9 research outputs found

    Three dimensional large scale aerodynamic shape optimization based on shape calculus

    Get PDF
    Large scale three dimensional aerodynamic shape optimization based on the compressible Euler equations is considered. Shape calculus is used to derive an exact surface formulation of the gradients, enabling the computation of shape gradient information for each surface mesh node without having to calculate further mesh sensitivities. Special attention is paid to the applicability to large scale three dimensional problems like the optimization of an Onera M6 wing or a complete blended wing-body aircraft. The actual optimization is conducted in a one-shot fashion where the tangential Laplace-operator is used as a Hessian approximation, thereby also preserving the regularity of the shape

    Shape Calculus for Shape Energies in Image Processing

    Full text link
    Many image processing problems are naturally expressed as energy minimization or shape optimization problems, in which the free variable is a shape, such as a curve in 2d or a surface in 3d. Examples are image segmentation, multiview stereo reconstruction, geometric interpolation from data point clouds. To obtain the solution of such a problem, one usually resorts to an iterative approach, a gradient descent algorithm, which updates a candidate shape gradually deforming it into the optimal shape. Computing the gradient descent updates requires the knowledge of the first variation of the shape energy, or rather the first shape derivative. In addition to the first shape derivative, one can also utilize the second shape derivative and develop a Newton-type method with faster convergence. Unfortunately, the knowledge of shape derivatives for shape energies in image processing is patchy. The second shape derivatives are known for only two of the energies in the image processing literature and many results for the first shape derivative are limiting, in the sense that they are either for curves on planes, or developed for a specific representation of the shape or for a very specific functional form in the shape energy. In this work, these limitations are overcome and the first and second shape derivatives are computed for large classes of shape energies that are representative of the energies found in image processing. Many of the formulas we obtain are new and some generalize previous existing results. These results are valid for general surfaces in any number of dimensions. This work is intended to serve as a cookbook for researchers who deal with shape energies for various applications in image processing and need to develop algorithms to compute the shapes minimizing these energies

    Shape optimization for interface identification in nonlocal models

    Full text link
    Shape optimization methods have been proven useful for identifying interfaces in models governed by partial differential equations. Here we consider a class of shape optimization problems constrained by nonlocal equations which involve interface-dependent kernels. We derive a novel shape derivative associated to the nonlocal system model and solve the problem by established numerical techniques

    Second order directional shape derivatives

    Get PDF

    Uncertainty quantification in image segmentation using the Ambrosio--Tortorelli approximation of the Mumford--Shah energy

    Get PDF
    The quantification of uncertainties in image segmentation based on the Mumford-Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio-Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings

    A second order shape optimization approach for image segmentation

    No full text
    The problem of segmentation of a given image using the active contour technique is considered. An abstract calculus to find appropriate speed functions for active contour models in image segmentation or related problems based on variational principles is presented. The speed method from shape sensitivity analysis is used to derive speed functions which correspond to gradient or Newton-type directions for the underlying optimization problem. The Newton-type speed function is found by solving an elliptic problem on the current active contour in every time step. Numerical experiments comparing the classical gradient method with Newtons method are presented.(VLID)378265
    corecore