1,714 research outputs found

    Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes

    Get PDF
    The ongoing hardware evolution exhibits an escalation in the number, as well as in the heterogeneity, of computing resources. The pressure to maintain reasonable levels of performance and portability forces application developers to leave the traditional programming paradigms and explore alternative solutions. PaStiX is a parallel sparse direct solver, based on a dynamic scheduler for modern hierarchical manycore architectures. In this paper, we study the benefits and limits of replacing the highly specialized internal scheduler of the PaStiX solver with two generic runtime systems: PaRSEC and StarPU. The tasks graph of the factorization step is made available to the two runtimes, providing them the opportunity to process and optimize its traversal in order to maximize the algorithm efficiency for the targeted hardware platform. A comparative study of the performance of the PaStiX solver on top of its native internal scheduler, PaRSEC, and StarPU frameworks, on different execution environments, is performed. The analysis highlights that these generic task-based runtimes achieve comparable results to the application-optimized embedded scheduler on homogeneous platforms. Furthermore, they are able to significantly speed up the solver on heterogeneous environments by taking advantage of the accelerators while hiding the complexity of their efficient manipulation from the programmer.Comment: Heterogeneity in Computing Workshop (2014

    CoreTSAR: Task Scheduling for Accelerator-aware Runtimes

    Get PDF
    Heterogeneous supercomputers that incorporate computational accelerators such as GPUs are increasingly popular due to their high peak performance, energy efficiency and comparatively low cost. Unfortunately, the programming models and frameworks designed to extract performance from all computational units still lack the flexibility of their CPU-only counterparts. Accelerated OpenMP improves this situation by supporting natural migration of OpenMP code from CPUs to a GPU. However, these implementations currently lose one of OpenMP’s best features, its flexibility: typical OpenMP applications can run on any number of CPUs. GPU implementations do not transparently employ multiple GPUs on a node or a mix of GPUs and CPUs. To address these shortcomings, we present CoreTSAR, our runtime library for dynamically scheduling tasks across heterogeneous resources, and propose straightforward extensions that incorporate this functionality into Accelerated OpenMP. We show that our approach can provide nearly linear speedup to four GPUs over only using CPUs or one GPU while increasing the overall flexibility of Accelerated OpenMP

    AMA: asynchronous management of accelerators for task-based programming models

    Get PDF
    Computational science has benefited in the last years from emerging accelerators that increase the performance of scientific simulations, but using these devices hinders the programming task. This paper presents AMA: a set of optimization techniques to efficiently manage multi-accelerator systems. AMA maximizes the overlap of computation and communication in a blocking-free way. Then, we can use such spare time to do other work while waiting for device operations. Implemented on top of a task-based framework, the experimental evaluation of AMA on a quad-GPU node shows that we reach the performance of a hand-tuned native CUDA code, with the advantage of fully hiding the device management. In addition, we obtain up to more than 2x performance speed-up with respect to the original framework implementation.Peer ReviewedPostprint (published version

    A hierarchic task-based programming model for distributed heterogeneous computing

    Get PDF
    Distributed computing platforms are evolving to heterogeneous ecosystems with Clusters, Grids and Clouds introducing in its computing nodes, processors with different core architectures, accelerators (i.e. GPUs, FPGAs), as well as different memories and storage devices in order to achieve better performance with lower energy consumption. As a consequence of this heterogeneity, programming applications for these distributed heterogeneous platforms becomes a complex task. Additionally to the complexity of developing an application for distributed platforms, developers must also deal now with the complexity of the different computing devices inside the node. In this article, we present a programming model that aims to facilitate the development and execution of applications in current and future distributed heterogeneous parallel architectures. This programming model is based on the hierarchical composition of the COMP Superscalar and Omp Superscalar programming models that allow developers to implement infrastructure-agnostic applications. The underlying runtime enables applications to adapt to the infrastructure without the need of maintaining different versions of the code. Our programming model proposal has been evaluated on real platforms, in terms of heterogeneous resource usage, performance and adaptation.This work has been supported by the European Commission through the Horizon 2020 Research and Innovation program under contract 687584 (TANGO project) by the Spanish Government under contract TIN2015-65316 and grant SEV-2015-0493 (Severo Ochoa Program) and by Generalitat de Catalunya under contracts 2014-SGR-1051 and 2014-SGR-1272.Peer ReviewedPostprint (author's final draft

    A Review on Software Architectures for Heterogeneous Platforms

    Full text link
    The increasing demands for computing performance have been a reality regardless of the requirements for smaller and more energy efficient devices. Throughout the years, the strategy adopted by industry was to increase the robustness of a single processor by increasing its clock frequency and mounting more transistors so more calculations could be executed. However, it is known that the physical limits of such processors are being reached, and one way to fulfill such increasing computing demands has been to adopt a strategy based on heterogeneous computing, i.e., using a heterogeneous platform containing more than one type of processor. This way, different types of tasks can be executed by processors that are specialized in them. Heterogeneous computing, however, poses a number of challenges to software engineering, especially in the architecture and deployment phases. In this paper, we conduct an empirical study that aims at discovering the state-of-the-art in software architecture for heterogeneous computing, with focus on deployment. We conduct a systematic mapping study that retrieved 28 studies, which were critically assessed to obtain an overview of the research field. We identified gaps and trends that can be used by both researchers and practitioners as guides to further investigate the topic
    • …
    corecore