13,310 research outputs found

    Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA)

    Get PDF
    Nowadays, emerging technologies, such as long-range transmitters, increasingly miniaturized components for positioning, and enhanced imaging sensors, have led to an upsurge in the availability of new ecological applications for remote sensing based on unmanned aerial vehicles (UAVs), sometimes referred to as “drones”. In fact, structure-from-motion (SfM) photogrammetry coupled with imagery acquired by UAVs offers a rapid and inexpensive tool to produce high-resolution orthomosaics, giving ecologists a new way for responsive, timely, and cost-effective monitoring of ecological processes. Here, we adopted a lightweight quadcopter as an aerial survey tool and object-based image analysis (OBIA) workflow to demonstrate the strength of such methods in producing very high spatial resolution maps of sensitive marine habitats. Therefore, three different coastal environments were mapped using the autonomous flight capability of a lightweight UAV equipped with a fully stabilized consumer-grade RGB digital camera. In particular we investigated a Posidonia oceanica seagrass meadow, a rocky coast with nurseries for juvenile fish, and two sandy areas showing biogenic reefs of Sabelleria alveolata. We adopted, for the first time, UAV-based raster thematic maps of these key coastal habitats, produced after OBIA classification, as a new method for fine-scale, low-cost, and time saving characterization of sensitive marine environments which may lead to a more effective and efficient monitoring and management of natural resource

    A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards

    Get PDF
    We have developed a new coastal database for the Mediterranean basin that is intended for coastal impact and adaptation assessment to sea-level rise and associated hazards on a regional scale. The data structure of the database relies on a linear representation of the coast with associated spatial assessment units. Using information on coastal morphology, human settlements and administrative boundaries, we have divided the Mediterranean coast into 13 900 coastal assessment units. To these units we have spatially attributed 160 parameters on the characteristics of the natural and socio-economic subsystems, such as extreme sea levels, vertical land movement and number of people exposed to sea-level rise and extreme sea levels. The database contains information on current conditions and on plausible future changes that are essential drivers for future impacts, such as sea-level rise rates and socio-economic development. Besides its intended use in risk and impact assessment, we anticipate that the Mediterranean Coastal Database (MCD) constitutes a useful source of information for a wide range of coastal applications.Peer ReviewedPostprint (published version

    Global detection and analysis of coastline associated rainfall using an objective pattern recognition technique

    Get PDF
    Coastally associated rainfall is a common feature especially in tropical and subtropical regions. However, it has been difficult to quantify the contribution of coastal rainfall features to the overall local rainfall. We develop a novel technique to objectively identify precipitation associated with land-sea interaction and apply it to satellite based rainfall estimates. The Maritime Continent, the Bight of Panama, Madagascar and the Mediterranean are found to be regions where land-sea interactions plays a crucial role in the formation of precipitation. In these regions ≈\approx 40% to 60% of the total rainfall can be related to coastline effects. Due to its importance for the climate system, the Maritime Continent is a particular region of interest with high overall amounts of rainfall and large fractions resulting from land-sea interactions throughout the year. To demonstrate the utility of our identification method we investigate the influence of several modes of variability, such as the Madden-Julian-Oscillation and the El Ni\~no Southern Oscillation, on coastal rainfall behavior. The results suggest that during large scale suppressed convective conditions coastal effects tend modulate the rainfall over the Maritime Continent leading to enhanced rainfall over land regions compared to the surrounding oceans. We propose that the novel objective dataset of coastally influenced precipitation can be used in a variety of ways, such as to inform cumulus parametrization or as an additional tool for evaluating the simulation of coastal precipitation within weather and climate models

    A universal approach for drainage basins

    Full text link
    Drainage basins are essential to Geohydrology and Biodiversity. Defining those regions in a simple, robust and efficient way is a constant challenge in Earth Science. Here, we introduce a model to delineate multiple drainage basins through an extension of the Invasion Percolation-Based Algorithm (IPBA). In order to prove the potential of our approach, we apply it to real and artificial datasets. We observe that the perimeter and area distributions of basins and anti-basins display long tails extending over several orders of magnitude and following approximately power-law behaviors. Moreover, the exponents of these power laws depend on spatial correlations and are invariant under the landscape orientation, not only for terrestrial, but lunar and martian landscapes. The terrestrial and martian results are statistically identical, which suggests that a hypothetical martian river would present similarity to the terrestrial rivers. Finally, we propose a theoretical value for the Hack's exponent based on the fractal dimension of watersheds, Îł=D/2\gamma=D/2. We measure Îł=0.54±0.01\gamma=0.54 \pm 0.01 for Earth, which is close to our estimation of γ≈0.55\gamma \approx 0.55. Our study suggests that Hack's law can have its origin purely in the maximum and minimum lines of the landscapes.Comment: 20 pages, 6 Figures, and 1 Tabl

    Accurate and automatic NOAA-AVHRR image navigation using a global contour matching approach

    Get PDF
    The problem of precise and automatic AVHRR image navigation is tractable in theory, but has proved to be somewhat difficult in practice. The authors' work has been motivated by the need for a fully automatic and operational navigation system capable of geo-referencing NOAA-AVHRR images with high accuracy and without operator supervision. The proposed method is based on the simultaneous use of an orbital model and a contour matching approach. This last process, relying on an affine transformation model, is used to correct the errors caused by inaccuracies in orbit modeling, nonzero value for the spacecraft's roll, pitch and yaw, errors due to inaccuracies in the satellite positioning and failures in the satellite internal clock. The automatic global contour matching process is summarized as follows: i) Estimation of the gradient energy map (edges) in the sensed image and detection of the cloudless (reliable) areas in this map. ii) Initialization of the affine model parameters by minimizing the Euclidean distance between the reference and sensed images objects. iii) Simultaneous optimization of all reference image contours on the sensed image by energy minimization in the domain of the global transformation parameters. The process is iterated in a hierarchical way, reducing the parameter searching space at each iteration. The proposed image navigation algorithm has proved to be capable of geo-referencing a satellite image within 1 pixel.Peer ReviewedPostprint (published version
    • 

    corecore