539 research outputs found

    A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer׳s disease and mild cognitive impairment

    Get PDF
    AbstractPopulation aging has been occurring as a global phenomenon with heterogeneous consequences in both developed and developing countries. Neurodegenerative diseases, such as Alzheimer׳s Disease (AD), have high prevalence in the elderly population. Early diagnosis of this type of disease allows early treatment and improves patient quality of life. This paper proposes a Bayesian network decision model for supporting diagnosis of dementia, AD and Mild Cognitive Impairment (MCI). Bayesian networks are well-suited for representing uncertainty and causality, which are both present in clinical domains. The proposed Bayesian network was modeled using a combination of expert knowledge and data-oriented modeling. The network structure was built based on current diagnostic criteria and input from physicians who are experts in this domain. The network parameters were estimated using a supervised learning algorithm from a dataset of real clinical cases. The dataset contains data from patients and normal controls from the Duke University Medical Center (Washington, USA) and the Center for Alzheimer׳s Disease and Related Disorders (at the Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil). The dataset attributes consist of predisposal factors, neuropsychological test results, patient demographic data, symptoms and signs. The decision model was evaluated using quantitative methods and a sensitivity analysis. In conclusion, the proposed Bayesian network showed better results for diagnosis of dementia, AD and MCI when compared to most of the other well-known classifiers. Moreover, it provides additional useful information to physicians, such as the contribution of certain factors to diagnosis

    A Bayesian Abduction Model For Sensemaking

    Get PDF
    This research develops a Bayesian Abduction Model for Sensemaking Support (BAMSS) for information fusion in sensemaking tasks. Two methods are investigated. The first is the classical Bayesian information fusion with belief updating (using Bayesian clustering algorithm) and abductive inference. The second method uses a Genetic Algorithm (BAMSS-GA) to search for the k-best most probable explanation (MPE) in the network. Using various data from recent Iraq and Afghanistan conflicts, experimental simulations were conducted to compare the methods using posterior probability values which can be used to give insightful information for prospective sensemaking. The inference results demonstrate the utility of BAMSS as a computational model for sensemaking. The major results obtained are: (1) The inference results from BAMSS-GA gave average posterior probabilities that were 103 better than those produced by BAMSS; (2) BAMSS-GA gave more consistent posterior probabilities as measured by variances; and (3) BAMSS was able to give an MPE while BAMSS-GA was able to identify the optimal values for kMPEs. In the experiments, out of 20 MPEs generated by BAMSS, BAMSS-GA was able to identify 7 plausible network solutions resulting in less amount of information needed for sensemaking and reducing the inference search space by 7/20 (35%). The results reveal that GA can be used successfully in Bayesian information fusion as a search technique to identify those significant posterior probabilities useful for sensemaking. BAMSS-GA was also more robust in overcoming the problem of bounded search that is a constraint to Bayesian clustering and inference state space in BAMSS

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference

    THEORETICAL AND PRACTICAL ASPECTS OF DECISION SUPPORT SYSTEMS BASED ON THE PRINCIPLES OF QUERY-BASED DIAGNOSTICS

    Get PDF
    Diagnosis has been traditionally one of the most successful applications of Bayesian networks. The main bottleneck in applying Bayesian networks to diagnostic problems seems to be model building, which is typically a complex and time consuming task. Query-based diagnostics offers passive, incremental construction of diagnostic models that rest on the interaction between a diagnostician and a computer-based diagnostic system. Every case, passively observed by the system, adds information and, in the long run, leads to construction of a usable model. This approach minimizes knowledge engineering in model building. This dissertation focuses on theoretical and practical aspects of building systems based on the idea of query-based diagnostics. Its main contributions are an investigation of the optimal approach to learning parameters of Bayesian networks from continuous data streams, dealing with structural complexity in building Bayesian networks through removal of the weakest arcs, and a practical evaluation of the idea of query-based diagnostics. One of the main problems of query-based diagnostic systems is dealing with complexity. As data comes in, the models constructed may become too large and too densely connected. I address this problem in two ways. First, I present an empirical comparison of Bayesian network parameter learning algorithms. This study provides the optimal solutions for the system when dealing with continuous data streams. Second, I conduct a series of experiments testing control of the growth of a model by means of removing its weakest arcs. The results show that removing up to 20 percent of the weakest arcs in a network has minimal effect on its classification accuracy, and reduces the amount of memory taken by the clique tree and by this the amount of computation needed to perform inference. An empirical evaluation of query-based diagnostic systems shows that the diagnostic accuracy reaches reasonable levels after merely tens of cases and continues to increase with the number of cases, comparing favorably to state of the art approaches based on learning

    Building Bayesian Networks: Elicitation, Evaluation, and Learning

    Get PDF
    As a compact graphical framework for representation of multivariate probabilitydistributions, Bayesian networks are widely used for efficient reasoning underuncertainty in a variety of applications, from medical diagnosis to computertroubleshooting and airplane fault isolation. However, construction of Bayesiannetworks is often considered the main difficulty when applying this frameworkto real-world problems. In real world domains, Bayesian networks are often built by knowledge engineering approach. Unfortunately, eliciting knowledge from domain experts isa very time-consuming process, and could result in poor-quality graphicalmodels when not performed carefully. Over the last decade, the research focusis shifting more towards learning Bayesian networks from data, especially withincreasing volumes of data available in various applications, such asbiomedical, internet, and e-business, among others.Aiming at solving the bottle-neck problem of building Bayesian network models, thisresearch work focuses on elicitation, evaluation and learning Bayesiannetworks. Specifically, the contribution of this dissertation involves the research in the following five areas:a) graphical user interface tools forefficient elicitation and navigation of probability distributions, b) systematic and objective evaluation of elicitation schemes for probabilistic models, c)valid evaluation of performance robustness, i.e., sensitivity, of Bayesian networks,d) the sensitivity inequivalent characteristic of Markov equivalent networks, and the appropriateness of using sensitivity for model selection in learning Bayesian networks,e) selective refinement for learning probability parameters of Bayesian networks from limited data with availability of expert knowledge. In addition, an efficient algorithm for fast sensitivity analysis is developed based on relevance reasoning technique. The implemented algorithm runs very fast and makes d) and e) more affordable for real domain practice
    corecore