
sequence of parameters, into an individual just like a 
sequence of genes composes a chromosome. 

A GA starts its computation with a population of 
individuals that represent initial approximate 
solutions to the problem at hand, and is generally 
randomly generated; nonetheless, individuals 
representing an approximate solution, if known, may 
be included in this initial population, with the 
objective of easing and speeding up the convergence 
to an optimal solution. Then, the initial population 
evolves for a number of generations, or epochs; in 
each epoch the GA repeats the following steps until a 
termination condition is reached (usually, a 
maximum number of generations is performed or 
some threshold is exceeded): 

• evaluation of each individual of the 
population; 

• selection of individuals for reproduction; 
• reproduction; 
• update of the population for the next 

generation. 

Individuals in the population are evaluated by 
computing a so-called fitness function F. This 
function, applied to an individual, returns a quantity 
expressing how much the individual is close to the 

optimal solution. In the following we will use the 
convention that the smaller the fitness value, the 
better the solution (but the opposite convention could 
be used, e.g. using the reciprocal of the fitness 
function). 

Individuals are selected for reproduction 
according to their fitness value. Two strategies are 
commonly used to this purpose: roulette wheel and 
tournament selection. We only describe the latter 
strategy here, being the one used in our algorithm, 
and refer the interested reader to the literature for the 
former (Goldberg 1989). In the tournament selection 
strategy, a pair of individuals is uniformly randomly 
selected from the population to play a tournament: 
the one with smaller fitness value wins the 
tournament and is selected for reproduction. This 
process is repeated until a sufficient number of 
individuals is chosen. 

Afterwards, the selected individuals are mated two 
by two and new offsprings are generated by applying 
a crossover operator with probability pc. In one point 
crossover, the mating individuals exchange their 
genetic material from the beginning to a randomly 
chosen cutting point; in two points crossover, the 
material exchanged in the individuals is the one 
included in between two randomly selected points. 

The reproduction step terminates by applying a 
mutation operator to each offspring: each individual 
has probability pm to have its genes randomly 
modified. Just like in biological species, mutation has 
the objective to explore new and probably unusual 
possibilities that may lead to better solutions than 
those obtainable from crossover alone. 

Finally, the population is updated with the newly 
generated individuals. Several strategies can be used 
to perform this step. In our case, we implemented an 
elitist strategy, in which the ps% best individuals 
from a generation become part of the next one, while 
the rest is replaced by the newly generated offsprings. 
For a more detailed discussion on GAs the reader is 
invited to consult (Goldberg 1989; Hassanien et al. 
2008). 

The termination condition is either a maximum 
number of allowed generations reached or the fitness 
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value of the best individual did not change in the last 
10 generations and is below a predefined threshold. 
In both cases, the best individual is returned. Note 
that, in some cases, the algorithm can terminate 
without actually finding a viable solution. 

3 Related works 

Genetic Algorithms are used in many 
watermarking algorithms for images. The editorial by 
Pan and Abraham (2009) presents various fields of 
research in information hiding inspired to biological 
systems, and introduces some works in the field 
published in the same journal issue. 

A GA is used in the work by Lee and Ho (2002) to 
insert a random fragile watermark into the LSB of the 
image pixels; in the embedding phase, the GA fitness 
function takes into account the information on the 
edges contained in a block using as a measure the first 
two AC coefficients of the block's DCT. 

Usman et al. (2007) present a technique for image 
authentication aimed at resisting to various attacks 
like vector quantization, cover-up and transplantation; 
the algorithm watermarks every image block (of size 
8×8) by modifying five of its DCT coefficients and 
creating a dependency with its neighboring blocks: to 
improve the quality of the resulting watermarked 
image, a GA is used in the selection of the five 
coefficients. Due to the dependency of the watermark 
in a block to its neighbors, the authors have to develop 
a rule to avoid false positives, sometimes decreasing 
the localization capability. 

In (Shih and Wu 2005a,b; Aslantas et al. 2009) a 
GA is used to deal with the rounding error introduced 
when transforming from the frequency domain (i.e. 
DCT) to the integer pixel domain: analogously to us, 
the objective is to retrieve a watermark with possibly 
no errors w.r.t. the embedded one in case of absence 
of attack. In (Aslantas et al. 2009) the performance of 
the GA is also compared with other Intelligent 
Optimization Algorithms. 

In the field of image processing, the Karhunen 
Loève Transform (KLT) has been applied in many 
areas due to its ability in compacting the pixel's 
information in a reduced number of features. For 

example, image compression algorithms have been 
developed, and also feature extraction algorithms for 
pattern recognition or search in databases have been 
devised. In image watermarking, in general the DFT, 
the DCT and the DWT have been widely used, but 
also the KLT has been applied at various levels. 

In (Barni et al. 2002) the KLT is used for 
developing a robust watermarking method. The 
transform is used to find three uncorrelated bands 
from the original RGB channels. The new bands are 
then DFT transformed and the watermark is 
redundantly embedded into some of the coefficients of 
the three bands, only changing the strength depending 
on the importance defined by the KLT eigenvalues. 

Dafas and Stathaki (2003) insert a watermark by 
slightly rotating the eigenvectors computed from 
blocks of the host image: the eigenvectors to be 
rotated and the amount of rotation are specified by the 
watermark bits. The verification requires both the 
original image and the watermark. 

Stanescu et al. (2007) propose a method for robust 
watermarking a color image by embedding a gray-
scale image. The blocks of the host image are linearly 
transformed with KLT; then the second, and possibly 
third band of each block are replaced by the block of 
the watermark that has a similar energy content (and 
has not yet been embedded), also rotating the second 
and third eigenvectors. The watermark extraction 
needs the host image along with some other side 
information (like the order of the blocks during 
embedding). 

In (Yeung and Mintzer 1997) a method for image 
authentication is proposed; the watermark is a binary 
image, and the algorithm inserts one watermark bit 
per pixel. For each pixel in the host image, the bit 
extraction is applied using a function based on one or 
more secret Look Up Tables: then, the pixel value is 
modified until the extraction returns the 
corresponding watermark bit, with a process that 
applies the minimum necessary distortion. The error 
introduced is propagated by distributing it to the 
contiguous pixels in such a way to keep unchanged 
the mean value of each color channel. The 
watermarked image has been produced after all the 
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pixels have been processed. When an image has to be 
authenticated, the same LUTs are used to extract the 
bit sequence and the result is compared with the 
watermark: differing values indicate areas of 
tampering. 

The z-transform is used in (Ho et al. 2008) to 
insert the bits of a fragile watermark for authentication 
purposes. The algorithm described in the paper 
performs the z-transform of rows of size 1×8 of 
contiguous pixels (and makes sub-images composed 
by 8 vertically contiguous rows): the pixels of each 
row are considered samples of a mono-dimensional 
signal which are z-transformed. Then, the only 
negative real root is modified according to the bit 
value of the watermark to be inserted. The obtained z-
transform zeroes are then transformed back into the 
pixel domain (in general requiring a rounding) to 
obtain the watermarked image. In the verification 
phase, the rows of each block are z-transformed and 
the bits extracted according to the value of the real 
root: an 8×8 block is considered tampered if all the 8 
rows return a bit that does not match the 
corresponding watermark bit. The authors did not 
explain how to deal with the pixel rounding error. 

The scheme introduced in (Oktavia and Lee 2005) 
uses the singular values (SVs) of the original image as 
the authentication signature. After splitting the host 
image and the watermark into non-overlapping 
blocks, the watermark insertion is done in the 
following steps: first, the LSBs of all the block’s 
pixels are replaced by a random sequence generated 
through a secret key. Secondly, for each block the 
LSBs of the SVs are computed and XOR-ed with the 
watermark. Finally, the image is reconstructed from 
the so modified SVs. The whole security of the 
scheme relies on the secret key used during the 
embedding process. 

In (Rawat and Raman 2011) a chaos based fragile 
watermarking scheme is proposed. To improve the 
security of the scheme two chaotic maps are used to 
scramble the host image and the watermark bits (i.e., a 
logo image) prior the embedding process. The 
authentication bits are inserted into the LSBs of the 
scrambled version of the host image. Experimental 

results demonstrate that the proposed scheme achieves 
superior tamper detection and localization accuracy 
under different attacks such as copy-and-paste and 
collage. 

Lin et al. (2011) introduce a high quality image 
authentication algorithm which uses the weighted-sum 
of the pixels of image blocks to insert the 
authentication bits. The scheme makes use of a 
parameter that controls the size of the block to be 
watermarked and the authentication payload. In 
addition, due to the use of the weighted-sum, the 
scheme embeds the payload bits by modifying merely 
one pixel per block by a value of ±1. To improve 
security, the scheme uses a key-lock pair access 
control mechanism, i.e., the authentication bits are 
treated as the lock and the watermarking secret key, 
assigned to each image, is considered as the key 
information. In (Botta et al. 2014) we proposed an 
improvement to their method. 

Recently, there has been a trend to extend the 
fragile watermarks with a new requirement, that is 
self-recovery: put it simply, it implies the capacity of 
the watermark to recover the damaged areas of the 
digital object to its original state. A recent 
advancement in this area is the work proposed by He 
et al. (2012) which assesses the integrity (validity) of 
a block by comparing neighboring blocks. The 
embedding process is quite straightforward and 
consists in the partitioning of the image into non-
overlapping blocks, a secure block mapping and the 
watermark generation and insertion. The watermark 
generated for each block has two components: i) the 
recovery information which is computed from the six 
most significant bit planes of each pixel in the block, 
and ii) a pseudo-random sequence of two bits used to 
overcome the constant-average attack (Chang et al. 
2008). In order to recover the block in case of 
tampering its watermark sequence is inserted into the 
two least significant bits of the pixels of another block 
obtained through a secure mapping. Experimental 
results prove that the proposed method outperforms 
conventional self-recovery fragile watermarking 
algorithms in terms of detection and recovery of the 
tampered areas. Furthermore, the proposed scheme is 
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secure against targeted attacks such as collage attack 
and four-scanning attack. The only drawback of the 
scheme is its low quality of the watermarked image, 
i.e., PSNR = 44.15 dB. 

We conclude this section citing a generic 
algorithm that may be applied to many watermarking 
methods: Koval et al. (2011) propose a procedure 
based on Gaussian integers that may be used to 
shuffle (i.e. rearrange) the pixels of an image before 
the watermark embedding, and to restore them in their 
proper position after the insertion of the watermark. It 
is worth noting that for many watermarking 
algorithms this step can be a strong improvement 
w.r.t. security. 

4 Proposed scheme 

The algorithm developed has two key features: the 
first one is that the signal inserted into the image to be 
authenticated is dependent on both the image itself 
and on a symmetric secret key (an image shared 
among those involved in the authentication process). 
The second one is that the signal is embedded into a 
hidden space, thus the features that are modified are 
secret ensuring the fact that the embedded signal 
cannot be extracted to perform attacks to the integrity 
of the protected object. 

The basic idea of the developed algorithm is to 
embed a secret watermark binary sequence W into the 
KLT coefficients of an input image Ih of size N×N. 
The KLT basis is derived from a secret key image Ik 
of size M×M. Moreover, the watermark W is made 
dependent on both the secret key image and the image 
to be watermarked, as explained in the following 
subsections. 

The whole fragile watermarking scheme KLT-F 
consists of four algorithms, namely the KLT basis 
generation, the watermark generation, the watermark 
embedding and the watermark verification, 
implemented in two software applications: KLT-FW 
is used to watermark an image, while KLT-FV is used 
to check authenticity. 

4.1 KLT basis generation 
The key image Ik is divided into sub-blocks (sub-

images) that are contiguous, non-overlapping and of 

size n×n. Without loss of generality we assume that 
M is a multiple of n (if not, some image rows and 
columns will not be considered). The complete set of 
sub-images is considered as a random field, and from 
it a KLT basis is derived. Thus, n2 basis sub-images 
are obtained, each one having n2 components. 

4.2 Watermark generation 
The embedded watermark is generated as a 

function of the image to be watermarked and of the 
key image. This choice is made for two reasons: first, 
by generating a bit sequence that depends on (features 
of) the host image we prevent cut-and-paste attacks, 
birthday attacks and transplantation attacks (Barreto et 
al. 2002); secondly, by using the secret key image as 
the source of information for selecting features of the 
host image, no other information for defining the 
watermark sequence is necessary, thus allowing the 
image integrity verifier to use the secret key image 
only. 

In the present implementation, we generate the bit 
sequence W to be embedded in the following way: 

• the values of a set of pixel of the secret key 
image in predefined positions are used as 
pointers to address a set Ph of pixels in the 
host image; 

• the values of the pixels in Ph are in turn used 
as pointers to a sequence of pixels Pk in the 
secret key image; 

• the values of the pixels in Pk are used to 
initialize a cryptographic hash function (in 
our case we used SHA-256) that is called a 
sufficient number of times to produce the 
requested amount of watermark bits. 

4.3 Watermark embedding 
To insert the watermark W used to control the 

image authenticity, Ih is divided into non-
overlapping, contiguous sub-images of size n×n 
which are transformed in column vectors of size n2 
(we assume, for simplicity, that N is a multiple of n). 
Let's call these sub-images , 1≤m≤(N/n)2. Then, 
each sub-image is treated separately, and its KLT 
coefficients cm are computed using the previously 
generated secret KLT basis. 
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maxg is the maximum allowed number of 
generations. If a viable solution is not found in maxg 
generations then the GA is not able to converge 
starting from the initial population. 

As suggested in (Goldberg 1989), for the GA 
parameters we used the following values: population 
size = 100, maxg = 500, ps = 10, pc = 0.8, pm = 0.05 
and α=β=150. From a multitude of crossover variants, 
we chose to implement the double-point crossover 
with tournament selection. 

The final watermarked image Iw is obtained by 
composing all the sub-images resulting from the GA 
computation. 

4.4 Watermark extraction and verification 
We note that the selected pixels in Ph are also 

available to the image verifier given that the secret 
key image does not change. Thus, from the secret key 
image Ik, the verifier extracts the KLT basis and then 
the expected watermark We can be derived. 
Afterwards, the watermarked image Iw is divided into 
sub-images of size n×n. On the m-th sub-image, the 
KLT is applied and the coefficients , , … ,  
chosen to store the bits are extracted, and from them 
each embedded bit is restored according to the 
following formula: = round 2 		mod	2	, 1 ≤ ≤ 	 (6) 

By comparing the expected watermark We and the 
recovered watermark Wr, it is possible to establish if 
the image is genuine (the watermarks are equal) or if 
it has been modified (the positions of the differing 
bits indicate which sub-images are altered). Thus, the 
proposed method has a tamper detection resolution at 
a sub-image level. 

It is important that the pixel values of the host 
image in the set Ph be left unchanged by the 
watermarking algorithm, otherwise the verifier would 
not be able to reconstruct the correct W, leading to an 
unsuccessful authentication even if the watermarked 
image did not undergo any modification. At the same 
time, it is worth noting that an attack modifying one 
of the selected pixels in Ph will lead to a completely 
different expected watermark We and thus to a highly 

likely failed authentication. Anyway, should this 
happen, the verifier is still able to detect the 
tampering, but loses its localization property. To 
reduce this possibility we kept the set Ph of these 
pixels very small (in our experiments we used just 2 
pixels). 

4.5 Watermarking example 
We report a brief example of how the algorithm 

works on a block of 8×8 pixels. Let us suppose that 
the KLT basis has already been computed from a 
secret image (pentagon), and that 8 watermark bits 
are to be inserted in position p = 0 (i.e. the LSB of the 
integer part of the coefficient) into 8 consecutive 
KLT coefficients starting from the third. For the sake 
of clarity, only these 8 KLT coefficients (instead of 
all 64) will be shown. 

Moreover, let us suppose the watermark 11100000 
is to be inserted into the following host image block: 

 
6 13 154 118 86 101 102 96
5 5 131 139 101 101 101 94
2 2 32 148 109 99 95 95
31 3 2 147 121 95 95 93
87 0 4 79 153 93 9 3 
91 85 11 1 2 149 119 89
91 86 60 5 7 129 133 88
86 83 85 2 0 23 145 91

 
The 8 KLT coefficients that should carry the 

watermark computed from this block are: 32.431, 
‒55.942, ‒35.078, 41.47, 79.788, ‒127.44, ‒196.31, 
39.725; by applying formula (6), it is easy to see that 
the watermark bits are not stored into the block, so 
the correction (2) is applied to each coefficient, 
resulting in 31.431, ‒55.942, ‒35.078, 40.47, 78.788, 
‒128.44, ‒196.31, 38.725 which inverse-transformed 
lead to the following image block (with pixel values 
rounded to integers): 
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5 13 153 118 86 100 102 96
5 5 131 139 101 101 101 94
2 3 32 148 109 99 95 95
32 3 1 147 121 95 95 93
88 0 4 79 153 93 9 3 
91 85 11 1 2 149 119 89
91 86 60 5 7 129 133 88
86 83 85 2 0 23 145 91

 
where the shaded pixels had their values changed 
w.r.t. the original block. 

The KLT coefficients computed from this block 
are 31.391, ‒56.255, ‒35.258, 40.573, 78.854, 
‒127.97, ‒196.55, 39.178 and bear the watermark 
sequence 10111011 that is not the intended one; so 
the GA is applied to the image block and finds the 
following individual 

 
0 1 0 0 0 0 0 0 
1 0 1 0 0 0 1 0 
0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 ‒1 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

 
which summed to the intermediate block produces (in 
boldface the pixels changed w.r.t. the host block): 

 
5 14 153 118 86 100 102 96
6 5 132 139 101 101 102 94
2 3 32 148 109 99 95 95
32 4 1 147 121 95 95 93
88 0 4 79 153 93 9 3 
91 85 10 1 2 149 119 89
91 86 60 5 7 129 133 88
86 83 85 2 0 23 145 91

 
The KLT coefficients computed from the resulting 
block are 31.345, ‒56.845, ‒35.399, 40.272, 78.497, 
‒127.61, ‒196.3, 39.688, and from (6) the watermark 
contained is 11100000 as desired. 

5 Experimental analysis 

The developed fragile watermarking algorithm* 
was tested by experiments aimed at showing its 
characteristics, performance, security and reliability. 
Obviously, given the flexibility of the proposed 
system, many other tests varying some of the 
parameters could be performed, but we feel we made 
a reasonable compromise among completeness, 
meaningfulness and complexity. The tests we 
performed were aimed at: 

• testing which subset (of fixed size) of 
contiguous KLT coefficients produces the 
best PSNR; studying the effect of subsets 
of different sizes, and potentially non-
contiguous coefficients, is another option, 
but has a high computational complexity; 

• comparing the sensitivity of the algorithm 
to image modifications w.r.t. the size of 
the watermark message; 

• comparing the performance of our 
algorithm to the performance of other 
algorithms (Yeung and Mintzer 1997; Ho 
et al. 2008; Oktavia and Lee 2005; Rawat 
and Raman 2011; Lin et al. 2011). 

In all the following experiments, we used a set of 
1000 images taken from various image collections (Li 
et al. 2008). These images are 8 bpp gray-scale 
images of size 256×256 pixels. The key images were 
also 8 bpp gray-scale images of the same size (but the 
latter characteristic was purely coincidental as the size 
of the key image has no relationship with the size of 
the image to be watermarked). Figure 2 shows the 
three key images used throughout the experiments. 
Moreover, the size of each sub-image block is fixed to 
8×8 pixels. 

5.1 Quality assessment 
Apart from the visual assessment made by the 

authors and some of their colleagues, two other 
metrics were used to measure the quality of the 
watermarked images. The first one was the Peak-
Signal-to-Noise ratio (PSNR) defined as 

                                                           
* A demo of our watermarking scheme is available at 
http://kdd.di.unito.it/~botta/KLTWatermark/watermark.html 
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Table 1 Average running times (seconds) on pentagon (start coefficient 3) w.r.t. insertion position 

Position 
Marking phase 0 ‒1 ‒2 

KLT-FW (s) 45.8 ± 1.2 42.7 ± 1.0 40.9 ± 1.8 
KLT-FV (s) 0.0645 0.0648 0.0648 

 

5.3 Classic tampering 
To illustrate the output of the detection algorithm 

KLT-FV, we show how a modified region of an 
image is identified. The watermarked image 
"Aircraft" (embedding 8 bits per block) was used to 
generate counterfeits by modifying the number "16" 
on the tail and making it "61" by simply swapping 
different areas of the image. The fragment of the 
“Aircraft” watermarked image together with the 
corresponding counterfeit fragment is shown in Fig. 7. 
The identified tampered blocks are shown as crossed 
white blocks in Fig. 7(d). 

Note that even if we change a small region of the 
authenticated image the proposed scheme succeeds in 
reliably detecting and localizing the tampered blocks 
with zero false-positives. 

` 

5.4 Tampering verification ability 
Most of the discussed fragile watermarking 

schemes do not perform a rigorous analysis of their 
ability to verify tampering of the watermarked image. 
As shown in the previous section, KLT-FV is able to 
locate which blocks underwent a tampering 
manipulation, in case portions of the image swapped 
position. 

The question we would like to answer now is the 
following: how sensitive is the algorithm to the 

alteration of a single pixel in a block? In order to 
assess the KLT-FV detection ability, the algorithm 
was tested against possible alterations of the 
watermarked image, by modifying in every block only 
one pixel at a time by a quantity δ, and computing the 
percentage of detected modified blocks. The detection 
ability against such an alteration is measured by the 
sensitivity rate, SensR, defined as follows: = .		 	 	 		 .		 	 	

.               
(8) 

In Fig. 8 we report SensR as a percentage of 
recognized modified blocks w.r.t. the payload, by 
changing the watermarked image pixels one at a time 
by a quantity δ = {‒2, ‒1, 1, 2} (watermark inserted in 
position p=0 using pentagon as key image). As one 
would expect, SensR increases as the payload 
increases, as it is more likely that at least one of the 
KLT coefficients containing the watermark changes 
its carried bit value when a single pixel is tampered. 
Moreover, a larger distortion to an image pixel 
(δ=±2), results in a better performance of the 
verification algorithm, reaching 98% with a payload 
of 20 bpb. This is a very good result, as this means 
that even though an attacker only modifies a single 
pixel of δ=±2 levels in the entire image, KLT-FV still 
has 98% of chances to detect such tampering.
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blocks will be detected as modified because the 
watermark extraction algorithm will compute a 
different watermark w.r.t. the original bit sequence 
inserted (that is, the KLT coefficients are computed 
for blocks that do not coincide with the original ones). 

Moreover, if the cropping has the effect to alter the 
set Ph, then also in this case the verifier will not be 
able to correctly reconstruct the embedded watermark, 
so many blocks will be detected as tampered. 

If none of the previous cases happens, then the 
detection of a cropped region whose starting position 
and size are a multiple of the block size n can be 
performed by string alignment between the extracted 
watermark and the inserted one: obviously from a 
cropped image a shorter (w.r.t. the inserted one) 
watermark will be extracted, and missing parts may 
indicate the size and the position of the cropped area. 

Finally, let us consider the case in which the 
cropped area was marked with the suffix of the 
watermark: tampering may go undetected in this case 
(even if the remaining part is correctly authenticated 
by the watermark). This problem may be solved by 
padding the watermark with a CRC code or a 
cryptographic hash of the previous part: a wrong CRC 
(or hash) will indicate at least one of the following 
facts: 

• the watermark has been modified (parts of 
the image modified); 

• the image has been cropped; 
• at least one of the blocks bearing the CRC 

bits has been altered. 
In any case, with this solution, the cropping of the 

ending part of the image does not go undetected, but 
the localization property may be partially lost. 

5.7 Comparison with other algorithms 
The PSNR and SSIM index values of other 
watermarking schemes, compared to KLT-FW, are 
given in Table 3. Note that the reported values of 
PSNR/SSIM were computed by running on the same 
set of 1000 images an implementation of these 
watermarking schemes (we assume that the given 
values are representative of the performances of these 
schemes). The comparison carried out in Table 3 

shows that KLT-FW outperforms all of these schemes 
except that by Lin et al. (2011) in terms of quality, 
both PSNR and SSIM. However, this scheme is not as 
flexible as KLT-FW. Indeed the length of the 
watermark is strongly related to the block size (Lin et 
al. 2011), while KLT-FW, in principle, can embed 
any number of bits in a block, provided that the 
transformed space has enough dimensions. Moreover, 
the Lin et al. (2001) approach shows a counter-
intuitive behavior when the bits per block increase; 
indeed, the probability of not detecting a tampered 
block depends on the number s of bits inserted (1/2s), 
and then the probability of not calling an image 

tampered (false negative) is 
. 	

. As the 
number of blocks decreases with increasing values of 
s, the probability of false negatives exponentially 
increases. Furthermore, even though larger values of s 
imply better PSNRs, they result in bigger blocks and 
thus the localization ability of Lin et al. method is 
reduced. Instead, in KLT-FW, besides having a 0 false 
positive (i.e., calling tampered an image that was not 
altered) rate, the probability of false negatives 
decreases with increasing values of s, as expected, 
because the number of blocks does not change 
(leaving unaltered the localization ability of our 
method). 

5.8 On the characteristics of the key image 
One of the ideas that drove the development of 

this watermarking algorithm was the use of an image 
as the key defining the space of insertion. An obvious 
choice was the use of real world images, as shown by 
the tests. In this subsection we stress the idea that the 
key image can also be a random image. Namely, we 
wanted to test the behavior of our watermarking 
algorithm when the pixels of the key image are 
generated through a random process. For example, 
starting from a secret seed of 512 bits it is possible to 
generate pixel values through the iteration of a 
cryptographic hash function. 
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Table 3 Quality assessment of different fragile watermarking schemes 

 

Table 4 Average PSNR using a random image as secret key w.r.t. start coefficient sc and insert postion p, payload s=8 bpb 
Position 

Start coefficient 0 ‒1 ‒2 

3 53.146±0.14 53.3867±0.15 52.8577±0.15 
4 53.1288±0.13 53.3808±0.15 52.8574±0.14 
5 53.1308±0.13 53.3881±0.15 52.8572±0.15 
6 53.1385±0.14 53.389±0.15 52.8564±0.15 

 

Table 4 reports the results obtained using a 
randomly generated key image. As it can be seen, the 
use of a such key image has little or no influence on 
the performances of the algorithm, being the average 
PSNR value equivalent to that obtained with real 
images. The use of a secret seed to generate the key 
image (in place of a real image) may be of value 
when the space for the key storage is an issue (e.g. 
smartcard applications), or when the key shared for 
the authentication should be transmitted with a low 
bandwidth requirement for real time applications. 

6 Conclusions 

This paper presents a fragile watermarking 
algorithm in the KLT domain based on genetic 
algorithms. The proposed algorithm uses the KLT to 
project the image pixels onto a hidden space in which 
the authentication information is inserted. Due to the 
characteristics of the KLT, a refinement step is 
necessary to ensure that the watermark is correctly 
present in the marked image: this step is performed 
with the aid of a genetic algorithm. 

The security of the method is obtained through the 
use of a secret space defined by a key image. The key 
image is used to compute a KLT basis on which the 

pixels of the image to be authenticated will be 
projected. If the key image is kept secret, then it is 
inconceivably hard for an adversary to reveal the 
hidden message used for authenticating the image 
blocks. A high level of sensitivity is obtained from the 
insertion of the watermark bits into fractional parts of 
the transform coefficients. To avoid attacks aimed at 
copying and pasting parts of different authenticated 
images, the watermark is made dependent on both the 
key image and on a very small part of the 
authenticated image (these data are available also to 
the verifier). 

We may recall the main characteristics in the 
following list: 
• watermark inserted into a secret space defined by 

KLT; 
• zero false positives thanks to a GA that corrects 

problems due to integer rounding of pixels; 
• watermark dependent to key and host image to 

prevent some classes of attacks; 
• high sensitivity to small modifications. 

The first analysis performed on the algorithm was 
aimed at determining if the set of features 
(coefficients' set) influences the performances in 
terms of image quality. We found that, for the 

PSNR (dB) SSIM Payload (bits) 
Yeung et al. (1997) 46.06 ± 0.30 0.992 N×N 

Ho et al. (2008) 35.64 ± 1.84 0.898 N×N /8 

Rawat et al. (2011) 51.14 ± 0.01 0.997 N×N 

Oktavia et al. (2005) 51.14 ± 0.01 0.997 N×N 

KLT-FW 53.12 ± 0.14 0.998 s N×N /n2  
Lin et al. (2011) 58.06 ± 13.96 0.999 (s+1) N×N /2s 
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coefficients' sets examined, the effect in terms of 
PSNR and SSIM was not significant. 

The paper also presents an extensive analysis on 
the detection capabilities of the algorithm, testing its 
sensitivity to small changes (a single pixel in a block 
modified by one or two gray levels); we found that 
with the improvement of inserting the watermark bits 
into the binary fractional part of the coefficients, the 
detection capability rapidly increases. An immediate 
consequence of this fact is that even with a small 
payload (namely 8 bpb) we already have a high 
sensitivity. We point out that the only problem due to 
a small payload of s bpb, is that the probability that a 
randomly chosen block substituted to the correct one 
is accepted as authentic is 1/2s. 

Last but not least, we remark that the resources 
requested for the watermark insertion are limited, and 
that the image authentication is very light as it only 
requires simple multiplications, sums and bit 
comparisons. From the timing tests reported it can be 
seen that the complexity of the watermark insertion 
scales very well w.r.t. the payload. Moreover 
changing the bit insertion position to one that 
increases the sensitivity (namely second binary 
fractional bit) does not increases the insertion times 
(on the contrary, in our tests the required time 
decreases). The entire approach described in this 
paper applies to digital images, however the idea 
proposed could be easily adapted to other media than 
digital images, e.g. digital audio. 
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APPENDIX 
Supplementary material is available on-line at 
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watermark.html 

 


