
A Hierarchic Task-Based Programming
Model for Distributed Heterogeneous
Computing

Jorge Ejarque1, Marc Domı́nguez1 and Rosa M. Badia1,2

Abstract
Distributed computing platforms are evolving to heterogeneous ecosystems with Clusters, Grids and Clouds introducing
in its computing nodes, processors with different core architectures, accelerators (i.e GPUs, FPGAs), as well as
different memories and storage devices in order to achieve better performance with lower energy consumption. As a
consequence of this heterogeneity, programming applications for these distributed heterogeneous platforms becomes
a complex task. Additionally to the complexity of developing an application for distributed platforms, developers must
also deal now with the complexity of the different computing devices inside the node. In this paper, we present a
programming model that aims to facilitate the development and execution of applications in current and future distributed
heterogeneous parallel architectures. This programming model is based on the hierarchical composition of the COMP
Superscalar (COMPSs) and Omp Superscalar (OmpSs) programming models, that allow developers to implement
infrastructure-agnostic applications. The underlying runtime enables applications to adapt to the infrastructure without
the need of maintaining different versions of the code. Our programming model proposal has been evaluated on real
platforms, in terms of heterogeneous resource usage, performance, and adaptation.

Keywords
Distributed Computing, Heterogeneous Computing, Task-based Parallel Programming Models

the development and execution of applications for future
distributed heterogeneous architectures. This programming
model is based on a hierarchical combination of the
COMP Superscalar (COMPSs) (Badia et al. 2015) and
the OMP Superscalar (OmpSs) (Duran et al. 2011)
task-based programming models, where COMPSs deals
with the distributed platform heterogeneity and OmpSs
deals with the intra-node heterogeneity following the
same programming paradigm. This approach facilitates
application development, since developers do not require to
learn several programming models and resource provider
APIs, and the resultant application is infrastructure-agnostic.
During the application execution, the programming model
runtime detects the inherent application parallelism by
analysing data dependencies between application tasks,
and transparently manages their execution in the different
computing devices. Apart from the basic execution
management, the runtime is also capable of adapting the
application execution to the underlying infrastructure by
selecting the most appropriate available device for each
type of tasks and deciding the number of resources to use
according to the number of parallel tasks. All these features
are provided without having to maintain different versions
of the code. The rest of the paper is organized as follows:
Section presents the related work; The programming model

1Barcelona Supercomputing Center (BSC), Spain

2Artificial Intelligence Research Institute - Spanish National Research
Council (CSIC), Spain
Email: {jorge.ejarque, rosa.m.badia}@bsc.es

Introduction
In recent years, the computing ecosystem is becoming
more and more heterogeneous. On the one hand, trends
in computer architecture focus on providing different
computing devices (CPUs, GPUs and FPGAs) and memories
in a single chip or computing node, with the aim of providing
better computing devices for different types of algorithms
and applications. On the other hand, distributed computing
platforms such as Clusters, Grids and Clouds, which
traditionally have been composed of homogeneous nodes,
are starting to be built with heterogeneous nodes, which
include processors with different core types, accelerators
and memory capacities. This heterogeneity is required to
achieve better computing performance with lower energy
consumption. However, the development of applications
for machines with powerful computing devices requires an
extraordinary effort by developers. Learning how to better
use these computing resources is not easy, since executing
the same algorithm in one or another device can have
different outcomes in terms of performance and energy
consumption. Therefore, selecting the proper device for
each application part is a key factor to achieve an efficient
application execution.

Moreover, programming these heterogeneous platforms
is not an easy task. For each accelerator, the developer
has to add some specific c ode t o e nable t he application
execution in the computing device (e.g. manage transfers
between device memories, spawn processes on these
devices and collect the results). For that reason, in
the framework of the TANGO project (Djemame et al.
2019), we propose a programming model to facilitate

expressed as futures or continuations, the level of look-ahead
they support is limited in practice.

In any case, these solutions are just able to manage
the heterogeneity inside a node. If the application requires
to run in several nodes (e.g. big amount of data or
large parallelism), the solutions mentioned before must
be combined with other distributed computing frameworks
that manage the processes’ spawning and data movements
between the different computing nodes. Developers can
program this by hand using the TCP/IP and threading
libraries, but this option requires a lot of programming
effort and parallel programming skills. One of these
distributed computing frameworks is MPI (MPI Forum
2015). It provides an API for interchanging data messages
between the different processes for Single Program Multiple
Data (SPMD) applications. Another option are PGAS
programming models such as GASPI (Alrutz et al. 2013)
or UPC (El-Ghazawi and Smith 2006), which allow to
create a global address space and use shared memory
programs in different nodes. Both options are working
quite well running SPMD applications in homogeneous
clusters interconnected with a very fast network. However,
in heterogeneous environments distributed across different
locations they are not reaching good performance due to the
long latency of the Wide Area Network.

Other approaches to distributed computing can be found
in data analytic frameworks such as MapReduce (Dean
and Ghemawat 2008), Spark (Zaharia et al. 2016), Graph-
processing frameworks such as Pregel (Malewicz et al. 2010)
or Deep learning frameworks such as TensorFlow (Abadi
et al. 2016).

Workflow management systems are also an alternative for
executing applications in distributed computing platforms.
These tools provide an interface to describe and execute a
workflow (Graphical or by means of a Workflow Description
Language). This workflow description is mainly used to
combine the execution of different binaries in a static way.
Examples of these tools are Galaxy (Goecks et al. 2010),
Taverna (Oinn et al. 2004), Kepler (Altintas et al. 2004) or
Fireworks (Jain et al. 2015). Finally, we can also find task-
based frameworks where users can implement workflows
in a dynamic way such as Dask (Rocklin 2015), which
provides a Python API to describe task-based workflow as
programs and Parsl (Babuji et al. 2018) which from a Python
interface enables the execution of workflows in distributed
environments.

Finally, COMPSs (Badia et al. 2015) is the sibling of
OmpSs for distributing computing. It applies the same
concepts as OmpSs but instead of distributing tasks to
the different devices of a node, it distributes tasks across
computing nodes taking node heterogeneity into account.

In this paper, we propose to combine the COMPSs
and OmpSs features to define a hierarchical programming
model that enables the development of infrastructure-
agnostic parallel applications. This proposal supports a
single application code, which at execution is adapted by
the runtime to the available underlying infrastructure. One
relevant difference of this approach compared to others
is that programming is simplified by the use of a single
programming paradigm, which does not require the use of
APIs to manage the interaction with different computing

is presented in Section ; Then, Section evaluates a prototype
of this programming model; Finally, Section draws the
conclusions and presents the guidelines for future work.

Related Work

As introduced in previous paragraphs, computing nodes are
incorporating different types of devices in order to be more
efficient w hen c omputing d ifferent t ypes o f applications,
either by accelerating the computation or by reducing the
energy consumed. However, this brings more complexity to
the application development, since each of these devices has
its own programming language or API used to spawn the
computation to the different devices. For instance, FPGAs
are traditionally programmed with the VHDL language;
and for deploying and running the computation, developers
have to use the tool chain provided by the FPGA vendor.
A similar situation is given for General Purpose GPUs:
NVIDIA offers the CUDA framework (NVIDIA Corp. 2019)
for programming and running applications in their devices,
and other vendors offer similar frameworks to do the same.

Current research is focusing on reducing the complexity
of programming these heterogeneous nodes, as well as,
providing portability between architectures allowing the
reuse of code for similar devices. One example of this is
OpenCL (Stone et al. 2010). It was developed with the
intention of providing a common programming interface
for heterogeneous devices (including not only GPUs, but
also DSPs and FPGAs). With a syntax very similar to
C, the same code can be used in several accelerators.
However, similar to CUDA, it requires the programmer
to write specific c ode f or d evice h andling, w hich reduces
programmability. OpenACC (OpenACC Consortium 2011)
is another example of a programming standard for parallel
computing designed to simplify parallel programming of
heterogeneous CPU/GPU systems. Based on directives, the
programmer can annotate the code to indicate those parts
that should be run in the heterogeneous device. The OpenMP
standard (OpenMP Architecture Review Board 2018) tackles
the programmability issues for heterogeneous devices in a
similar way to OpenACC, however, it also considers many
other aspects of parallelism which makes it a stronger
option. Finally, OmpSs (Duran et al. 2011) is a task-based
programming model proposed by BSC which promotes both
programmability and portability of codes. It hides to the
programmer the architecture details, that are managed by
the runtime instead of by the developers. For instance, the
parallelism of the architectures is inherently exploited by
analyzing the data dependencies between tasks, and the
allocation of memory in the device or data transfers are
automatically managed by the runtime.

PGI (Group 2010) and HMPP (Dolbeau et al. 2007)
programming models are two other approaches quite related
to OmpSs. PGI uses compiler technology to offload the
execution of loops to the accelerators. HMPP also annotates
as tasks functions to be offloaded t o t he a ccelerators. We
think that OmpSs has higher potential in that it shifts part of
the intelligence that HMPP and PGI delegate in the compiler
to the OmpSs runtime system. Although these alternatives
do support a fair amount of asynchronous computations

execute any implementation of the tasks according to the
available resources. For instance, a part of an application can
implement a feature programmed to run in a CPU. Moreover,
a CUDA kernel which implements the same feature could be
also available to run in a GPU. In this case, developers can
define the CUDA kernel as a task which implements the CPU
task behavior.

Also, in the case of coarse grain tasks, in addition
to different implementations, developers can also add a
constraints directive to the tasks to specify the minimal
resource requirements required to run this task type, a
certain software, etc. The runtime takes these constraints into
account when scheduling these tasks in resources which must
fulfill them. For instance, for a coarse-grain task which is
composed of a set of fine-grain tasks targeting accelerators
we have to add a task constraint to indicate that it requires a
given accelerator (i.e. a GPU, a FPGA, etc). Or in the case
of coarse-grain tasks implementing a workflow of fine-grain
tasks, the constraints directive can be also used to indicate
the number of cores required to run the fine-grain tasks in
parallel. An example of how an application is programmed
is depicted in Section .

Figure 1. Application execution overview.

Figure 1 shows an overview of how applications are
executed in the distributed environment. The main code
of the application is linked to the platform-level runtime
(COMPSs) which detects the data dependencies, builds
a Direct-Acyclic-Graph (DAG) of the coarse-grain tasks.
The COMPSs runtime also schedules dependency-free tasks
taking into account data location and the coarse-grain
constraints, deciding which tasks can run in parallel in each
node and ensuring that the different tasks are not colliding
in the use of resources. For instance, if there is a single
GPU in a computing node, the runtime will not schedule
two tasks requiring a GPU. Once the tasks have been
assigned to a computing resource, the platform-level runtime
will execute these tasks by initiating a node-level runtime
(OmpSs) configured to use the assigned devices only. For
each coarse-grain task, the node-level runtime builds a DAG
of the fine grain tasks and schedules them in the resources
assigned by the platform level scheduling.

The proposed programming model presents different
advantages with respect to other approaches:

First, it provides a programming model which integrates
distributed computing with heterogeneous systems, allowing
developers to implement parallel applications in distributed
heterogeneous environments without changing the program-
ming model and paradigm. Programmers do not need to
learn different programming model and APIs. They are only

devices. In our proposal, the application execution is
transparently distributed by the programming model runtime
to the different computing nodes of the platform and the
heterogeneous computing devices available in each node.

Programming Model
StarSs is a family of task-based programming models
where developers define s ome p arts o f t he application
as tasks, indicating the direction of the data required by
those tasks. Based on these annotations the programming
model runtime analyzes data dependencies between the
defined t asks, d etecting t he i nherent p arallelism and
scheduling the tasks on the available computing resources,
managing the required data transfers and performing the
tasks’ execution. Two frameworks currently compose the
StarSs programming model family: COMP Superscalar
(COMPSs), which provides the programming model and
runtime implementation for distributed platforms such as
Clusters, Grids and Clouds, and Omp Superscalar (OmpSs),
which provides the programming model and runtime
implementation for shared memory environments such as
multicore architectures and accelerators (such as GPUs and
FPGAs).

The work presented in this paper proposes to combine
COMPSs and OmpSs in a hierarchical way, where an
application is represented as a workflow of coarse-grain tasks
developed with COMPSs. Each of these coarse-grain tasks
implements as well a workflow of OmpSs finer-grain tasks.
At runtime, coarse-grain tasks will be managed by COMPSs
runtime optimizing the execution in a platform level by
distributing tasks in the different compute nodes according
to the task requirements and the cluster heterogeneity. On
the other hand, fine-grain tasks will be managed by OmpSs
which will optimize the execution of tasks at node level
by scheduling them in the different devices available in the
assigned node.

To program an application with the proposed program-
ming model, developers have to identify the parts of the
code which are candidates to be coarse-grain tasks. These
are usually functions which are repeated several times in
the code and with enough computation to compensate the
overhead of spawning a remote process (around 10ms). To
indicate that a method is a coarse-grain task, developers just
need to annotate the code with a preprocessor directive and
also indicate the directionality of the method parameters. The
main code of the application can be implemented as a normal
sequential C/C++ code. The same procedure is done for fine
grain tasks. In this case, tasks can have finer granularity due
to the shared memory environment. In addition, annotations
for tasks that are accelerator kernels should also include
a target clause in the directive to differentiate them from
regular CPU tasks.

In the case of the coarse-grain tasks, in addition
to the normal task definition, t he p rogramming model
provides mechanisms to support different tasks’ versions
and allocation of resources based on tasks’ constraints, in
order to make application codes adaptable to the underlying
infrastructure. By adding an implements clause in the
directive, we are indicating that the task implements the
same functionality as another task. So, the runtime can

i n t main (i n t argc , char a r g v){
M a t r i x A, B , C ;
i n t N = a t o i (a r gv [1]) ;
i n t M = a t o i (a rg v [2]) ;
compss on () ;

/ / Load M a t r i c e s
Ma t r i x A = M at r i x : : i n i t (N, M) ;
Ma t r i x B = M a t r i x : : i n i t (N, M) ;
Ma t r i x C = M a t r i x : : i n i t (N, M) ;

/ / C a l c u l a t e Ma t r i x M u l t i p l i c a t i o n
f o r (i n t i =0 ; i<N; i ++) {

f o r (i n t j =0 ; j<N; j ++) {
f o r (i n t k =0; k<N; k ++) {

(C . b l o c k [i] [j])−>m u l t i p l y B l o c k s (A. b l o c k [i] [k] ,
B . b l o c k [k] [j]) ;

}
}
}
c o m p s s o f f () ;

}

Figure 2. Matrix Multiplication main code. N is the number
blocks and M is the number of elements per block

multiplication. The first level splits matrices into blocks and
computes the matrix multiplication at the block level. Each
block multiplication is defined as a coarse-grain task with
two implementations one for CPUs and another for GPUs.
The matrices’ blocks are also decomposed in smaller blocks,
and the block multiplication task is is implemented as fine-
grain tasks operating on sub-blocks. In the case of the GPU
version, the fine-grain tasks are implemented by a CUDA
kernel.

Figure 2 shows the main code of the benchmark
application where a loop of the multiplyBlock coarse-grain
task is implemented. As can be seen, nothing special must
be included to call the coarse-grain tasks. They are called as
regular functions.

Figure 3 depicts the two implementations of the block
multiplication coarse-grain task. In that figure, we can see
how developers define coarse-grain tasks with the #pragma
compss task directive and the fine-grain tasks with the
#pragma omp task directive. We can also see in this figure
how to include the implements clause to indicate that
the Block::multiplyBlocks GPU task implements the same
behavior as the Block::multiplyBlocks task, and the #pragma
compss constraints directive to define the task constraints for
each implementation.

Regarding the fine-grain implementation, we can have
different parallelization strategies depending on the com-
puting device. In the CPU case, as they are executed in a
shared-memory environment, a fine-grain level of tasks can
be defined by annotating one of the inner loops of the block
matrix multiplication. In the case of the figure, we have
defined the second loop as a task, so each fine-grain task is in
charge of computing a row of elements of the resultant block.
In the GPU case, the big matrix blocks are decomposed in
smaller blocks in order to fit in the GPU device memory and
finer-grain tasks are defined as the multiplication of these
small blocks. The fine-grain task in this case is the CUDA
kernel defined by the Muld function which is annotated using

required to decide which parts are tasks, the direction of its
data, and its granularity level.

Second, developers do not have to deal with data transfers,
like in MPI. The programming model runtime analyzes data
dependencies at distributed and node levels, and keeps track
of the data locations during the execution. So, it tries to
schedule tasks close to the required data and when this is not
possible, it transparently transfers the data to the available
resource.

Third, we have extended the versioning and constraints
capabilities of these programming models to make applica-
tions adaptable. With these extensions, developers are able
to define different versions of tasks for different computing
devices (CPU, GPUs, FPGA) or combinations of them. So,
the same application will be able to adapt its execution
to the different resource capabilities of the heterogeneous
platforms without having to modify the application.

Finally, in task-based programming models, the runtime
has a deep knowledge of the application parallelism
by analysing the generated task-dependency graph. For
instance, it can be aware of the parallel workload at each
moment of the application execution using as estimation
the equivalent load of the number of dependency-free
tasks. Moreover, some distributed computing platforms such
as Clouds, or Slurm managed clusters allow users to
dynamically request or release resources to their allocations.
The COMPSs runtime is able to combine this to capabilities
in order to adapt the number of resources used by the
application to its parallel workload.

Evaluation
We have validated the proposed programming model
with a prototype integration of the COMPSs and OmpSs
programming model and we have deployed it in the
MinoTauro cluster Barcelona Supercomputing Center (2019)
at the Barcelona Supercomputing Center. MinoTauro is a
heterogeneous cluster where each node contains two Xeon
processors with eight cores each and four NVIDIA K80
GPUs. To demonstrate the features presented in the paper, we
have implemented two benchmark applications: the matrix
multiplication as an example for Linear-algebra applications
and the K-means clustering algorithm as an example of
a Machine Learning application. With these applications,
we have done three experiments. In the first experiment,
we have executed the applications in different resource
configurations, and we have measured the execution time to
see how the programming model runtime is able to detect
the available resources and select the appropriate tasks’
version for each configuration. In the second experiment, we
evaluate the scalability of the prototype in both applications.
Finally, with the third experiment, we show how the runtime
adapts the used resources to the application load. The rest
of the section is organized as follows: First, we will show
how the Matrix Multiplication and K-means applications are
implemented with the proposed model and after this we will
present the results of the experiments.

Application Implementation
Matrix Multiplication The first a pplication u sed t o validate
the Programming Model is a two-levels block matrix

#pragma compss c o n s t r a i n t s (p r o c e s s o r s ={
p r o c e s s o r (Type=CPU, Comput ingUni t s =6)})

#pragma compss t a s k i n (A, B)
void Block : : m u l t i p l y B l o c k s (Block A, Block B) {

f o r (i n t i =0 ; i<M; i ++) {
pragma omp t a s k i n (A. d a t a [i] [0 ;M] , \

B . d a t a [0 ;M] [0 ;M]) o u t (d a t a [i] [0 ;M])
f o r (i n t j =0 ; j<M; j ++) {

f o r (i n t k =0; k<M; k ++) {
d a t a [i] [j] += A. d a t a [i] [k]∗B . d a t a [k] [j] ;

}
}

}
pragma omp t a s k w a i t

}
#pragma compss c o n s t r a i n t s (p r o c e s s o r s ={

p r o c e s s o r (Type=GPU, Comput ingUni t s =1)})
#pragma compss t a s k i n (A, B)

imp lemen t s (Block : : m u l t i p l y B l o c k s)
void Block : : mul t ip lyBlocks GPU (Block A, Block B){

i n t NB = M/ SB SIZE ; / / GPU sub−b l o c k s i z e
f o r (i n t i =0 ; i<NB; i ++) {

f o r (i n t j =0 ; j<NB; j ++) {
f o r (i n t k =0; k<NB; k ++) {

Muld (A. d a t a [i ∗NB+k] , B . d a t a [k∗NB+ j] ,
d a t a [i ∗NB+ j] , NB) ;

}
}

}
pragma omp t a s k w a i t

}

#pragma omp t a r g e t d e v i c e (cuda)
nd range (2 , 64 , 64 , 32 , 32)

#pragma omp t a s k i n (A[0 :NB∗NB] , B [0 :NB∗NB])
i n o u t (C [0 :NB∗NB])

g l o b a l void Muld (double∗ A, double∗ B ,
double∗ C , i n t NB) ;

cluster centroids, which has been implemented with two
coarse-grain tasks: one that merges the distance calculation
results of two fragments in order to reduce all results and
another that updates the cluster. We have also defined as a
coarse-grain task to load the different fragments in memory,
to automatically parallelize the memory load and distribute
the points in the different computing nodes.

The main code for the K-means algorithm with our
proposed programming model is shown in Figure 4. The
code is composed by two main parts. The first consists
of a loop which initializes the fragments by reading the
points from a file. Then, there is a do-while loop which
implements the K-means iterations. Each iteration consists of
two loops: one for computing the distances of all the points
of a fragment to all the clusters and one to merge the results.
Finally, there is a call to update the clusters from the merged
distance results.

Figure 5 shows the definition and implementation of
the coarse-grain tasks. The compute distances task is
parallelized with fine grain tasks. We have created two
versions: compute distances and compute distances GPU,
one for executing the task in 4 CPU cores and another
which is ready to run in a GPU. The same figure also
shows the implementation of both compute distances task
versions, where we can see how to indicate that a code block
is a fine-grain task, in the case of the compute distances
implementation. Also, we show how a CUDA kernel
(cuda find nearest cluster) is defined as fine-grain tasks
in the compute distances GPU implementation. The other
tasks called from the main code are defined as simple
sequential coarse-grain tasks.

Experiment 1: Execution in different resource
configurations
To validate the adaptability features of the programming
model, we have executed the Matrix Multiplication in
different resource configurations: using only CPUs, only
GPUs or both, and we have measured the time to complete
the matrix multiplication with different matrices’ sizes and
resource configurations. This means that we have executed
the application using only CPUs, assigning a different
number of cores to each coarse-grain task to allow to run
several fine grain tasks in parallel, different number of GPUs
and different combinations of CPU and GPU together.

Figure 6 shows the measured execution times when
running the matrix multiplication with different matrix sizes.
The matrix size is indicated by the number of blocks and
the size of the blocks. We have evaluated matrices with
a range of 4×4 to 16×16 blocks and block sizes from
256×256 to 2048×2048 elements. For each configuration,
we have plotted the best result achieved. We can see that
the best configuration depends on the matrix size. For small
number of blocks and sizes, the CPU only configuration
is the one that is performing better. This is reasonable,
since GPUs require an extra data and process management,
and the speed up achieved with GPUs is not enough to
overcome the overhead of the extra memory allocations and
copies required. When increasing the matrix size (either by
increasing the number of blocks or the block size, the version
with both CPU and GPU is becoming the best option. So, the

Figure 3. Task definitions

the #pragma omp task to indicate it is a task and #pragma
omp target to indicate it should run in a CUDA device.

K-Means Following the same approach, we have also
implemented the K-means algorithm which is a widely used
clustering technique to group data in clusters, where each
cluster is identified by a centroid point, whose distance with
the rest of the points of the cluster is the minimum. K-
means is normally implemented with an iterative algorithm
starting with a random centroids’ set. The distance of all
the points to the different centroids is calculated and each
point is assigned to the closest centroid. According to
these assignments, the new centroids are calculated. This
is repeated until the difference of the centroids from one
iteration to the other is close to 0.

The parallelization of the K-means algorithm is based
on the observation that each of the distance calculations
between a point and a given cluster is independent, and they
can be computed in parallel. However, these computations
are too small for being distributed across nodes. For this
reason, we group several points in fragments and the
computation of all these fragments is defined a s coarse-
grain tasks while each distance computation can be defined
as a fine-grain t ask. O nce t his p arallel r egion h as been
finished, the distance results are used to recompute the

i n t main (i n t argc , char ∗∗ a rgv) {

compss on () ;
f o r (i =0 ; i<nF ra g s ; i ++){

i n i t F r a g m e n t (o b j s F r a g , nCoords , f i l e P a t h , f r a g m e n t s [i]) ;
}
do {

o l d c l u s t e r s = c l u s t e r s ;
f o r (i =0 ; i<nF ra g s ; i ++){

c o m p u t e d i s t a n c e s (o b j s F r a g , nCoords , n C l u s t e r s , f r a g m e n t s [i] , c l u s t e r s , n e w C l u s t e r s [i] ,
n e w C l u s t e r S i z e [i]) ;

}
i n t n e i g h b o r = 1 ;
whi le (n e i g h b o r < nF ra g s) {

f o r (i n t f = 0 ; f < nF ra g s ; f += 2 ∗ n e i g h b o r) {
i f (f + n e i g h b o r < nF ra g s) {

m e r g e d i s t a n c e r e s u l t s (nCoords , n C l u s t e r s , n e w C l u s t e r s [f] , n e w C l u s t e r s [f + n e i g h b o r] ,
n e w C l u s t e r S i z e [f] , n e w C l u s t e r S i z e [f + n e i g h b o r]) ;

}
}
n e i g h b o r ∗= 2 ;

}
u p d a t e C l u s t e r s (nCoords , n C l u s t e r s , c l u s t e r s , n e w C l u s t e r s [0] , n e w C l u s t e r S i z e [0]) ;
c o m p s s w a i t o n (c l u s t e r s) ;

} whi le (! hasConverged (o l d c l u s t e r s , c l u s t e r s)) ;
c o m p s s o f f () ;

blocks to disk, and the OmpSs runtime initialization at the
beginning of each coarse-grain task.

Experiment 3: Resource Adaptation
Finally, the third experiment is designed to demonstrate
how the programming model runtime is able to detect
the inherent parallelism of the application and adapt the
number of resources used to the computing load. In this
experiment, we have run the same K-means application but
configuring the programming model runtime to partially
manage the execution in an elastic way. In the runtime
execution configuration, we have set the runtime to use two
static computing nodes and we have activated the elasticity
option to let the runtime decide how many nodes it will use
depending on the number of parallel tasks in the application,
the task duration and the time to get a new resource from the
resource manager.

Figure 11 shows an image generated by the COMPSs
runtime monitor, where we can see an estimation of
the parallel workload (number of dependency-free tasks
multiplied by its expected duration), represented with a
blue shadow, and the number of resources used during the
application execution, represented with a red line. We can see
that the runtime starts with the initial resources (two nodes),
and once the first set of tasks finishes, the runtime estimates
the duration of executing the rest of the dependency-free
tasks based on the duration of the previous executions. If
this time is larger than the time to get a new resource in
the resource manager, the runtime requests for a resource
allocation to execute more tasks in parallel. In the actual
execution shown in the figure, we can see that the runtime has
decided to request two extra nodes, which are later discarded
once the number of tasks decreases.

}

Figure 4. K-means main code

programming model runtime is able to run tasks in all kind
of resources which increases the parallelism and reduces the
execution time. In the best case, we have achieved a gain of
75% with respect to CPU-only cases and 65% with respect
to GPU-only when using both resources. In the worst case
(very small matrices), we could have a 6% loss with respect
of using a CPU-only configuration.

Similar results have been observed when running the K-
means application. Figure 7 shows the execution time when
we run the K-means application to find 5 0 c lusters i n 24
million point of 50 dimensions. In the figure, we can see an
important acceleration when using the GPUs with respect to
the case of using the CPU only, but we can have an extra 10%
of improvement when we combine the CPU and GPUs.

Experiment 2: Scalability
We have also evaluated the scalability when running
both applications (Matrix Multiplication and K-means)
distributed on different computing nodes.

Figure 8 shows the execution time and speed-up of
executing the K-means algorithm to find 1024 clusters in 320
fragments of 200K point of 128 dimensions.

Figure 9 shows the execution time and the efficiency
when increasing the problem size in the same proportion of
the computing resources keeping the computation per node
constant. In this case, we can see the execution time has
suffer a small increment.

Figure 10 shows the execution time and speed-up of
executing the matrix multiplication for matrices of 64×64
blocks of 1024×1024 elements each, using from 1 to 8
computing nodes. We observe a reasonable performance, and
the difference from the ideal speed-up is mainly caused by
the overhead of the data transfers, the load and write of the

#pragma compss c o n s t r a i n t s (p r o c e s s o r s ={ p r o c e s s o r (Type=CPU, Comput ingUni t s =4)})
#pragma compss t a s k i n (f r a g [0 ; nObjs∗nCoords] , c l u s t e r s [0 ; n C l u s t e r s ∗nCoords])

o u t (n e w C l u s t e r s [0 ; n C l u s t e r s ∗nCoords] , n e w C l u s t e r s S i z e [n C l u s t e r s])
void c o m p u t e d i s t a n c e s (i n t nObjs , i n t nCoords , i n t n C l u s t e r s , f l o a t ∗ f r a g , f l o a t ∗ c l u s t e r s ,

f l o a t ∗ n e w C l u s t e r s , i n t ∗ n e w C l u s t e r s S i z e){
i n t s p l i t = g e t c o m p s s t a s k c u s () ;
i n t b l o c k = (nObjs / s p l i t) + 1 ;
i n t ∗ i n d e x = new i n t [nObjs] ;
i n t k , i , j ;
f o r (i =0 ; k<nObjs ; k ++) {

pragma omp t a s k f i r s t p r i v a t e (k) i n (f r a g [0 ; nCoords∗nObjs] , c l u s t e r s [0 ; n u m C l u s t e r s ∗nCoords])
c o n c u r r e n t (i n d e x [0 ; nObjs])

i n d e x [i] = f i n d n e a r e s t c l u s t e r (n C l u s t e r s , nCoords , &f r a g [i ∗nCoords] , c l u s t e r s) ;
}
pragma omp t a s k w a i t i n (i n d e x [0 ; nObjs])
f o r (i =0 ; i<nObjs ; i ++) {

n e w C l u s t e r s S i z e [i n d e x [i]] + + ;
f o r (j =0 ; j<nCoords ; j ++){

i f (n e w C l u s t e r s S i z e [i n d e x [i]] = = 1){
n e w C l u s t e r s [i n d e x [i]∗ nCoords+ j]= 0 . 0 ;

}
n e w C l u s t e r s [i n d e x [i]∗ nCoords+ j] += f r a g [i ∗nCoords + j] ;

}
}

}
#pragma compss c o n s t r a i n t s (p r o c e s s o r s ={ p r o c e s s o r (Type=GPU, Comput ingUni t s =1)})
#pragma compss t a s k i n (f r a g [0 ; nObjs∗nCoords] , c l u s t e r s [0 ; n C l u s t e r s ∗nCoords])

o u t (n e w C l u s t e r s [0 ; n C l u s t e r s ∗nCoords] , n e w C l u s t e r s S i z e [0 ; n C l u s t e r s])
imp lemen t s (c o m p u t e d i s t a n c e s)

void c o m p u te d i s t a nc e s G P U (i n t nObjs , i n t nCoords , i n t n C l u s t e r s , f l o a t ∗ f r a g , f l o a t ∗ c l u s t e r s ,
f l o a t ∗ n e w C l u s t e r s , i n t ∗ n e w C l u s t e r s S i z e){

i n t ∗ i n d e x = new i n t [nObjs] ;
pragma omp t a r g e t d e v i c e (cuda) c o p y d e p s ndrange (1 , nObjs , 64)
pragma omp t a s k i n (f r a g [0 ; (nObjs∗nCoords)] , c l u s t e r s [0 ; (n C l u s t e r s ∗nCoords)]) o u t (i n d e x [0 ; (nObjs)])
c u d a f i n d n e a r e s t c l u s t e r (nCoords , nObjs , n C l u s t e r s , f r a g , c l u s t e r s , i n d e x) ;
pragma omp t a s k w a i t i n (i n d e x [0 ; nObjs])

f o r (i n t i =0 ; i<nObjs ; i ++) {
n e w C l u s t e r s S i z e [i n d e x [i]] + + ;
f o r (i n t j =0 ; j<nCoords ; j ++){

i f (n e w C l u s t e r s S i z e [i n d e x [i]] = = 1){
n e w C l u s t e r s [i n d e x [i]∗ nCoords+ j]= 0 . 0 ;

}
n e w C l u s t e r s [i n d e x [i]∗ nCoords+ j] += f r a g [i ∗nCoords + j] ;

}
}

}

#pragma compss t a s k i n (f i l e n a m e) o u t (f r a g [0 ; nObjs∗nCoords])
void i n i t F r a g m e n t (i n t nCoords , i n t nObjs , F i l e f i l e n a m e , f l o a t ∗ f r a g){

. . .
}

#pragma compss t a s k i n (f r a g [0 ; nObjs∗nCoords] , c l u s t e r s 2 [0 ; n C l u s t e r s ∗nCoords] , n e w C l u s t e r s S i z e 2 [0 ; n C l u s t e r s])
i n o u t (c l u s t e r s 1 [0 ; n C l u s t e r s ∗nCoords] , n e w C l u s t e r s S i z e 1 [0 ; n C l u s t e r s])

void m e r g e d i s t a n c e r e s u l t s (i n t nCoords , i n t n C l u s t e r s , f l o a t ∗ c l u s t e r s 1 , f l o a t ∗ c l u s t e r s 2 ,
i n t ∗ n e w C l u s t e r s S i z e 1 , i n t ∗ n e w C l u s t e r s S i z e 2){

. . .
}

#pragma compss t a s k i n (c l u s t e r s 2 [0 ; n C l u s t e r s ∗nCoords] , n e w C l u s t e r s S i z e 2 [0 ; n C l u s t e r s])
i n o u t (c l u s t e r s 1 [0 ; n C l u s t e r s ∗nCoords])

void u p d a t e C l u s t e r s (i n t nCoords , i n t n C l u s t e r s , f l o a t ∗ c l u s t e r s 1 , f l o a t ∗ c l u s t e r s 2 , i n t ∗ n e w C l u s t e r s S i z e 2){
. . .

}

parallel applications in a platform of distributed heteroge-
neous resources. This proposal is based on two-levels of task-
based programming models. The first level is in charge of

Figure 5. K-means task definition

Conclusion and Future Work

In this paper, we have presented a proposal for a program-
ming model that aims to facilitate the implementation of

Figure 6. Matrix Multiplication benchmark with different
resource configurations Figure 8. K-means strong scaling.

Figure 9. K-means weak scaling (40 Fragments/Node).

doing the required data transfer, and exploit the maximum
parallelism. Moreover, due to the versioning capabilities
of the programming model, the runtime can select the
implementation which fits better to the available resources
selecting the one which provides better performance. So,
the same application will be able to adapt to the different
capabilities of the heterogeneous platform without having to
modify the application.

The results obtained in the evaluation demonstrate that
the runtime transparently adapts the application execution
to the underlying infrastructure with reasonable performance

Figure 7. K-means benchmark executed with different resource
configurations

defining coarse-grain tasks of the application which will be
spawned in the different nodes of the distributed computing
environment. This coarse-grain level is managed by the
COMPSs programming model and runtime. Each coarse-
grain task implements a workflow of fine grain tasks which
will be spawned on the different computing devices of a
compute node. This fine-grain l evel i s m anaged b y the
OmpSs programming model which spawns the processes
on the computing node devices according to the constraints
provided by the coarse-grain level runtime which coordinates
the overall application execution.

The benefit of this programming model combination relies
on the easiness of programming, which avoids the need
of changing the programming model paradigm or using
different APIs, providing means to implement a distributed
application which takes profit of the different heterogeneous
devices available in the computing nodes. Besides, the
programming runtime transparently performs the required
actions to efficiently execute the application in the computing
infrastructure such as: analyze data dependencies between
tasks, keep track of the data locations during the execution
as well as schedule tasks close to data or transparently

Catalunya under contracts 2014-SGR-1051 and 2014-SGR-
1272.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M,
Ghemawat S, Irving G, Isard M et al. (2016) Tensorflow: a
system for large-scale machine learning. In: OSDI, volume 16.
pp. 265–283.

Alrutz T, Backhaus J, Brandes T, End V, Gerhold T, Geiger A,
Grünewald D, Heuveline V, Jägersküpper J, Knüpfer A et al.
(2013) Gaspi–a partitioned global address space programming
interface. In: Facing the Multicore-Challenge III. Springer, pp.
135–136.

Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B and
Mock S (2004) Kepler: an extensible system for design and
execution of scientific workflows. In: Scientific and Statistical
Database Management, 2004. Proceedings. 16th International
Conference on. IEEE, pp. 423–424.

Babuji Y, Chard K, Foster I, Katz DS, Wilde M, Woodard A and
Wozniak J (2018) Parsl: Scalable parallel scripting in python.
In: 10th International Workshop on Science Gateways (IWSG
2018).

Badia RM, Conejero J, Diaz C, Ejarque J, Lezzi D, Lordan F,
Ramon-Cortes C and Sirvent R (2015) Comp superscalar, an
interoperable programming framework. SoftwareX 3: 32–36.

Barcelona Supercomputing Center (2019) Minotauro
Supercomputer. Available at https://www.

bsc.es/innovation-and-services/

supercomputers-and-facilities/minotauro

(accessed 1 April 2019).
Dean J and Ghemawat S (2008) Mapreduce: simplified data

processing on large clusters. Communications of the ACM
51(1): 107–113.

Djemame K, Kavanagh R, Kelefouras V, Aguilà A, Ejarque J,
Badia RM, Garcı́a-Pérez D, Pezuela C, Deprez JC, Guedria
L et al. (2019) Towards an energy-aware framework for
application development and execution in heterogeneous
parallel architectures. In: Hardware Accelerators in Data
Centers. Springer, pp. 129–148.

Dolbeau R, Bihan S and Bodin F (2007) HMPP: A hybrid multi-
core parallel programming environment. In: First Workshop on
General Purpose Processing on Graphics Processing Units.

Duran A, Ayguadé E, Badia RM, Labarta J, Martinell L, Martorell
X and Planas J (2011) Ompss: a proposal for programming
heterogeneous multi-core architectures. Parallel Processing
Letters 21(02): 173–193.

El-Ghazawi T and Smith L (2006) Upc: unified parallel c.
In: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. ACM, p. 27.

Goecks J, Nekrutenko A and Taylor J (2010) Galaxy: a com-
prehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences.
Genome biology 11(8): R86.

Group TP (2010) PGI Accelerator Programming Model for Fortran
& C.

Intertwine Consortium (2018) Intertwine EU project homepage.
Available at http://www.intertwine-project.

eu/(accessed: 1 April 2019).

Figure 10. Matrix Multiplication scalability with the
Programming Model

results. With the presented programming model developers
do not need to maintain different codes as happens in
alternative approaches.

However, during the prototype evaluation, we have also
detected some sources of overhead. For instance, each time
the runtime executes a coarse-grain task, it starts an OmpSs
runtime which produces an initialization overhead, specially
when a task uses GPUs which requires a costly Host-
GPU memory allocation. This overhead will be reduced by
introducing the solution proposed in the Intertwine project
to achieve interoperability between different programming
model runtimes (Intertwine Consortium 2018). This solution
allows COMPSs to keep runtimes persistently loaded in the
computing nodes during the whole application execution
reusing the same runtime for the different coarse-grain task
executions.

In addition to these performance improvements, we will
extend the work performed in multi-objective scheduling
for coarse-grain tasks in Clouds (Juarez et al. 2016) to
support distributed heterogeneous environments. With this
work, we aim at finding t he b est t ask s cheduling taking
into account different factors such as execution time, energy
consumption or power limitations. Finally, we will also study
how the programming model can interact with the computing
infrastructure in order to have more efficient executions, by
requesting more resources in highly parallel regions as well
as releasing or partially powering off the devices which are
not currently used by the application.

Acknowledgment

This work has been supported by the European Commission
through the Horizon 2020 Research and Innovation program
under contract 687584 (TANGO project) by the Spanish
Government under contract TIN2015-65316 and grant SEV-
2015-0493 (Severo Ochoa Program) and by Generalitat de

Figure 11. Resource adaptation managed by the Programming Model runtime.

Jain A, Ong SP, Chen W, Medasani B, Qu X, Kocher M,
Brafman M, Petretto G, Rignanese GM, Hautier G et al.
(2015) Fireworks: A dynamic workflow system designed for
high-throughput applications. Concurrency and Computation:
Practice and Experience 27(17): 5037–5059.

Juarez F, Ejarque J and Badia RM (2016) Dynamic energy-
aware scheduling for parallel task-based application in cloud
computing. Future Generation Computer Systems .

Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser
N and Czajkowski G (2010) Pregel: a system for large-scale
graph processing. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. ACM, pp.
135–146.

MPI Forum (2015) Message Passing Interface Specification.
Available at https://www.mpi-forum.org/docs/

mpi-3.1/mpi31-report.pdf (accessed 1 April 2019).
NVIDIA Corp (2019) CUDA Toolkit. Available at https://

developer.nvidia.com/cuda-toolkit (accessed 1
April 2019).

Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M,
Carver T, Glover K, Pocock MR, Wipat A et al. (2004) Taverna:
a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics 20(17): 3045–3054.

OpenACC Consortium (2011) The openacc application program-
ming interfaceversion 1.0. Available at http://www.

openacc.org/specification (accessed 1 April 2019).
OpenMP Architecture Review Board (2018) OpenMP Application

Programming Interface Specification. Available at http://
www.openmp.org/specifications/ (accessed 1 April
2019).

Rocklin M (2015) Dask: Parallel computation with blocked
algorithms and task scheduling. In: Proceedings of the 14th
Python in Science Conference. Citeseer, pp. 130–136.

Stone JE, Gohara D and Shi G (2010) Opencl: A parallel
programming standard for heterogeneous computing systems.
Computing in science & engineering 12(3): 66–73.

Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave
A, Meng X, Rosen J, Venkataraman S, Franklin MJ et al.
(2016) Apache spark: a unified engine for big data processing.
Communications of the ACM 59(11): 56–65.

