1,994 research outputs found

    Shai: Enforcing Data-Specific Policies with Near-Zero Runtime Overhead

    Full text link
    Data retrieval systems such as online search engines and online social networks must comply with the privacy policies of personal and selectively shared data items, regulatory policies regarding data retention and censorship, and the provider's own policies regarding data use. Enforcing these policies is difficult and error-prone. Systematic techniques to enforce policies are either limited to type-based policies that apply uniformly to all data of the same type, or incur significant runtime overhead. This paper presents Shai, the first system that systematically enforces data-specific policies with near-zero overhead in the common case. Shai's key idea is to push as many policy checks as possible to an offline, ahead-of-time analysis phase, often relying on predicted values of runtime parameters such as the state of access control lists or connected users' attributes. Runtime interception is used sparingly, only to verify these predictions and to make any remaining policy checks. Our prototype implementation relies on efficient, modern OS primitives for sandboxing and isolation. We present the design of Shai and quantify its overheads on an experimental data indexing and search pipeline based on the popular search engine Apache Lucene

    Control What You Include! Server-Side Protection against Third Party Web Tracking

    Get PDF
    Third party tracking is the practice by which third parties recognize users accross different websites as they browse the web. Recent studies show that 90% of websites contain third party content that is tracking its users across the web. Website developers often need to include third party content in order to provide basic functionality. However, when a developer includes a third party content, she cannot know whether the third party contains tracking mechanisms. If a website developer wants to protect her users from being tracked, the only solution is to exclude any third-party content, thus trading functionality for privacy. We describe and implement a privacy-preserving web architecture that gives website developers a control over third party tracking: developers are able to include functionally useful third party content, the same time ensuring that the end users are not tracked by the third parties

    The RAppArmor Package: Enforcing Security Policies in R Using Dynamic Sandboxing on Linux

    Get PDF
    The increasing availability of cloud computing and scientific super computers brings great potential for making R accessible through public or shared resources. This allows us to efficiently run code requiring lots of cycles and memory, or embed R functionality into, e.g., systems and web services. However some important security concerns need to be addressed before this can be put in production. The prime use case in the design of R has always been a single statistician running R on the local machine through the interactive console. Therefore the execution environment of R is entirely unrestricted, which could result in malicious behavior or excessive use of hardware resources in a shared environment. Properly securing an R process turns out to be a complex problem. We describe various approaches and illustrate potential issues using some of our personal experiences in hosting public web services. Finally we introduce the RAppArmor package: a Linux based reference implementation for dynamic sandboxing in R on the level of the operating system

    Using HTML5 to Prevent Detection of Drive-by-Download Web Malware

    Get PDF
    The web is experiencing an explosive growth in the last years. New technologies are introduced at a very fast-pace with the aim of narrowing the gap between web-based applications and traditional desktop applications. The results are web applications that look and feel almost like desktop applications while retaining the advantages of being originated from the web. However, these advancements come at a price. The same technologies used to build responsive, pleasant and fully-featured web applications, can also be used to write web malware able to escape detection systems. In this article we present new obfuscation techniques, based on some of the features of the upcoming HTML5 standard, which can be used to deceive malware detection systems. The proposed techniques have been experimented on a reference set of obfuscated malware. Our results show that the malware rewritten using our obfuscation techniques go undetected while being analyzed by a large number of detection systems. The same detection systems were able to correctly identify the same malware in its original unobfuscated form. We also provide some hints about how the existing malware detection systems can be modified in order to cope with these new techniques.Comment: This is the pre-peer reviewed version of the article: \emph{Using HTML5 to Prevent Detection of Drive-by-Download Web Malware}, which has been published in final form at \url{http://dx.doi.org/10.1002/sec.1077}. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archivin

    Securing Software in the Presence of Third-Party Modules

    Get PDF
    Modular programming is a key concept in software development where the program consists of code modules that are designed and implemented independently. This approach accelerates the development process and enhances scalability of the final product. Modules, however, are often written by third parties, aggravating security concerns such as stealing confidential information, tampering with sensitive data, and executing malicious code.Trigger-Action Platforms (TAPs) are concrete examples of employing modular programming. Any user can develop TAP applications by connecting trigger and action services, and publish them on public repositories. In the presence of malicious application makers, users cannot trust applications written by third parties, which can threaten users’ and platform’s security. We present SandTrap, a novel runtime monitor for JavaScript that can be used to securely integrate third-party applications. SandTrap enforces fine-grained access control policies at the levels of module, API, value, and context. We instantiate SandTrap to IFTTT, Zapier, and Node-RED, three popular JavaScript-driven TAPs, and illustrate how it enforces various policies on a set of benchmarks while incurring a tolerable runtime overhead. We also prove soundness and transparency of the monitoring framework on an essential model of Node-RED. Furthermore, nontransitive policies have been recently introduced as a natural fit for coarse-grained information-flow control where labels are specified at the level of modules. The flow relation does not need to be transitive, resulting in nonstandard noninterference and enforcement mechanism. We develop a lattice encoding to prove that nontransitive policies can be reduced to classical transitive policies. We also devise a lightweight program transformation that leverages standard flow-sensitive information-flow analyses to enforce nontransitive policies more permissively

    SandTrap: Securing JavaScript-driven Trigger-Action Platforms

    Get PDF
    Trigger-Action Platforms (TAPs) seamlessly connect a wide variety of otherwise unconnected devices and services, ranging from IoT devices to cloud services and social networks. TAPs raise critical security and privacy concerns because a TAP is effectively a “person-in-the-middle” between trigger and action services. Third-party code, routinely deployed as “apps” on TAPs, further exacerbates these concerns. This paper focuses on JavaScript-driven TAPs. We show that the popular IFTTT and Zapier platforms and an open-source alternative Node-RED are susceptible to attacks ranging from exfiltrating data from unsuspecting users to taking over the entire platform. We report on the changes by the platforms in response to our findings and present an empirical study to assess the implications for Node-RED. Motivated by the need for a secure yet flexible way to integrate third-party JavaScript apps, we propose SandTrap, a novel JavaScript monitor that securely combines the Node.js vm module with fully structural proxy-based two-sided membranes to enforce fine-grained access control policies. To aid developers, SandTrap includes a policy generation mechanism. We instantiate SandTrap to IFTTT, Zapier, and Node-RED and illustrate on a set of benchmarks how SandTrap enforces a variety of policies while incurring a tolerable runtime overhead
    • …
    corecore