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As a compact graphical framework for representation of multivariate probability distribu-

tions, Bayesian networks are widely used for efficient reasoning under uncertainty in a variety

of applications, from medical diagnosis to computer troubleshooting and airplane fault iso-

lation. However, construction of Bayesian networks is often considered the main difficulty

when applying this framework to real-world problems. In real world domains, Bayesian

networks are often built using a knowledge engineering approach. Unfortunately, eliciting

knowledge from domain experts is a very time-consuming process, and could result in poor-

quality graphical models when not performed carefully. Over the last decade, the research

focus is shifting more towards learning Bayesian networks from data, especially with in-

creasing volumes of data available in various applications, such as biomedical, internet, and

e-business, among others.

Aiming at solving the bottle-neck problem of building Bayesian network models, this

research work focuses on elicitation, evaluation and learning Bayesian networks. Specifically,

the contribution of this dissertation involves the research in the following five areas: a) graph-

ical user interface tools for efficient elicitation and navigation of probability distributions, b)

systematic and objective evaluation of elicitation schemes for probabilistic models, c)valid

evaluation of performance robustness, i.e., sensitivity, of Bayesian networks, d) the sensi-

tivity inequivalent characteristic of Markov equivalent networks, and the appropriateness of

using sensitivity for model selection in learning Bayesian networks, e) selective refinement for

learning probability parameters of Bayesian networks from limited data with availability of
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expert knowledge. In addition, an efficient algorithm for fast sensitivity analysis is developed

based on a relevance reasoning technique. The implemented algorithm runs very fast and

makes d) and e) more affordable for real domain practice.
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1.0 INTRODUCTION

Bayesian networks provide a graphical framework for compact representation of multivariate

probability distributions and efficient reasoning under uncertainty. Graphical probabilistic

models are widely used in various applications, including medical diagnosis, computer trou-

bleshooting, traffic control, airplane failure isolation, speech recognition, and error-correcting

codes, to name a few. However, construction of Bayesian networks is often considered the

main difficulty when applying this framework to real-world problems. Aiming at solving

the bottle-neck problem of building Bayesian models, this research work focuses on three

modelling areas: elicitation, evaluation and learning. The following sections discuss the

challenges in these areas and briefly introduce the solutions explored by the thesis work.

1.1 BAYESIAN NETWORKS

Bayesian networks (also called belief networks) provide an increasingly popular graphical

framework for Bayesian reasoning, a probabilistic approach to inference that basically com-

bines prior knowledge with observed data using the Bayes’ rule:

P (H|D) =
P (D|H)P (H)

P (D)
, (1.1)

where P (H) is the prior probability of hypothesis H, P (D) is the prior probability of ob-

serving data D, P (D|H) (called likelihood) is the probability of observing D if hypothesis H

holds, and P (H|D) is the posterior probability of H after observing data D.

Formally, a Bayesian network B is a pair (G, Θ), where G is a directed acyclic graph

in which nodes represent random variables of interest (e.g., the temperature of a device,

1



the gender of a patient, a feature of an object, occurrence of an event) and edges denote

probabilistic dependencies. Since the directed edges are often interpreted as direct causal

influences between the variables, Bayesian networks are also called causal networks. In

addition to G, the parameters Θ define the probability distributions that specify the strength

of the conditional dependencies between the variables in B.

Let X = {X1, X2, . . . , Xn}1 be a set of random variables modeled in B, and let Θ =

{θ
Xi|Pai

} be the set of parameters that represent conditional probability distributions for

each node Xi given its parents Pai (direct predecessors of Xi in the graph) in G, i.e.,

θ
Xi|Pai

= p(Xi|Pai). The distributions p(Xi|Pai), associated with each node Xi, are

called local probability distributions [29]. As a compact representation framework, Bayesian

network factors a joint probability distribution over X into a product of local distributions:

p(X1, . . . , Xn) =
n∏

i=1

p(Xi|Pai) .

Typically, Bayesian networks are defined for unrestricted multinomial variables, i.e., dis-

crete variables with finite number of states. Thus, local probability distributions are repre-

sented by (m+1)-dimensional conditional probability tables (CPTs), where m is the number

of parents, and each entry p(Xi|Pai) corresponds to a particular value assignment to Xi and

its parents Pai. It is easy to see that Xi’s probability matrix for each node is exponential

in the number of its parents.

Figure 1.1 shows an example of Bayesian network. It is a small fragment of HEPAR

II [53] network built for medical diagnosis for liver diseases. The causal relationship between

liver disorder to possible causes (e.g., gallstone, alcoholism) and to symptoms (e.g., fatigue,

jaundice) can be read directly from the links in the graph. In this network, node Disorder

has three binary parents: Alcoholism, Hepatotoxic medications, and Gallstones, each of which

is a causal factor contributing to each of six possible liver disorders. There are totally 48

probability parameters to define node Disorder conditioned on its parent configurations.

For a root node (i.e., a node having no parents), the prior probability distribution is defined

over the node’s outcomes. HEPAR II includes 72 variables and requires over 2000 numerical

parameters for its full quantification.

1In the dissertation, variables will be denoted by capital letters, e.g., X; value of variables will be denoted
by lower case letters, e.g., x; set of variables will be denoted in bold font, e.g., Pai.
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Figure 1.1: An example of a Bayesian network.

1.2 CHALLENGES IN BUILDING BAYESIAN NETWORKS:

ELICITATION, EVALUATION AND LEARNING

Building a Bayesian network involves constructing graph structure G and populating each

node Xi in the graph with corresponding conditional probability distributions. Whereas

eliciting the graph structure is challenging, the most daunting task is the quantification that

often requires specification of thousands of conditional probabilities. One way to acquire the

probability distributions is to elicit the probability parameters by interviewing domain ex-

perts. Unfortunately, human judgement on probability is prone to systematic errors (biases)

that can be invoked by a variety of factors [39]. Elicitation of probabilities, if not performed

carefully, can result in poor quality estimates. Behavioral decision theorists have proposed

several elicitation approaches that minimize the risk of bias. However, these methods tend

to be cumbersome and often infeasible for models that include more than a few variables

because of the large number of elicitations required[39]. Decision analytic practice is usu-

ally based on methods that require less effort and still protect subjective assessments from

common biases. Among them, graphical elicitation is the most intuitive and the easiest to

use. However, the current graphical tools for elicitation leaves a lot of room for improvement

given what we know about the principles of human computer interaction.

With various methods available for probability elicitation, a closely related question is,

3



then, how effective the elicitation methods are. Evaluation of the elicitation methods can

provide guidance to select the appropriate schemes for probability elicitation when building

Bayesian networks using knowledge engineering approach. Some studies compared a handful

of elicitation methods [37, 47, 59, 73]. But the comparisons performed were more like case

studies rather than systematic evaluations. The existing techniques for probability elicitation

focus on balancing quality of elicitation with the time required to elicit the enormous number

of parameters associated with many practical models where exactly this balance should fall

is not obvious. Finding the right balance requires a systematic evaluation and comparison

of different elicitation schemes with respect to the quality and efficiency criteria.

Since the probabilities elicited from domain experts are often systematically biased, it is

interesting to investigate the reliability or robustness of Bayesian networks to see the effect

of imprecision in probabilities on the network performance. In other words, model validation

is necessary for a Bayesian network to achieve satisfying performance. For this purpose, a

sensitivity analysis technique is often used to investigate the effect of probability parameter

changes on the performance of Bayesian networks. The traditional approach takes a few

steps to get statistically sound results [56, 40, 52]. First certain level of log-normal noise is

added to probability parameters under investigation using Monte Carlo sampling. Second

many Bayesian networks are generated with the same graphical structure as the original

network but different probability parameters. Third the newly generated networks are used

for reasoning in the test scenarios. And then the sensitivity of the network is analyzed by

looking at the changes of the posterior probabilities of the variables of interest. However, the

valid noise level may be rather limited since it models the uncertainty of expert knowledge

and the biased estimate of probabilities should not be too far away from the real probability

values. Furthermore, the used measure, average changes of the posterior probabilities, may

not be an indicative measure for sensitivity of Bayesian networks. Using indicative measures

for sensitivity, Bayesian networks may actually show various sensitivities to the imprecision

of the probability parameters [40, 52].

Following the findings that Bayesian networks can have different sensitivities to variations

in probability parameters, it is desirable to obtain low sensitive, i.e., highly robust, Bayesian

network models among other candidates that well represent the domain knowledge. This

4



is a typical model selection problem in learning Bayesian networks. In Bayesian network

learning, model selection is to find a graph structure which best describes the probabilistic

dependencies represented by the data. Traditional approaches to model selection are either

scored-based or constraint-based. Score-based approach uses scoring metrics to guide a

heuristic search in the space of possible graph structures. The existing scoring functions

such as BIC [63], BDe [30] and MDL [44], trade the likelihood against the complexity of the

constructed models. An alternative approach to model selection is constraint-based approach

that utilizes the property of Markov equivalence. In this approach, models are selected

based on the Markov property, i.e., the dependence relationships between nodes, which can

be detected by statistical tests. The output is a partially directed acyclic graph (PDAG)

that represents the Markov equivalence class [71, 55]. Interestingly, it was proved that the

Markov equivalent graphs [10] are score equivalent in terms of BIC, BDe, and MDL etc. It is

interesting to see whether or not the Markov equivalent graphs are sensitivity equivalent, if

not, what relationships are there between the sensitivities of the Markov equivalent graphs,

can sensitivity be a model selection criterion?

On the other hand, a Bayesian network often shows different sensitivity to different sets

of its probability parameters. That means, some probability parameters may have a larger

effect on the network’s performance than others. In other words, some probability parameters

are more influential on the network performance. The erroneous estimate of these important

parameters may greatly deteriorate the network quality. This happens in both knowledge

engineering approach and the machine learning approach to building Bayesian networks.

Because there are huge number of conditional probability values in a Bayesian network

needs to be quantified, the data base is often relatively scarce for an accurate estimate of the

numeric parameters in learning Bayesian networks, and results in erroneous values, especially

for rare-event probabilities. To get around the problem, domain knowledge is utilized in

Bayesian learning approach. The Bayesian learning method views the prior knowledge of

a domain expert as equivalent to a pseudo (or imaginary) data set drawn from Dirichlet

distributions [27]. The Dirichlet exponent parameters (also called hyperparameters) are used

to represent the equivalent sample size of the expert’s prior knowledge [14]. Unfortunately,

the number of the hyperparameters is as large as the number of the probability parameters in

5



a Bayesian network. Most learning algorithms simply use noninformative hyperparameters,

and are subsequently ignorant of the variety of valuable domain knowledge.

1.3 STATEMENT OF THESIS

Given the identified challenges in building Bayesian networks in the previous section, this

thesis explores possible solutions to the following research questions:

• What kind of tools can we develop for efficient probability elicitation?

• How can we evaluate elicitation methods for probabilistic models systematically and

objectively?

• In evaluating sensitivity of Bayesian networks, what is the valid range of the noise to

simulate the small variation in probability estimates? What is an indicative measure for

sensitivity of Bayesian networks?

• Are Markov equivalent graphs necessarily equivalent in sensitivity? Is sensitivity a suit-

able criterion for model selection in learning Bayesian networks?

• How can we refine probability parameters with less effort but achieve reliable network

performance?

To answer the first question, I have investigated the existing graphical tools for elicitation

of probabilities with an emphasis on user interface design. A set of user interface tools were

developed for efficient elicitation. These tools focus on two aspects of probability elicitation:

(1) interactive graphical assessment of discrete probability distributions, and (2) navigation

through conditional probability tables. Based on what is known about graphical presentation

of quantitative data to humans, I offer several useful enhancements to probability wheel and

bar graph, including different chart styles and options that can be adapted to user preferences

and needs. Realizing that the navigation in very large conditional probability tables (CPTs)

may decrease the efficiency in probability elicitation if the navigation tool is not effective,

I developed two new graphical views that aid CPT navigation: the CPTree (Conditional
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Probability Tree) and the sCPT (shrinkable Conditional Probability Table). I will present

the results of a simple usability study that proves the value of these tools [77].

With regard to the second research problem, I invented an objective approach for eval-

uating probability and structure elicitation methods in probabilistic models. The main idea

is to use the model derived from an expert’s experience rather than the true model as the

standard to evaluate the elicited model. The method draws on ideas from research on learn-

ing Bayesian networks: if we assume that the expert’s knowledge is manifested essentially

as a database of records that have been collected in the course of the expert’s experience,

and if this database of records were available to us, then the structure and parameters of

the expert’s beliefs could be reliably constructed using techniques for Bayesian learning from

data. This learned model could, in turn, be compared to elicited models to judge the effec-

tiveness of the elicitation process. I will describe a general procedure by which it is possible

to capture the data corresponding to the expert’s beliefs and present a simple experiment in

which this technique is utilized to compare three methods for eliciting discrete probabilities:

(1) direct numerical assessment, (2) the probability wheel, and (3) the scaled probability

bar. I will show that for our domain, the scaled probability bar is the most effective tool for

probability elicitation [76].

Empirical study of sensitivity analysis on a Bayesian network examines the effects of

varying the network’s probability parameters on the posterior probabilities of the true hy-

pothesis. One appealing approach to modeling the uncertainty of the probability parameters

is to add normal noise to the log-odds of the nominal probabilities. However, I will argue

that differences in sensitivities found on true hypothesis may only be valid in the range of

standard deviations where the log-odds normal distribution is unimodal. I will also show

that using average posterior probabilities as criterion to measure the sensitivity may not be

the most indicative, especially when the distribution is very asymmetric as is the case at

nominal values close to zero or one. It is proposed, instead, to use the partial ordering of the

most probable causes of diagnosis, measured by a suitable lower confidence bound. I will also

present the preliminary results of our sensitivity analysis experiments with three Bayesian

networks built for diagnosis of airplane systems. The results show that some networks are

more sensitive to imprecision in probabilities than previously believed [40].
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To get insight into the appropriateness of using sensitivity as model selection criterion for

learning Bayesian networks, I investigated the relationship between sensitivities of Markov

equivalent networks that represent the same joint probability distribution but differ in the

network structure. I proved that Markov equivalence does not necessarily implies sensitivity

equivalence, and the relationship between the sensitivities of Markov equivalent networks

can be mathematically expressed by a simple linear function. The coefficient of the function

reduces to the local probability distribution for the equivalent networks that transforms one

to another by a series of edge reversals. Based on the finding, I argue that sensitivity is

actually not an appropriate criterion for model selection.

Since the performance of a Bayesian network may be sensitive to different probability

parameters, the degree of sensitivity to a parameter x indicates the importance of x for the

quality of the network. This provides a possibility of achieving reliable performance without

getting accurate estimates for every probability parameter in a Bayesian network. Obtaining

accurate assessments for those parameters that are important may be sufficient. I present a

method for a selective update of the probabilities based on the results of sensitivity analysis

when learning a Bayesian network from data. The process begins with a rough estimate

of probability distributions with uniform hyperparameters in Bayesian learning. Then it

performs the sensitivity analysis on the Bayesian network populated with the rough estimates

of probabilities. This way, we can identify the most important, i.e., the most influential,

probability parameters with respect to the query nodes. And these important probabilities

can be updated to more accurate values with informative hyperparameters extracted from

expert knowledge or more data. The process is repeated until refining the probabilities any

further does not improve the performance of the network [78].

1.4 OVERVIEW

This chapter briefly introduces the challenges and some solutions in building Bayesian net-

works with respect to elicitation, evaluation and learning. The rest of the thesis elaborates

the research work and gives the detailed discussions.
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Chapter 2 introduces the user interface tools that I developed for navigation in conditional

probability tables and elicitation of probabilities in Bayesian networks.

Chapter 3 describes the method for objective evaluation of elicitation schemes for prob-

abilistic models.

Chapter 4 investigates the valid noise level to model uncertainty of probability parameters

and the indicative measure of sensitivity of Bayesian networks.

Chapter 5 proves the hypothesis that Markov equivalent graphs are sensitivity inequiva-

lent, and argues that sensitivity may not be a suitable measure for model selection in learning

Bayesian networks.

Chapter 6 describes the learning algorithms that use sensitivity analysis in Bayesian

network learning for selective parameter update.

Chapter 7 summarizes the completed research work, and discusses the future research

plan.

In Appendix , I present an efficient algorithm for sensitivity analysis that was based on

junction tree inference algorithm and the relevance-based reasoning.
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2.0 USER INTERFACE TOOLS FOR NAVIGATION IN CONDITIONAL

PROBABILITY TABLES AND ELICITATION OF PROBABILITIES IN

BAYESIAN NETWORKS

2.1 INTRODUCTION

Elicitation of numerical parameters is one of the most laborious tasks in building probabilistic

models. The foremost problem is the large number of parameters required to fully quantify

a model. For example, in HEPAR network [53], there are 72 variables. Full quantification

of the HEPAR network required over 2000 numerical parameters. In most real problem

domains, elicitation of numerical parameters is a dominant task in probabilistic modeling

(e.g., [31], [33], [23]).

On the other hand, human judgement is prone to systematic errors (biases) that can be

invoked by a variety of factors [39]. Elicitation of probabilities, if not performed carefully,

can result in poor quality estimates. Behavioral decision theorists have proposed several

elicitation approaches that minimize the risk of bias. However, these methods tend to be

cumbersome and often infeasible for models that include more than a few variables because

of the large number of elicitations required. Decision analytic practice is usually based on

methods that require less effort and still protect subjective assessments from common biases.

A major obstacle to effective probability elicitation in Bayesian networks is navigation in

large conditional probability tables (CPTs). In a CPT, a conditional probability distribution

over a variable is required for each combination of values of its parents. The total size of the

conditional probability matrix is exponential in the number of parents. For example, the CPT

of a binary variable with n binary parents requires 2n+1 parameters. For a sufficiently large

n, the 2n+1 numbers will not fit on the screen and the user will have to spend a considerable
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effort in navigating through them. The problem of navigation in conditional probability

tables has not really surfaced in the field of decision analysis, as the size of typical decision-

analytic models has been limited to a handful of variables. Bayesian networks, however,

quickly reach the size of tens or hundreds of variables. It is not uncommon to see a variable

with as many as ten parents, which, even if each parent is binary, results in CPTs consisting

of thousands of elements. Existing software packages implementing Bayesian networks and

influence diagrams have coped with the problem in various ways, few of which seems to

follow established principles of good human-computer interface design. Users have to scroll

back and forth to locate a particular item in a table or a list or have to manually give the

combination of parent states in a combo box. Separate tables, applied in some solutions,

require significant mental effort when users shift from one view to another.

While the problem of graphical elicitation of probabilities is easier to cope with, my

investigation into the existing implementations has also shown a lot of room for improvement.

The only graphical tool for probability elicitation implemented seems to be the probability

wheel, which visualizes discrete probability distributions in a manipulable pie-chart graph.

However, probability wheel has some problems and may sometimes be not the best tool

for graphical elicitation of probabilities. A pie chart is known to make the judgement of

part-to-part proportion difficult and is often inferior to a bar graph. Also, the labeling style

applied and the overall design of interaction with the user is far from ideal in a typical

implementation.

In this chapter, I describe a set of tools that were developed to help improve navigation

through large CPTs and improve interactive assessment of discrete conditional probability

distributions. I developed two new navigation tools: the CPTree (conditional probability

tree) and the sCPT (shrinkable conditional probability table). The CPTree is a tree view

of a CPT with a shrinkable structure for any of the conditioning parents. The sCPT is

a table view of a CPT that allows to shrink any dimension of the table. Both CPTree

and sCPT allow a user to efficiently navigate through CPTs and, in particular, to quickly

locate any combination of states of conditioning parents. I enhanced the probability wheel

by providing alternative chart styles, bar graphs and pie charts, to support different kinds

of proportion judgement. The pie chart and bar graph support locking functions for those
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probabilities that have been elicited. Two labeling styles are provided: text and percentage.

I use center-surround labels for the pie charts. While both tools are viable alternatives

for probability elicitation, pie chart supports more accurate assessment of part-to-whole

proportion whereas bar graph performs better for part-to-part proportion judgements. Both

tools support context-specific independence and allow for elicitation of several distributions

at a time, if these are identical.

The remainder of this chapter is organized as follows. Section 2.2 describes existing

approaches to navigation in CPTs and existing implementations of graphical probability

elicitation tools. Section 2.3 describes the CPTree and sCPT and discusses the enhance-

ments to the graphical elicitation tools. I report some findings from an empirical study based

on the developed tools in Section 2.4.

2.2 EXISTING GRAPHICAL TOOLS

Most of the existing probabilistic modeling systems provide graphical interface for navigation

in conditional probability tables. Some of them supply a probability wheel as a graphical tool

for subjective probability elicitation. In this section, I analyze critically existing graphical

elicitation and navigation tools. An annotated list of these systems (including GeNIe, Data,

Dpl, Ergo, Hugin, Msbn, and Netica) along with links to their web sites, where demonstration

versions can be examined, is available on a web page for the INFORMS’ Society for Decision

Analysis at http://www.sis.pitt.edu/∼dsl/links.htm.

2.2.1 Navigation in Conditional Probability Tables

There are several existing ways of dealing with the problem of navigation in conditional

probability tables.

In a flat table, the solution adopted in GeNIe 1.0 and Hugin (Figure 2.1), the header cells

indicate parent states and the numerical cells display the conditional probability distribu-

tions. The parent states are organized in a hierarchical structure that labels the conditional
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probability distributions. A table is a natural view for multi-dimensional data and, when it

fits on the screen, it is fairly easy to explore. However, when a table is larger than the avail-

able screen area (this happens very often given the exponential growth of CPTs), users have

to scroll back and forth to locate a particular conditional probability distribution. Watts

([79]) observed that users of very large spreadsheets were often lost and ended up creating

chapter maps to guide them in navigation.

Figure 2.1: Hugin’s Probability Definition Table for Node Disorder in the HEPAR Network.

Another approach is using a list, a solution applied in Netica (Figure 2.2). Netica’s

navigation screen consists of a list of all possible combinations of parent states. The list of

conditional probability distributions associated with each parent combination is shown next

to the list of parent outcomes. Both lists are viewed by scrolling. If there are more items

than those which can be shown in a list view, a scroll bar is provided for users to look for the

hidden items. In Figure 2.2, two parents of node Disorder are shown in the parent list. The

third one is hidden. The list in Netica can be viewed as a transposed matrix of the table in

GeNIe and Hugin. But the hierarchical structure is not clear in the list. Users are required

to manually traverse the hierarchy to determine its structure. Generally, lists are capable

of providing detailed content information but are poor at presenting structural information.

A great deal of effort is needed on the part of the user to achieve a mental model of the

structure in large hierarchies.

Yet another solution is based on combo boxes, applied in Msbn (Figure 2.3). There is

one combo box for each parent and it is used to select an outcome for that parent. Only one
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Figure 2.2: Netica’s Probability Definition Table for Node Disorder in the HEPAR Network.

column of the CPT is visible at a time. In order to select a column, the expert has to assign

values to all of the parents manually. When there are many parents, there is a danger that

the user will forget to assign some of these combinations and, effectively, leave some of the

probabilities unspecified.

Separate tables for parent combinations and conditional probabilities are yet another

solution. Ergo uses two separate tables, one for a parent list and the other for a probability

editor (Figure 2.4). When editing conditional probabilities for a node, the last parent is

displayed in the probability editor table, and all other parents are displayed in the parent

list. Separate tables show the conditional probability distribution for one combination of

values of parents at a time, occupying relatively small screen space. However, it is important

to recognize that shifts from one table to another can be cognitively costly [80].

A probability tree is a natural and familiar metaphor for the organization of conditional

probability information. Dpl provides a probability tree showing all of the possible combi-

nations of parent outcomes (Figure 2.5). In Dpl, the tree is always completely expanded and

the entire tree appears in the available display space. The program shrinks the tree as needed

to fit it on the screen. There is no zooming function for a clear view. The tree view provides

a visual hierarchy of the context for specification of conditional probabilities. However, a
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Figure 2.3: Msbn’s Probability Definition Table for Node Disorder in the HEPAR Network.

completely expanded tree in a restricted display space becomes quickly unreadable. It is

almost impossible to navigate in the tree view without remembering the order of parents

and their outcomes.

2.2.2 Elicitation of Probabilities

Probability wheel [70, 50] is probably the oldest and the most popular graphical tool for

probability elicitation. It consists of a wheel with two adjustable sectors (traditionally colored

red and blue) and a fixed pointer in the center. When spun, the wheel will finally stop with

the pointer either in red or blue sector. The probability that the wheel will stop in the red

sector is proportional to the sector size. The relative size of the two sectors can be adjusted

until the expert judges that the event under consideration is equally likely as the event of

the wheel stopping in the red region. In computer systems (e.g., Data, Dpl and Msbn),

it is usually implemented as a pie chart. The pie chart is partitioned into several sectors

representing each of the outcomes of the variable. The area of each sector is proportional to

the probability of the corresponding outcome. The user can shrink or expand the proportion

of each area by dragging its edge to the desired position.

While the probability wheel is a useful tool, it has several disadvantages. Probability

15



Figure 2.4: Ergo’s Probability Definition Table for Node Disorder in the HEPAR Network.

elicitation involves complex perceptual processes that include judgements of proportions,

comparisons, and changes. Graphical tools help experts to estimate proportions, and to

dynamically change the sizes of component parts in the graph until the sizes reflect personal

beliefs of the experts. When eliciting subjective probabilities, some experts find it difficult

to judge a part-to-whole proportion. They often use a larger value as reference point and

compare smaller values with it for a part-to-part judgement. Although empirical studies

have demonstrated that pie charts lead to a higher accuracy in part-to-whole judgement of

proportion, they have shown inferiority of pie charts to bar graphs in part-to-part comparison

and change perception [11, 67, 35, 36]. A pie chart has the additional disadvantage of being

too fragmentary when partitioned into many sectors. Preece et al. ([58]) recommended that

a pie chart should be used only when there are fewer than five sectors.

Lack of user control is another problem with the existing implementations of probability

wheel. Since total probability is always equal to one, a specific change in probability of

one outcome results in proportional changes in the probability of the remaining outcomes.

The proportion of the remaining outcomes usually stays the same. However, this automatic

adjustment of probabilities is frustrating when an expert just wants to modify some of
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Figure 2.5: Dpl’s Probability Definition Table for Node Disorder in the HEPAR Network.

the numbers and keep other numbers unchanged. This happens, for example, when the

expert accepts some probabilities encoded and only wants to graphically modify remaining

probabilities. It seems necessary to let the expert be in control of when and to which

probabilities the automatic changes apply.

Besides, the legend annotation of a pie chart requires a mapping procedure to recognize

which sector represents which outcome of the variable. When a variable has many outcomes,

it becomes difficult for the user to search in a long list for those mappings between outcomes

and sectors. The coordination of human focal attention and orienting perceptual functions

such as peripheral vision supports the process of knowing where to look, and when [60].

Woods [[80]] suggested the use of a center-surround technique, which is an annotation style

that labels wedges around sectors of the pie. A direct label is provided for each sector, thus

reducing the mental workload of the users.
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2.3 GRAPHICAL TOOLS DEVELOPED

2.3.1 Navigation in CPTs

As I discussed in the previous section, the plain form of a CPT is hard to navigate due

to the exponential growth of its size. In order to address this problem, I adopted the

tree metaphor for hierarchical visual representations and developed two browsing tools: the

CPTree (conditional probability tree) and the sCPT (shrinkable conditional probability

table).

2.3.1.1 Conditional Probability Tree The CPTree (Figure 2.6) is a tree view of a

node’s CPT. In a CPTree, every parent variable is represented by two levels of nodes, the

name level and the outcome level. The name level is comprised of a single node indicating

the variable’s name. The outcome level includes nodes for all possible outcomes of the

corresponding variable. The name node always appears as the parent of the outcome nodes

for the same variable. Each name node is a child of an outcome node of the previous parent

variable. The root of the CPTree is the name node of the first parent variable. The path

from root to a leaf specifies a combination assignment to values of parents. On the right-

hand side of the tree is a table in which each row is associated with a branch in the tree.

The table defines the probabilities conditional on the context specified by the branches.

Figure 2.6: CPTree of Node Disorder in a Simplified Version of the HEPAR Network.

With shrinking and expanding function, an expert can quickly go to the branches of
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interest while collapsing others in order to optimize screen use. A click on the corresponding

toolbar icon will bring up a probability wheel for the probability distribution conditioned

on the selected combinations of the parent assignments for the current node represented

by the CPTree. A combination of parent assignments is specified by a path from the

root to a leaf in the CPTree. If a leaf node is selected, the conditioning context is given

by all of the parent assignments along the path. If an internal node in the CPTree is

selected, the context is given by a partial combination of parent assignments. Only those

parents that are between the root of the tree and the selected node will count. For example,

in Figure 2.6, when the tree node absent under Alcoholism is selected, the selected branch

specifies the context of Gallstones = present ∧ Alcoholism = absent. The state of Hepatotoxic

is irrelevant. In other words, the probability distribution over Disorder is independent of the

state of Hepatotoxic. The selected branch defines a context-specific independence (also called

asymmetric independence) relationship [65, 2, 28] between the current variable, Disorder, and

its parent, Hepatotoxic medications.

The design of the navigation interface allows the user to dynamically change the order

of the parents in the navigation windows. Many times the users of GeNIe 1.0 found the

order of node parents counterintuitive because it did not follow the temporal or causal

order. Changing the order of parents as the user desires allows the user to compose the most

natural order of conditioning events. Secondly, it facilitates easy encoding of context-specific

independence.

Multiple selection of branches is also supported. By selecting multiple branches and

then triggering graphical elicitation through the probability wheel, experts can give their

assessment for those conditional probabilities that are numerically identical but different in

conditions. In Figure 2.6, the conditional probabilities under the context of Gallstones =

present ∧ Alcoholism = absent ∧Hepatotoxic = present, and the conditional probabilities

under the context of Gallstones = present∧Alcoholism = present∧Hepatotoxic = absent

can be estimated at the same time by selecting both of the corresponding branches. Using

this multiple assignment, experts can save a lot of duplicate input, which often happens in

flat CPTs of current graphical probabilistic modeling development environments.
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2.3.1.2 Shrinkable Conditional Probability Table The sCPT (Figure 2.7) includes

virtually all of the functions implemented in the CPTree. Double-clicking on a header item

triggers the shrinking or expanding of the columns that it covers. We can view the sCPT

as a tree-structured conditional probability table. All the columns in the covered range of a

header item constitute its children items. A branch can be traced from the first header row

through its covered range. With the aid of probability tools, experts can assign the same

probability values to multiple groups under distinct branches.

Figure 2.7: A Shrinkable CPT of Node Disorder with the Gallstones=absent Branch Shrunk.

Compared to the CPTree, the sCPT has a higher data density, which is a desired

property of graphical displays of quantitative data, defined as the ratio of the amount of

data displayed to the area of the graphic [72]. In the CPTree, a considerable amount of

screen area is consumed at the expense of displaying the dependence context for conditional

probabilities. This results in the difficulty of the CPTree to represent a node with a large

number of parents. However, for some users, the CPTree may visualize the structure of

conditional dependence more intuitively.

2.3.2 Probability Assessment Tools

I have designed a graphical tool for elicitation of discrete probability distributions that

implements two chart styles: pie charts and bar graphs. When the user selects the assessment

tool within the navigation window, the tool is presented in a separate pane of the splitter

window of the navigation tool.
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The pie chart (Figure 2.8) combines easy user interaction with intuitive illustration. To

change a probability of an outcome of a variable, the user drags the handle of the correspond-

ing sector in the pie to its new position. During the dragging process, the pie is redrawn,

showing the new partition resulting from the probability changes. When one probability is

being changed, the remaining probabilities are automatically adjusted proportionally. If the

user wants to keep the probabilities of some events intact, she or he can simply click the right

mouse button on the sectors corresponding to these events to lock them before beginning

the dragging process. A right click on a locked sector unlocks it. A locked sector of the

pie is shaded out and drawn slightly outside the pie, visually communicating the idea that

this part of pie is cut off and cannot be changed. In Figure 2.8, two outcomes of Disorder:

Toxic hepat and Active chron are locked and shaded out of the whole pie.

Figure 2.8: Pie-chart-styled Probability Wheel

Pie-chart-styled Probability Wheel for Node Disorder in the HEPAR Network with two

Locked Sectors: Toxic hepat and Active chron.

The bar graph (Figure 2.9) provides a similar functionality. The user can adjust the

length of a bar by dragging the handle at its end horizontally to a new position. The

unlocked bars are changed proportionally, while the locked bars remain unchanged during

the adjusting process. All locked bars are shaded in their vertical color gradients. Figure 2.9

shows a probability elicitation tool styled as a bar graph with probability scale appearing
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on the bottom of the graph. Toxic hepat and Active chron are locked and shown in their

vertical color gradients.

Figure 2.9: Bar-graph-styled Probability Tool

Bar-graph-styled Probability Tool for Node Disorder in the HEPAR Network with two

Locked Sectors: Toxic hepat and Active chron. Note Optional Percentage Labeling.

In addition, two labeling options are provided for both chart styles. One is simple text

of the outcome name as shown in Figure 2.8. The other is the name plus its probability

as shown in Figure 2.9. Text labeling eliminates the interference of numbers and leads to

a qualitative estimation from experts. Percentage labeling allows experts to see the exact

numerical parameters corresponding to the manipulated graph components.

In addition, I use center-surround labels for the pie chart. Labels are positioned outside

the pie near their corresponding sectors. This supports the user’s perceptual process of

knowing where to look and when, and reduces the mental workload of mapping labels from

legend annotation to the corresponding sectors in the pie. When there are overlaps for two

adjacent labels, only the last one is displayed, the next label is hidden.

Both charts are viable alternatives for probability elicitation tools, although they serve

different purposes. Pie charts are more natural to show the relative distribution of data

among sectors that make up a whole. Generally they support more accurate assessment of

part-to-whole proportion. But the bar graphs are supplemented with a scale ranging from

zero to one, which also facilitates assessment of part-to-whole proportion. On the other

22



hand, people sometimes do not have a clear idea about what proportion a part takes up in

a whole. But they often can give a proportion of one part to another by comparing them.

According to the ranking of human perception identified by Cleveland and McGill ([11]),

people usually produce faster and more accurate judgements when comparing position and

length than when comparing angle or area. In addition, bar graph has an advantage over

pie chart in the perception of change. People can easily capture small changes in a bar

graph. Thus, a bar graph can be expected to allow for a better performance in probability

estimation based on part-to-part proportion.

2.4 IMPLEMENTATION AND EMPIRICAL VERIFICATION

I have implemented the tools described in this chapter in GeNIe 2.0, an environment for

building graphical decision-theoretic models, under development at the Decision Systems

Laboratory, University of Pittsburgh. User interface has received a considerable attention in

GeNIe. I believe that GeNIe’s growing popularity can be in part attributed to our attention

to detail and the resulting powerful, yet pleasant interface. One of my objectives is to

enhance GeNIe’s interface so that it becomes natural and easy to use for both experts and

novices. I believe that it is not the speed of inference but rather the quality of the user

interface that will increase the popularity of decision-theoretic methods. In my experience,

reasoning in most practical models is sufficiently fast. The current bottleneck is in building

models. Therefore, techniques that facilitate model building and intuitive interaction with

the system are worth pursuing, even if they are cumbersome to implement in software.

All GeNIe 2.0 windows are fully resizable. Users can always see a larger view of a

CPTree or a probability wheel by enlarging an appropriate window. The size of the pie

chart or bar graph is adjusted automatically to fit in the newly resized window. A relevant

detail of our implementation is that GeNIe’s models are always syntactically correct at any

stage of model development. A newly added node, in particular, has by default two outcomes,

State0 and State1, that are uniformly distributed. Any additional operation preserves this

correctness. A negative side-effect of this is that the program does not have a clear way of
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showing which probabilities have been elicited and which have not.

While there have been other studies testing graphical representation of numerical data

(e.g., [26], [68]), none of them focused on elicitation of probabilities. I tested empirically

the two graphical probability elicitation methods, pie chart and bar graph, on a task in-

volving elicitation of conditional probability distributions [76]. The results of my test have

shown statistically significant differences in both speed and accuracy between each of the two

methods and direct elicitation of numerical probabilities. Even though graphical probability

elicitation methods were both faster than direct elicitation of numerical probabilities, bar

graph was a clear winner in terms of both accuracy and speed (11% more accurate and 41%

faster than direct elicitation and 3% more accurate and 35% faster than the pie chart). In

next chapter, I will describe the methods we used for evaluation of the elicitation tools and

give more details of the experimental design.

Qualitative questionare was presented to the testing subjects on the usability of our in-

terface tools. The questions include easiness of use, time to locate a conditional probability

parameter, and the subjects’ general preference, etc. The study has shown that our subjects

valued highly the availability of alternative tools for navigation and elicitation, and in ma-

jority of cases preferred sCPT to CPTree, and graphical elicitation to direct numerical input

of probabilities, though there were some exceptions. As far as preference between the two

graphical modes is concerned, it varied between subjects, suggesting that a good tool should

provide a variety of methods that can adjust to individual user preferences.

2.5 CONCLUDING REMARKS

The tools described in this chapter enhance greatly user navigation in CPTs during the

process of model building and help to improve both the quality and speed of elicitation. Also,

the flexible navigation and visualization of probability distributions help to detect unspecified

probabilities and inconsistency in responses. Combined, these tools provide a pleasant and

powerful visual environment in which experts can give their qualitative estimates of numerical

probabilities. Except CPTree, all of the graphical tools I developed are now adopted in the

24



formal release of GeNIe 2.0.

I did not use 3-D displays, even though extra dimensions are often decorative and at-

tractive. Some experiments [69, 4, 66] evaluated 3-D graphs in a perception task of relative

magnitude estimation. The results did not show an advantage of 3-D displays in accuracy

and speed. The performance of 3-D displays depends on the graphs and tasks. Compared

to their 2-D counterparts on relative magnitude estimation, 3-D pie charts result in lower

accuracy, and the 3-D bar graphs require a longer elicitation time.

While the tools that I have designed and implemented may be applicable to other graphi-

cal probabilistic structures, such as chain graphs, I focused on Bayesian networks. Obviously,

the tools are readily applicable to chance nodes in influence diagrams [38]. To apply the tools

to the elicitation of utilities in influence diagrams, a small change in the value scales may suf-

fice, since unlike probabilities, utilities do not require to sum up to 1 and thus normalization

is unnecessary. The common practice in utility elicitation is to use integer values ranging

from 1 to 100, where 1 indicates the lowest utility and 100 indicates the highest utility.

Also, eliciting utilities is more a part-to-part comparison than a part-to-whole comparison,

therefore, the bar chart may be a better choice for utility elicitation than the pie chart.

In addition, these tools can be extended to chance nodes described by canonical proba-

bilistic interactions, such as Noisy-OR or Noisy-AND nodes. As a matter of fact, the latest

version of GeNIe has already support for the elicitation of Noisy gate parameters.

Addressing suggestions collected from GeNIe’s many users gives us an opportunity to

learn problems and opportunities of enhancements. The program is under continuous de-

velopment. One enhancement is to support user-adjustable level of granularity in graphical

elicitation. The user will be able to set a given precision level, for example, 0.001, in which

case all numbers obtained from the graphical elicitation procedure will be rounded to three

places after decimal point. Another enhancement is allowing for the probability tables to be

constructed from a mathematical expression involving parent variables rather than elicited

directly. Yet another useful enhancement to the bar graph tool is marking it with user-

defined probability scales, such as verbal probabilities, that will for some users enhance the

elicitation process even further.

One limitation of the current version of the assessment tools is lack of support for elic-
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itation of very small probabilities. Due to the screen resolution restriction and sensitivity

of mouse movement, it is hard to capture very small changes of mouse position. Therefore,

it is impossible to distinguish between low probabilities such as 0.000001 and 0.00001, even

though they are orders of magnitude apart. Such values have to be entered manually. A good

solution applied by others is to use log-scale [49]. This requires elicitation of both order of

magnitude and the precision value at that granularity level. The order of magnitude is simple

integer value and can be easily estimated directly. The precision value can then be elicited

using the graphical tools. In other words, the combination of direct elicitation method and

the use of graphical tools may be a better solution for eliciting very small probabilities.
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3.0 EVALUATING ELICITATION SCHEMES FOR PROBABILISTIC

MODELS

3.1 INTRODUCTION

As more and more decision-analytic models are being developed to solve real problems in

complex domains, extracting knowledge from experts is arising as a major obstacle in model

building [24]. Quite a few methods have been proposed to elicit subjective probabilities from

domain experts. These techniques balance quality of elicitation with the time required to

elicit the enormous number of parameters associated with many practical models. Structure

elicitation is likewise a tedious problem and formal techniques for this task are even less

mature. Systematic evaluation and comparison of different model elicitation methods are

thus becoming of growing concern.

In Bayesian probabilistic models, encoded probabilities is often considered reflecting

the degree of personal beliefs of the experts, though sometimes the probabilities can be

data-driven and not subjective. The sole purpose of probability elicitation is to extract

an accurate description of the expert’s personal beliefs. In order to judge whether the

elicitation procedure has produced an accurate model, therefore, the elicitor must know

intimate details about the expert’s knowledge. Unfortunately, these details that the elicitor

is seeking from the start are hidden from explicit expressions; so it has not been possible to

evaluate elicitation schemes directly. Less direct methods are the only possibility.

In this chapter I present an objective approach for evaluation of elicitation methods that

avoids the assumptions and pitfalls of existing approaches. The technique is much closer

to the ideal “direct” comparison between the elicited network and the expert’s beliefs. The

main idea is to simulate the training/learning process of an expert by allowing the trainee
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to interact with a virtual domain. Underlying the domain is a Bayesian network that is used

to stochastically update the state of the world in response to the subject’s interaction. Then

by recording every state of the world that is experienced by the trainee, we can effectively

gain direct access to the trainee’s knowledge. It is quite an established fact that people

are able to learn observed frequencies with an amazing precision if exposed to them for a

sufficient time [25]. Therefore, after training, the trainee obtains some level of knowledge of

the virtual world and, consequently, becomes an “expert” at a certain proficiency level. This

knowledge, in the form of a database of records, Dexp , can be converted to an “expected”

model of the expert, M̂exp , by applying Bayesian learning algorithms to Dexp . Finally, this

expected expert model can be directly compared to the model elicited from the “expert” to

judge the accuracy of elicitation.

The approach captures a subject’s state of knowledge of the probabilistic events in the toy

world. The subject’s experience with the toy world, rather than the actual model underlying

the world, forms the basis of his or her knowledge. For this reason, the learned model

should be the standard used to evaluate the elicitation schemes, rather than the original

toy model. This technique allows us to avoid the expensive process of training subjects to

fully-proficient expertise. For example, the expert’s experience may have led him to explore

some states of the world very infrequently. In this case, even if the elicitation procedure

is perfect, the elicited probabilities of these states may be significantly different from the

underlying model. Using the expert’s experience rather than the original model gets around

this problem completely because we know precisely how many times the expert has visited

any given state of the world.

I use these techniques along with a toy cat-mouse game to evaluate the accuracy of

three methods for eliciting discrete probabilities from a fixed structure: (1) direct numerical

elicitation, (2) the probability wheel [70], and (3) the scaled probability bar [77]. I use mean

squared errors between the learned and the elicited probabilities to evaluate the accuracy of

each of the three methods. I show that for our domain the scaled probability bar is the most

effective and least time-consuming.

Furthermore, the effectiveness of elicitation techniques is likely to task-dependent [70]

or even expert-dependent [49], and there is no guidance as to how to select an appropriate
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method for various domains or experts. Our solution, presented here, will solve both of these

problems by providing a general method whereby elicitation techniques can be compared for

different domains and for different experts. Within a reasonable amount of time, we can

determine which elicitation scheme works best for a given expert. Also, our experiment may

shed some light on the well-known phenomenon of overestimation of small probability events.

In the following sections, I give a brief review of the existing evaluation techniques for

probability elicitation methods. Then I present the relevant learning equations that allow

us to capture a subject’s beliefs in the form of learned network parameters. I describe the

cat-mouse game that was used to train our subjects and collect data for learning. I present

the experimental design and results followed by a discussion of my findings.

3.2 EVALUATION SCHEMES OF PROBABILITY ELICITATION

METHODS

The difficulty in evaluating elicitation methods is that the true model is needed in order to

be compared to the elicited model. Since the former is encapsulated in the expert’s mind, it

is not readily available for comparison. Previous comparisons of elicitation schemes followed

essentially three lines of reasoning: (1) expert’s preference, (2) benchmark model, and (3)

performance measure.

The first approach, expert’s preference, is based on the assumption that when an elici-

tation method is preferred by the expert, it will yield better quality estimates. While this

assumption is plausible, to our knowledge it has not been tested in practice. There are

a variety of factors that can influence the preference for a method, such as its simplicity,

intuitiveness, or familiarity and these factors are not necessarily correlated with accuracy.

The second approach, benchmark model, compares the results of elicitation using various

methods against an existing benchmark (gold standard) model M̂ of a domain (or a correct

answer that is assumed to be widely known). Accuracy is measured in terms of deviation

of the elicited model from M̂ . For example, in Lichtenstein et al. [47] study of people’s

perception of frequencies of lethal events, there was a readily available collection of actuarial
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data on those events. Similarly, in Price’s [59] study on effects of a relative-frequency elicita-

tion question on likelihood judgment accuracy, general knowledge was used. An important

assumption underlying the benchmark model method is that the model M̂ is shared by all

experts. While in some domains this assumption sounds plausible, human experts notori-

ously disagree with each other [51, 12], and an experimenter is never sure whether the model

elicited is derived from a gold standard model or some other model in the expert’s mind.

A debiasing training of experts with an established knowledge base may help to establish

a benchmark model among them. For example, Hora et al. [37] trained their subjects in a

formal probability elicitation process directed toward assessing the risks from nuclear power

generating stations and compared two elicitation methods for continuous probability distri-

butions. Their subjects were scientists and engineers who quite likely possessed extensive

background knowledge about the risks. Effectively, it is hard in this approach to make an

argument that the elicited model is close to the experts’ actual knowledge, as the latter is

simply unknown.

The third approach, performance measure, takes a pragmatic stand and compares the

predictive performance of models derived using various methods. This reflects, in practice,

how well calibrated the expert’s knowledge is [46]. An example of this approach is the

study performed by van der Gaag et al. [73], who used prediction accuracy to evaluate their

probability elicitation method in the construction of a complex influence diagram for cancer

treatment. While it is plausible that the quality of the resulting model is correlated with

the accuracy of the elicitation method, this approach does not disambiguate the quality of

the expert’s knowledge from the quality of the elicitation scheme. A model that performs

well can do so because it was based on superior expert knowledge, even if the elicitation

scheme was poor. Conversely, a model that performs poorly can do so because the expert’s

knowledge is inferior, even if the elicitation scheme is perfect.

The next section introduces an evaluation method that I believe does not suffer from the

problems identified in the existing evaluation schemes.
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3.3 DATAMINING EXPERT BELIEFS

To evaluate the accuracy of an elicitation method is to make a judgment about how well

the elicited model reflects the expert’s real degree of personal belief. The closer the elicited

model reflects the expert’s real beliefs, the more accurate we say the method of elicitation

is. But how can we measure an expert’s real degree of personal belief? What can be used as

a standard to evaluate the accuracy of a subjective probability? What we need is a method

to capture the knowledge/beliefs that are held by our expert, then we need a method to

construct a model entailed by that knowledge.

On the other hand, if we have a set of records in the form of a database, there are many

machine-learning algorithms that are available to learn various types of models from that

database. In this section I will present the key equations for learning probabilistic network

models from data. A detailed description will be given in the next chapter.

3.3.1 Capturing the Expert’s Knowledge

Complicating this effort is the fact that a person becomes an expert from a novice in a

process of acquiring knowledge from a wide array of sources. Sources of knowledge range

from reading books, talking to other experts, and most importantly for us, to observing a

series of instances in the real world. In the method that I am proposing, we create an expert

in a particular toy domain. In the process, we confine the source of knowledge available to

that expert to be strictly of the latter type; namely, a series of observations of the real world.

Being assured that our expert accumulates only this knowledge allows a particularly simple

analysis of what our expert’s beliefs about the domain should be. Throughout the chapter

I will refer to this type of knowledge as observational knowledge.

If we assume that we have an expert whose entire knowledge of a domain is observational,

then the expert’s knowledge can be viewed as originating entirely from a database, Dexp ,

of records filled with instances of the domain our expert has committed to memory. If we

further assume that we have recorded all relevant instances of the domain that our expert

has actually observed into a database D, then our database D will be identical to Dexp under
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the assumption that the subject has paid attention to the occurrence of each event during

his or her observation process. Thus, in any experiment designed to measure Dexp , it will

be important to incentivate the subject in some way to pay attention to all events in the

world.

3.3.2 Learning Bayesian Networks From Data

Assuming that we can assess Dexp correctly, we must now construct a probabilistic model

that is most consistent with that data. Much work has been done on this problem in recent

years [71, 14]. I will present just the key results of the Bayesian learning approach [29].

In the Bayesian approach, the data set D is considered fixed. To find a good network

structure which encodes the physical joint probability distributions for multivariate X is to

select a network structure S that has highest posterior probability p(S|D). Assuming all

possible structures are equally likely, p(S|D) is proportional to the marginal likelihood of

the data given structure, p(D|S).

Let ri be the number of possible values x1
i , . . . , x

ri
i for variable Xi (i.e., the domain of the

variable Xi). And let qi be the number of Pai’s possible instantiation of Xi’s parents in their

joint combinatorial states (i.e., Pai’s configuration). As a bit of notation, we define θijk to

be the probability parameter that Xi = xk
i given that Pai = Paj

i , where 1 ≤ k ≤ ri, and

1 ≤ j ≤ qi. Under the assumption of complete data set D, Dirichlet prior parameters αijk,

and parameter independence, the most likely structure can be selected using the following

scoring metric,

p(D|S) =
n∏

i=1

qi∏
j=1

Γ(αij)

Γ(αij + Nij)
·

ri∏
k=1

Γ(αijk + Nijk)

Γ(αijk)
, (3.1)

and the expected value of the network parameters given a structure can be expressed as

θ̂ijk =
αijk + Nijk

αij + Nij

. (3.2)

In Equation 3.1 and 3.2, Γ(·) is the Gamma-function which satisfies Γ(x + 1) = xΓ(x)

and Γ(1) = 1. Nijk are the number of times in D that the variable Xi took on value xk
i

when its parents Pai, took on configuration Paj
i , and Nij =

∑ri

k=1 Nijk. Parameters αijk
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are equivalent data samples that the experts have seen of the events Xi = xk
i conditioned on

Pai = Paj
i , and αij =

∑ri

k=1 αijk. For a domain where the expert has little or no previous

experience, we assume that all αijk are equal and small. Under this assumption, when no

data are present for a particular (i, j) configuration of the world (i.e., Nij = 0), then the Nijk

terms drop out of Equation 3.2 and the small equal priors produce a uniform distribution.

However, even if a small amount of data is involved, then the priors have little influence on

the parameters learned. But a larger α parameter weighs more subject’s expertise in the

estimates of the probability parameters.

For example, assume we are estimating the probability that a given coin will come up

heads on an arbitrary toss, and assume that for our subject αheads = αtails = 0.001. Such a

low prior indicates that our subject has had very little experience with coins, but still assumes

initially that the coin is equally likely to be weighted towards heads or tails. After one flip

of the coin (say a “heads” outcome), our subject’s estimate of P (heads) = 1+0.001
1+0.002

≈ 1, so

our subject’s initial belief in uniformity has quickly been affected by the data. On the other

hand, if our subject’s initial beliefs were αheads = αtails = 10, then after one flip, his or her

new assessment would be P (heads) = 11/21 ≈ 0.5, much closer to his initial estimate. So

the larger the α parameters are, the more weight our subject’s expertise will play into his

estimate of parameters.

We use the learned network as a standard to compare with the network elicited from

the domain experts, when both are given the same data. The underlying assumption is

that the experts make the same modeling assumptions as the Bayesian network learning

method. These include, for example as we described earlier in this section, the Dirichlet prior

parameters that simulate the pseudo data of the experts’ domain knowledge. As we discussed

in the above paragraphs, the larger Dirichlet prior parameters weigh more subject’s expertise

in the estimates of the probability parameters, or represent a more obstinate expert who do

not change his or her estimate quickly. Since we do not know what value of the Dirichlet

prior parameters are the best, we use several different assignments: α = 5, α = 10, and

α = 10−4 and with each assignment, run the learning algorithm to get a Bayesian network

model. All of the learned models are used to compare with the elicited model and we analyze

the result by looking at the majority vote. This way we may get around the problem of the
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suitable value for the Dirichlet prior parameters.

3.4 EVALUATING ELICITATION SCHEMES WITH A TOY VIRTUAL

WORLD

I designed a game in which a subject can move a cat to capture a mouse. I recorded the

state changes of the cat-mouse game during the game playing process. What each subject

experiences is unique and depends on the subject’s actions. The recorded data allows for

the learning of the probabilistic model of the toy world as seen by the subject. This learned

model, in turn, gives a standard by which to measure the accuracy of the model elicited from

the subject.

3.4.1 The Cat and Mouse Game: A Toy Virtual World

The toy world includes three characters: a cat and two mice. The objective of the game is

for the cat to capture a mouse. There are twelve possible positions indicated by the grid

cells in a horizontal line (see Figure 3.1). The cat can move one cell at a time between the

current cell and an adjacent cell. One and only one mouse is present at any given time, and

it can only bounce back-and-forth between two positions on each side of the screen. The

two special positions for the mice are called left-pos and right-pos respectively. When the

cat enters the cell/position where the mouse is located, it catches the mouse and the game

is over.

The two mice are characterized by a color: yellow or grey. The cat can be in one of the

four states: normal, angry, frustrated, and alert. Four icons are used to represent the states

of the cat. Tables 3.1 and 3.2 illustrate the icons I used in the game. (The experimental

subjects only saw the figures as the representation of the cat’s states and mouse color.

The verbal expressions are used to encode the cat’s states and mouse color in the Bayesian

network for the cat-mouse world due to the restraint of the modeling environment. These

labels, “normal,” “angry,” etc., were not provided to the subjects during game play but
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Figure 3.1: A screen snapshot of the cat-mouse game

were used, together with the pictures, to identify the states of the cat during the elicitation

process.)

Table 3.1: Yellow mouse and grey mouse

yellow grey

Table 3.2: Four states of the cat

normal angry frustrated alert

Two buttons, labeled move and go respectively, are provided for the subject to manip-

ulate the position of the cat. After the subject clicks a button, the cat moves to either the

left or the right. Its moving direction is uncertain and depends on the current state of the

world (i.e., which mouse is present, the position of the mouse, the state of the cat, and which

button the subject has clicked). There is a short delay (half a second in our experiment)

between button clicks during which the buttons are disabled. This prevents the subject from

clicking the buttons too frequently and paying little attention to probabilistic relationships
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among the variables. It allows the subject to have enough time to observe how the moving

direction of the cat is influenced by the state of the world and the subject’s own actions. (The

delay length of the disabled state of the buttons was selected based on our experiments with

pilot subjects. I first tried 1 second and 2 seconds as the delay, but the pilot subjects soon

complained the delay was too long and made the game boring. So I selected the maximum

delay (half a second) with which the subjects still felt comfortable.)

After this delay, the toy world is updated to a new state. One mouse may disappear and

another may show up instead. The mouse may appear in a different position. The cat may

change its state. The two buttons for the subject’s action become enabled.

In the beginning, the yellow mouse is put in the left-pos position. The cat is put in the

farthest position away from the mouse. After the cat has caught a mouse, the game ends and

a new round of the game begins. A new game always begins with the same initial positions

for both the mouse and the cat. But the states of the rest of the world are uncertain.

Scoring rules are adopted to encourage the subject’s involvement in the game. Whenever

the cat captures a mouse, the subject’s score increases as an incentive. Also, the game emits

a celebratory sound as a reward for the subject.

3.4.2 The Bayesian Network for the Cat-mouse World

The cat-mouse world is based on a simple Bayesian network (Figure 3.2) consisting of five

variables, Action, Mouse Color, Mouse Position, Cat State and Cat Moving Direction.

Figure 3.2: The Bayesian network of the cat-mouse world

Variable Action with two outcomes, move and go, models the observed subject’s action.

Mouse Color which could be yellow and grey, defines which of the two mice is present.
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Mouse Position indicates the current position of the present mouse: left-pos and right-pos.

Cat State represents four possible states of the cat: normal, angry, frustrated, and alert. The

last variable Cat Moving Direction reflects the moving direction of the cat in the current

step. Two directions are defined, left, and right.

The five variables influence each other probabilistically. The states of the variables

change at each step according to the probabilities encoded in the network. Their probability

distributions, either prior or conditional, were assigned randomly when the network was built

to avoid biases to a particular probability distribution. One exception is the probability

distribution of the Action node. The value of the Action node is always instantiated to the

state that corresponds to the subject’s action, and hence, the prior probability distribution

becomes irrelevant. I chose the two nearly identical action words, move and go, to avoid any

semantic difference which could have a potential influence on the subjects’ preference.

3.4.3 The State Change of the World by Sampling

After the subject has clicked a button to take an action, the state of the world and the cat’s

moving direction are updated. The new states are selected by generating a stochastic sample

on the cat-mouse network following the partial parent order of the graph. I use probabilistic

logic sampling [32] to generate node states on the basis of their prior probabilities of occur-

rence. By choosing more likely states more often, I simulate the state changes of the toy

world. The subjects are exposed to changes in the world that are an effect of their actions

and the underlying joint probability distribution.

3.4.4 Collecting Data for Expert’s Knowledge

Every time the state of the toy world changes, it is recorded automatically. In the data

set, a case consists of the outcomes of all five variables encoded in the cat-mouse Bayesian

network. The database of a subject’s experience contains all states of the world that the

subject has seen and it is the subject’s observational knowledge about the toy virtual world.

This knowledge comes completely from the subject’s game-playing experience. Therefore,

the records constitute a perfect data set for learning the subject’s knowledge about the
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cat-mouse domain. There are various machine learning algorithms which can be applied

to learn a Bayesian network for both structure and numerical parameters from data set.

In the experiment for evaluating probability elicitation methods, the numerical parameters

were learned from data using Equation 3.2 based on the original structure of the cat-mouse

Bayesian network model.

3.5 EXPERIMENTAL DESIGN

I demonstrated the method in an experimental study that investigated the effectiveness of

three elicitation methods: asking for numerical parameters directly, translating graphical

proportions by using the probability wheel, and using the scaled probability bar. I used the

graphical modeling system GeNIe [21] and build a module of cat-mouse game in GeNIe as

well.

Subjects

The subjects were 28 graduate students enrolled in an introductory decision analysis

course at the University of Pittsburgh, who received partial course credit for their partici-

pation.

Design and procedure

The subjects were first asked to read the instructions from a help window that introduced

the game characters and the game rules. They were asked to pay attention to the probabilistic

influences from the state of the toy world and their action choice to the direction of the cat’s

movement. The subjects were told that knowledge of these probabilistic relationships would

help to improve their performance. To motivate the subjects to perform well, extra credit

was offered for higher scores in the cat-mouse game and lower errors of estimates of the

probabilities in elicitation.

Each trial included two stages. The subjects first played the cat-mouse game for 30

minutes. The data about their experienced states of the toy virtual world were automatically

recorded. The data sets in the experiment typically contained between 400 and 800 records.
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The second stage involved probability elicitation by each of the three elicitation methods.

The subjects were shown the Bayesian network structure in Figure 3.2 and were asked to

estimate the conditional probability table (CPT) for the node Cat Moving Direction by

1. typing the numerical parameters directly in conditional probability tables,

2. giving graphical proportions in the probability wheel, and

3. giving graphical proportions in the scaled probability bar.

I did not elicit the structure of the Bayesian network from the testing subjects for com-

parison because my purpose was to show how to utilize the evaluation method in elicitation

task. In addition, it seems the only affordable way in the experiment for structure elicitation

was direct asking.

I applied here a within-subject design in which each subject used the three elicitation

methods. To offset the possible carry-over effects, I counterbalanced the order of method

usage across the subjects.

The CPT elements θijk elicited were compared to θ̂ijk, the CPT elements learned by

applying Equation 3.2 to the subjects’ acquired data. The mean-squared error (MSE) of the

parameters was calculated as

MSE =
1

N

N∑
i=1

(θijk − θ̂ijk)
2 .

In order to evaluate the speed of the elicitation methods, I also recorded the time taken for

each elicitation procedure.

Since the domain experts had very little knowledge about the probability distributions

of the cat-mouse domain prior to playing the game, I assigned small uniform values to the α

parameters for the learning algorithm. For all possible values of i, j, k, I used the assignment

αijk = 5 and αijk = 10 respectively. Obviously there is no absolute guidance to the selection

of the values for the α parameters. These two values are chosen because they are relatively

small compared with the typical data record size of 400 - 800, and the small number of

probability parameters(approximately 25) that need to be elicited for quantifying the toy

world Bayesian network. In order to test purely data-based learning, I also used αijk = 10−4.

Results
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Table 3.3 shows the means and standard deviations of the mean squared errors (MSE)

of the three elicitation methods when compared to the probabilities learned with different α

parameters. A time comparison is also shown as the last two lines in the table. Figure 3.3

plots the elicitation time and MSE (α = 5) for each of the three elicitation methods.

Table 3.3: Experiment Results For Elicitation Methods

Means (µ) and standard deviations (σ) for MSEs and time for each of the three elicitation

methods

wheel bar direct

α = 5 µ 0.0786 0.0758 0.0850

σ 0.0384 0.0383 0.0448

α = 10 µ 0.0685 0.0663 0.0744

σ 0.0376 0.0371 0.0431

α = 10−4 µ 0.1217 0.1182 0.1283

σ 0.0462 0.0468 0.0520

time(minutes) µ 6.6 4.9 6.9

σ 4.0663 2.1141 2.3242

Figure 3.3: MSE(α = 5) and elicitation time for each of the three methods tested

For each pair of the elicitation methods, I conducted one-tailed, paired sample t test for

comparison of accuracy corresponding to the learned results with different α’s. One-tailed t

test is chosen because we want to compare and see if one method has a better performance
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than the other in each pair, and if so, whether or not the difference is statistically significant.

Three similar t tests were also done for time comparison. The p values resulted from the t

tests are shown in Table 3.4.

Table 3.4: p values of one-tailed t tests for each pair of the elicitation methods

bar vs. wheel bar vs. direct wheel vs. direct

α = 5 0.19 0.03 0.07

α = 10 0.22 0.03 0.07

α = 10−4 0.21 0.05 0.12

time 0.007 0.0005 0.37

The t tests showed that scaled probability bar performed significantly better than direct

numerical elicitation, p ≤ 0.05 for all three values of the learning parameter α. Probability

wheel was marginally better than direct numerical elicitation, p < 0.1 for α = 5 and α = 10.

The p value (0.12) was a little higher when α = 10−4. However, probability wheel was almost

as accurate as scaled probability bar. Even though the latter had a slightly lower MSEs, the

difference was not statistically significant (p ≈ 0.20 under all values of α).

From the t tests conducted for the comparison of elicitation time, we can see that gen-

erally using scaled probability bar took the shortest time (p ≤ 0.007). However, using

probability wheel did not improve the time compared with direct numerical assessment

(p = 0.37).

However, there were some outliers. Some subjects took a shorter time in direct elicitation

than using the graphical tools. One interesting observation was that some people tried to

move the bars to match a fine-grained number, e.g., 0.85, and found a hard time to do it

since the mouse tracking changes rapidly and making such an input by graphical tools harder

than just typing keyboard. These subjects might find the direct elicitation method easier

to use and result in a faster estimate using direct elicitation method. This suggests that

different users may have different preferences. A good system should provide more than one

elicitation method to satisfy different users’ need for a better performance.

Discussion
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The experimental results showed that the learning approach to evaluate elicitation meth-

ods for probabilities is quite robust. From the results of the paired sample t tests, we can

draw a conclusion about the accuracy of the three elicitation methods. Both the scaled

probability bar and the probability wheel performed better than direct numerical elicitation,

though the latter difference was not statistically significant. Scaled probability bar may be

more accurate than probability wheel. However, the difference was again not quite statis-

tically significant at p = 0.05 level. Considering time taken in elicitation processes, we can

order the three methods according to their speed: probability bar, probability wheel, and

direct numerical elicitation.

An interesting effect is evident in Table 3.4. When the value of the prior parameters

was 5 or 10, the MSE for all techniques is lower than when the α’s are set to 10−4. In fact,

when the α parameters were set to very small values, it was observed that the probabilities

elicited from the experts were closer to the true model than they were to the expected

models calculated with the α parameters. I believe that the reason for this discrepancy

is the following. The subjects will naturally have a small but substantial prior belief of

uniformity in the parameters, which may act like an anchor in the elicitation. For example,

if a subject were given a loaded coin with the instruction to estimate the probability of the

coin coming up heads, he or she is likely to require at least a few (5 or 10) flips of the coin

before concluding that the coin is weighted one way or the other.

When the α parameters are set to 5 and 10, the elicited models are closer to the expected

models than they are to the original model. Furthermore, the results were observed to be

statistically significant; whereas with α = 10−4 the results were not significant. Another way

of looking at this result is that if the user explored one configuration of a node’s parents only

a few times, then the small-α parameter model would produce very extreme, non-smooth

probability distributions under certain parent configuration. For example if the user explored

one configuration just 1 time, then the low-α model would produce a probability distribution

with the one visited state having probability ≈ 1; whereas, a sensible user would not predict

such an extreme distribution, but would rather assume that the probability was still roughly

uniformly distributed.

This observation may be related to the well-known finding that people tend to over-
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estimate very low probabilities [47]. In fact, what may be happening in the case of low

probability events is that the person’s assumption of weak prior uniformity is smoothing the

distribution, producing “erroneous” estimates. This fact may suggest a means of correcting

for low-probability event estimates by first subtracting out the small uniform distribution

from the assessed distribution.

One objection that could be raised to the technique is that a thirty-minute training

session is not sufficient for the subjects to achieve expert status. This would be a key

objection if we were comparing the elicited models to the original model underlying the

toy-world; however, the main point in using the trainees’ actual acquired knowledge is to

deflect this criticism: we are comparing the elicited model precisely to the knowledge that

we know our trainee has observed. In principle, this technique should work regardless of

the expertise of the trainee. Nonetheless, I acknowledge that there may be some transition

during the process of achieving true expertise that alters the trainees’ elicitation behavior. I

assume that these effects will affect the elicitation techniques in a uniform way, so that the

relative assessment of elicitation techniques is not affected.

It may be that the effectiveness of different elicitation techniques varies from expert to

expert. In that case, the evaluation technique can provide a relatively quick and effective

way to judge which elicitation procedure is most effective for a given expert. The expert

can be quickly trained on a toy model, and then the experimental procedure can be used to

decide which elicitation technique is most effective for that particular expert.

3.6 CONCLUDING REMARKS

I presented a method that allows for an objective evaluation of the elicitation methods for

probability distributions and the structure of probabilistic models. The method is based

on machine learning the expert’s beliefs when data of the expert’s learning knowledge is

available. I illustrated the evaluation approach with a toy virtual world and evaluated three

elicitation methods for probabilities: direct numerical elicitation, the probability wheel, and

the scaled probability bar. Based on the results of the experiment, I concluded that the
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probability wheel and the scaled probability bar both performed better than direct numerical

elicitation, which supports the proposition that graphical tools are useful in eliciting experts’

beliefs. The scaled probability bar was the most efficient in terms of being most accurate and

taking the least time. My conclusion supports the proposition that graphical tools are useful

in eliciting experts’ beliefs. The technique can also be used to assess the best technique for a

given expert, by training the expert in the toy-world and discovering his or her most effective

elicitation technique.

The evaluation method I presented in this chapter can be applied to other elicitation

schemes, both for probability elicitation and for structure elicitation. I envisage the use

of the method as selecting a proper elicitation scheme for experts in real applications to

build Bayesian network models through knowledge acquisition from experts. The first step

is to discover the best elicitation method for a particular domain expert through experiment

with the toy world. Then the expert can use the best suitable method for him to elicit his

knowledge for building probabilistic models.

A side effect of the experiments was to shed light on the well-known phenomenon that

people tend to overestimate small probabilities, and to possibly suggest a means to correct

for this effect.
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4.0 EVALUATING SENSITIVITY OF BAYESIAN NETWORKS

4.1 INTRODUCTION

To validate a Bayesian network model, it involves testing the reasoning accuracy based on the

model, evaluating the model’s performance robustness, and evaluating the model’s tolerance

to noises etc. The performance robustness and noise tolerance are closely related and often

investigated using sensitivity analysis. In Bayesian networks, sensitivity analysis is studying

the effect of small changes of the numeric parameters on a Bayesian network’s performance.

The common belief, to a great degree based on a series of experiments in [56], is that

Bayesian networks are, on the average, insensitive to inaccuracies in the numeric value of

their probabilities. Henrion et al. [34] further elaborated one of the experiments and explored

the possible explanations of the low sensitivity. In [34], the conclusions were drawn based

on the average of the probabilities of the true diagnosis with simulated scenario cases run by

imparting random noise on the nominal probabilities of known networks at increasing levels

of uncertainty. The reported results differentiated between true-positive diagnosis cases and

true-negatives, and between the effect of noise on the priors of conditional probabilities, leak

probabilities (the probabilities in noisy-gate), and prior probabilities.

In this chapter, I argue that differences in sensitivities found in [34] between true-positive

and true-negative results may not be valid because the log odds-normal distribution, which

was used to generate random noise on probabilities, used an invalid range of standard devi-

ations where the differences were observed. The presence of true-positive and true-negative

biases in Bayesian network diagnosis results from misevaluation of the network by experts,

and should be corrected once those biases are detected. Differences in network sensitivity

due to noise on the different types of probabilities is a quantifiable random effect that de-
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pends on the distribution used to model the added noise and possibly, on the topology of

the network.

I also show that comparing the average results of the simulated posterior probabilities

to the nominal posterior probabilities may not be the most indicative measure of network

sensitivity because information about the effect of the noise distribution variance is lost,

especially when the distribution is very asymmetric as is the case at nominal values close

to zero or one. It is in the variation of these posterior probabilities that imprecision in

parameters is reflected. Although the difference in computed posteriors derived from noisy

versus nominal probabilities is indicative of the sensitivity of the network, the partial ordering

of the posterior probabilities is argued to be a more critical indicator of the outcome of the

diagnosis. It is proposed then to assess the sensitivity of the network based on the effect that

the uncertainty in probabilities has on the partial ordering of the probable causes, measured

using a suitable lower confidence bound.

A series of experiments were designed to investigate the sensitivity of three Bayesian net-

works built for diagnosis of airplane systems, to inaccuracy in different type of probabilities:

prior probabilities, conditional probabilities, and leak probabilities. I varied the probability

parameters in the networks by introducing log-odds normal noise for the following range of

standard deviations: 0.1, 0.25, 0.5, 0.8, and 1, respectively. The criterion I used to measure

the sensitivity of the networks is a set of lower confidence bounds measured by percentiles:

e.g., 50%, 80%, 90%, 95%, and 99%. The results showed that generally, increasing noise

level to the probabilities produced higher sensitivities in the tested networks. The results

also suggested that prior probabilities turned out to be more influential parameters to diag-

nosis in the tested networks, compared with conditional probabilities and leak probabilities.

In contrast to the common belief that Bayesian networks are generally insensitive to inaccu-

rate probabilities, the results showed that some networks can show significant sensitivity to

inaccuracy in probabilities even with a small variance in the noise distribution. The results

agree with recent findings of high sensitivities reported by [15, 52] in an empirical study

using a Bayesian network from medical diagnosis/prognosis and treatment planning.

The chapter is organized as follows: Section 4.2 elaborates my arguments related to the

empirical approach to sensitivity analysis. Section A.2 describes the sensitivity experiments
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conducted on three large production networks built for diagnosis of airplane systems. In

Section A.5, I give a brief conclusion about the results of my experiments.

4.2 LOG-ODDS NOISE AND MEASURES OF SENSITIVITY IN

BAYESIAN NETWORK

The two main points are: a) the log-odds normal distribution, although it has appealing

properties for modelling the noise of probabilities, it may not be valid for assessing network

sensitivity when the values of standard deviations are greater than one, and b) the use of

averages for comparing the posterior probabilities, derived from noisy probabilities, to the

nominal posteriors may hide the effect of the variance of the noise distribution, especially

for probability values near zero or one. I will deal with each point separately.

4.2.1 Validity Of Log-odds Normal Distribution

One simple way to simulate the small changes of a probability is to sample the probability

value around the nominal value, or equivalently, add random noise directly to the probability.

This approach, however, has some problems. First, a large additive error is likely to produce

a probability greater than 1 or less than 0, so need to be truncated. Same thing with the

sampling method, the sampling distribution may not be a normal distribution with mean at

the nominal value because of the truncation effect, especially when the nominal value is close

to 0 or 1. Second, the probability change by plus/minus a certain value, e.g., 0.1, may not

be significant to a nominal probability 0.9 but much more serious to a nominal probability

0.001.

A more appealing approach to avoid these problems should have a symmetric effect on

the two bounds of probability: 0 and 1. It also needs to use a relative change of the nominal

probability value when simulating the small changes of the probability.

The log-odds normal transformation provides exactly this behavior. It first transforms

a probability p into log-odds form log p
1−p

, then it adds normal noise ε ∼ N(0, σ) to the
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log-odds, and finally transforms the quantity back into probabilities p′ = 1
1+(p−1−1) 10−ε . It is

a suitable model for noise imposed on probabilities. One reason is that the sampled proba-

bility still remains in the [0,1] range. Another reason is that the transformation recognizes

differences imparted by noise to probabilities near 0 or 1 versus those in the middle of the

range near 0.5 [34].

However, this distribution may not be valid for standard deviations greater than one for

the purpose of assessing network sensitivity to probability noise. Equation 4.1 illustrates the

probability density of the log-odds normal distribution:

Y = log
p

1− p
+ ε , (4.1)

where ε ∼ N(0, σ), transitions from unimodal to bimodal for values of σ > 1. A simplified

equation for the distribution of the nominal probabilities with added noise, p′, in terms of

the nominal p and noise ε is

p′ =
1

1 + (p−1 − 1) 10−ε
. (4.2)

The relation between the noisy odds and the nominal odds is then:

p′

1− p′
=

p

1− p
10ε , (4.3)

or odds′ = odd ∗ 10ε, where odds′ = p′

1−p′
and odds = p

1−p
.

This indicates that error introduced by the log-odds normal noise ε reflects the scale of

the change of odds by a factor of 10ε, which is so substantial that p′ density function becomes

bimodal with peaks at 0 and 1 when σ > 1 as shown in Figure 4.1 for probability p = 0.8. In

other words, when σ > 1, the noise is so extreme and the imparted probability is so skewed

that it is no longer close to the nominal probability, rather, it distributes densely at 0 and

1. The log-odds normal distribution guarantees only that the median probability is equal to

the nominal probability. The mean probability may be very different.

Table 4.1 shows values of p′ computed from Equation 4.2 for various values of p and ε.

Note that the values of ε correspond to values of σ in the standard normal distribution. For

values of ε > 1, the difference between the noisy and nominal probabilities increases rapidly
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Table 4.1: Values of the noisy p′ computed from Equation 4.2 for different values of the

nominal p and noise ε.

Values Values of p and percentage of (p′ − p)/p

of ε 0.0001 % 0.01 % 0.1 % 0.25 % 0.5 %

0.1 0.00013 26 0.013 26 0.12 23 0.30 18 0.56 11

0.3 0.00020 100 0.020 98 0.18 81 0.40 60 0.67 33

0.5 0.00032 216 0.031 210 0.26 160 0.51 105 0.76 52

0.7 0.00050 401 0.048 382 0.36 258 0.63 150 0.83 67

1 0.00010 899 0.092 817 0.53 426 0.77 208 0.91 82

3 0.09092 90817 0.91 8999 0.99 891 1.00 299 1.00 100

5 0.90910 908999 1.00 9890 1.00 900 1.00 300 1.00 100

for values of the nominal probability that are close to zero. The effect is also large but less

pronounced for values of nominal probabilities in the mid-range towards p = 0.5.

The log-odds normal distribution is an adequate model of noise added to probabilities

for values of σ < 1, where the distribution is unimodal. For values of σ > 1 the distribution

becomes bimodal as shown in Figure 4.1. Using the distribution in that range to describe

the noise on the priors is equivalent to considering an expert who assesses a prior probability,

known to be near zero, and erring in judgment by such margin that the true prior probability

may, in fact, be close to one! This is what the log-odds normal distribution implies for large

values of σ.

4.2.2 Measures For Assessing Bayesian Network Sensitivity

In using Bayesian networks for diagnosis the partial ordering of probable causes resulting

from the update of the posterior probabilities given a set of findings constitutes the diagnosis.
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Figure 4.1: The log-odds normal distribution centered around the nominal prior of 0.8, for

various values of σ

While the most probable cause is often given the highest consideration, typically, in multiple

fault-diagnostic systems it is a particular set of the top causes (e.g., the top five) and their

partial ordering that is most informative. Since very seldom the diagnosis singles out a

particular cause, the partial ordering provides guidance for subsequent actions. The effect

that noise has on the posterior partial ordering of the causes is, therefore, a significant

measure of the network sensitivity.

Table 4.2 shows the top five suspect parts selected from a Bayesian network diagnosis

system representing a particular test case scenario of an airplane fault. It compares posterior

probability from the nominal network with the average posteriors from one hundred noisy

networks. The noise distribution used was the log-odds normal with σ = 0.5. Note that the

deviation of the average posterior from the nominal does not appear to be substantial.

The top of Table 4.3 shows the average change in rank order for the five suspect parts

of Table 2. This average reflects the average absolute-value change in rank for each part

from its nominal rank that is due to noise added to the network probabilities. The average

change in rank shows that noise with σ = 0.5 is expected on the average to affect a change
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Table 4.2: The nominal posteriors of the top five suspect parts from an airplane diagnosis

compared to the average from one hundred noisy posteriors (log-odds normal, σ = 0.5).

Part 1 Part 2 Part 3 Part 4 Part 5

Nominal posterior 0.40 0.29 0.11 0.07 0.07

Average posterior 0.35 0.28 0.15 0.07 0.07

Standard Deviation 0.24 0.23 0.15 0.07 0.09

Table 4.3: Lower confidence bounds and average changes of the ranks for the five most

probable causes.

Part 1 Part 2 Part 3 Part 4 Part 5

Average rank change 1.02 1.05 1.26 1.21 1.15

Standard deviation 1.19 0.93 0.90 0.83 1.06

50th percentile 1 1 1 1 1

80th percentile 2 2 2 2 2

90th percentile 3 2 2 2 2.9

95th percentile 3 3 3 2 3

99th percentile 4 3.99 3 3 4
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in the rank of the top five suspect parts by approximately one ranking order. By itself, this

is not a bad result considering the size of the variance of the distribution used. However, it

is somewhat misleading.

Typically, for airplane diagnosis, the reliability estimates of most airplane parts is of

order greater than 105 hours for the mean time between part failures. The corresponding

prior probabilities are therefore approximately of order smaller than 10−5. At such low

probabilities the log-odds normal distribution is very asymmetric and the average rank does

not adequately represent the effect that the noise imparts on the network. Shown at the

bottom of Table 3 are lower-bound confidence estimates for confidence levels from 50% to

99%. The data show that for noise with σ = 0.5, there is a 50% chance that the ranking

order of the parts could change by at least one position. For the most probable suspect part

(i.e., Part 1), there is a 20% chance that it could drop by more than two ranks, a 10% chance

that it may drop by more than three orders in rank, and a 1% chance that it may drop by

more than four. For networks with high sensitivity to noise, the nominal diagnosis could

advise the airplane maintainer to unleash a series of irrelevant actions that could result in

unnecessary and costly delays and cancellations.

This analysis, we believe, is more representative of the sensitivity of the network due to

noise in the network probabilities. The remainder of the paper will present data compiled

from several airplane diagnosis networks under various test scenarios, and will distinguish the

network sensitivity to noise contributions from prior probabilities, conditional probabilities,

and leak probabilities.

4.3 SENSITIVITY EXPERIMENT

4.3.1 Measure Of Diagnostic Performance

As indicated in Section 4.2.2, average posterior probabilities may not be an adequate measure

to assess sensitivity of Bayesian networks with respect to diagnosis, especially when the

probability distribution is extremely skewed by adding in the log-odds normal noise. Instead,
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lower confidence bounds on rank changes of the diagnosis recommended by a partial-ordered

list of suspect parts, better reflect the effect that random noise has on the network.

In the experiments, I use lower confidence bounds for 0.50, 0.80, 0.90, 0.95, 0.99 per-

centiles of the diagnosis ranks over test cases to quantify diagnostic performance. Average

and standard deviation of rank changes are also calculated for comparison.

4.3.2 Networks And Test Cases

I used three large networks built for diagnosing three major airplane systems. A number of

test case scenarios were defined for each network. These scenarios represented real-life cases

encountered during routine airplane maintenance procedures. Each test case constitutes a set

of findings, used as inputs to the networks, which do not necessarily isolate the failed parts

with certainty, but rather generate a ranked list of the most likely suspect parts. The ranked

list of parts constitutes the diagnosis given a particular test case scenario. For illustration

purposes and without loss of generality I denote the three networks as Net 1, Net 2, and Net

3. The airplane parts are also denoted by numbers associated with their posterior ranking

order, i.e., Part 1, Part 2, etc.

4.3.3 Experimental Design

I tested with three networks built for diagnosing airplane part failure. For each network,

I first classified the nodes into different sets according to their probability types: prior,

conditional and leak. To generate a noisy network, I added noise to each set of nodes

independently for a given level of noise and scenarios. Each scenario was run one hundred

times with the same noise distribution for each set of nodes. A noisy network was generated

in each run. The total number of networks used in our experiment were 34503, consisted of

3 types of probability * 5 levels of noise * 100 runs * (3+5+15) scenarios, plus 3 original

networks without noise.

The test began with a diagnosis on the nominal network given the findings defined in

the scenario. For this network, the nominal partial ordering of the recommended failed parts

was generated. The rank of each probable failed-part was recorded according to the partial
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ordering. Under the same situation, (i.e., the same set of nodes, the same noise distribution,

and the same scenario), the noisy networks were used to compute the noisy rank changes of

the diagnosed failed-parts from the rank changes computed with the nominal network. The

effect of noise was assessed by computing statistics on the rank changes, such as average

and standard deviation of rank changes, and 0.50, 0.80, 0.90, 0.95, 0.99 percentiles of lower

confidence bounds.

4.3.4 Results

Figure 4.2 plots the average rank changes over one hundred cases across different scenarios

of the most probable failed parts in Net 3 affected by five levels of prior noise. As expected,

performance degrades as the noise increases. Note that the rank of the most probable failed-

part drops, on the average, about one position when noise is distributed with σ(orstd) = 0.1,

and it drops about two positions when noise is distributed with σ = 1.0.

Figure 4.2: Rank changes of the most probable failed parts in Net 3 based on 100 run cases

across different scenarios and prior noise.

Since with σ = 1.0 the most probable failed part will change on the average almost three

rank positions, it may look as if the diagnosis performance is robust and insensitive to the

imprecise prior probabilities. However, looking at the lower confidence bounds, Figure 2

indicates that there is a 90% chance that the most probable failed part will stay within the
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top five rank positions for noise with σ < 0.5. Conversely, with σ >= 0.5, there is a 90%

chance that the most probable failed part will disappear from the top five recommended parts

given by the diagnosis, which could possibly result in incorrect diagnosis by the network.

Figure 4.3 illustrates the rank changes of the top five most probable failed parts in

Net 3 when the prior noise is distributed with σ = 1.0. From the chart, we see that 0.50

percentile lower bound for the five parts are smaller than rank average, further indicating

the asymmetry of the noise distribution.

Figure 4.3: Rank changes of the top five most probable failed parts in Net 3 based on 100

run cases across different scenarios and prior noise ε ∼ N(0, 1.0).

Also note the high standard deviations of the rank. This illustrates that the sensitivity

of the noisy networks varies greatly with different scenarios. The noisy network may be

pretty robust for some of the observations, but may be quite sensitive to others. Therefore,

different scenarios play an important role in testing sensitivity of Bayesian networks.

The effect of noise on conditional probabilities and on leak probabilities is much smaller

than that on prior probabilities for all of the three networks in the experiments. As shown

in Figure 4.4, the average rank changes are smaller than 1 even when the conditional noise is

distributed with σ = 1.0. The 0.99 percentile lower bounds are all smaller than 4. Therefore,

in 99 percent of the time, the top five most probable failed-parts would stay in the top

positions in the partial ordering given by the diagnosis.

As was the case with noise added to prior probabilities, the same trend is observed
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Figure 4.4: Rank changes of the top five most probable failed parts in Net 3 based on 100

run cases across different scenarios with CPT noise ε ∼ N(0, 1.0).

with conditional probabilities when noise level increasing. When the noise added to the

conditional probability tables becomes higher, the network becomes more sensitive, as a

result, the diagnosis capability of the networks degrades.

Figure 4.5 shows the rank changes of the most probable failed part in Net 1 based on one

hundred run cases across different scenarios and different prior noise distributions. The rank

changes in Net 1 are much smaller than the rank changes found in Net 3, which indicates

that different networks may have a different degree of sensitivity to imprecise probabilities.

However, the rank changes in Net 2 were close to those of Net 1.

4.4 CONCLUSION

I argue in this chapter that the log-odds normal distribution is valid as a model for sensitiv-

ity analysis only in the range of standard deviations where the distribution is unimodal. I

also shows that using average posterior probabilities as criterion to measure the sensitivity

may not be the most indicative, especially when the distribution is very asymmetric as is
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Figure 4.5: Rank changes of the most probable failed part in Net 1 based on 100 runs cases

across different scenarios and prior noise.

the case at nominal values close to zero or one. It is proposed, instead, to use the partial

ordering of the most probable causes of diagnosis, measured by a suitable lower confidence

bound on the change in the rank order. Preliminary results of the sensitivity analysis experi-

ments were shown with three Bayesian networks built for diagnosis of airplane systems. The

results showed that some networks are more sensitive to imprecision in probabilities than

previously believed, and the networks have different sensitivity to different sets of variables.

In the three networks for airplane diagnosis used for the test, the prior probabilities for the

parentless nodes are the most sensitive, compared to the conditional probabilities and the

leak probabilities for the noisy gate.
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5.0 SENSITIVITY FOR MODEL SELECTION IN LEARNING BAYESIAN

NETWORKS?

5.1 INTRODUCTION

In Chapter 4, we see that Bayesian networks can have different sensitivities to variations in

probability parameters. Similar results were found that some networks can be very sensi-

tive to small changes of their probability parameters [15, 52]. Indeed, parameter estimates

obtained from an expert or from a relatively scarce data can have quite high variance. In

addition, the networks can be also sensitive to a small change of graph structure such as

adding, deleting or reversing an edge. As a consequence, the results of inference obtained by

using a particular Bayesian network are not guaranteed to be stable with respect to small

changes in the model.

Therefore, it may be desirable to obtain low sensitive, i.e., highly robust, Bayesian net-

work models among other candidates that well represent the domain knowledge. This is a

typical model selection problem in learning Bayesian networks. In learning Bayesian net-

works, Model selection refers to finding a graph structure which best describes the depen-

dence relationships between the domain variables represented by the data. One approach to

model selection is using scoring metrics to guide a heuristic search in the space of possible

graph structures [14, 29]. The existing scoring functions such as BIC [63], BDe [30] and

MDL [44], attempt to maximize likelihood of a model while minimizing its representation

complexity (e.g., the number of parameters). An alternative approach is a constraint-based

learning [71, 8], that searches for network structures satisfying a set of independence as-

sumptions (constraints) obtained via statistical conditional-independence tests or from some

prior domain knowledge. Recently, the two approaches were shown being equivalent under
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certain conditions, such as using same variable ordering and applying cross-entropy methods

for testing conditional independence [17].

But the two approaches do not differentiate between Markov-equivalent graphs [10], i.e.

graphs that yield same set of independence assumptions but differ in the directionality of

certain edges. Interestingly, as I will show later in this chapter, Markov-equivalent Bayesian

networks can have different sensitivities to the parameter changes. Therefore, two models

with same scores (i.e., both fitting data well and both having relatively low representation

complexity), can have different sensitivity to small changes in certain parameters. In this

case, a less sensitive network may be preferred in model selection.

However, depending on the measure of sensitivity for Bayesian networks, sensitivity may

not be an appropriate criterion for model selection. As I will show in this chapter, using

maximum value of parameter sensitivity as a measure of sensitivity for Bayesian networks,

the relationship between the sensitivities of equivalent networks reduces to a single, equiva-

lent, local probability distribution after one edge reversal. Therefore, selecting a low sensitive

model is essentially same as selecting a model with low probability values in the local distri-

butions for the nodes involving in the edge reversal. As shown by Renooij and van der Gaag

[61], a uniform probability distribution has the lowest sensitivity bounds. Selecting a low

sensitive model using such a sensitivity measure then prefers uniform distributions, which is

often interpreted as a total random process with the highest uncertainty. This violates the

principles of Bayesian network modelling, which encodes the expert knowledge at the best

effort and is supposed to prefer certain level of certainties in the models. But selecting the

low sensitive model leads to the contrary choice, if the sensitivity measure is based on the

maximum value of parameter sensitivities.

The chapter starts with a brief review of the typical approaches to model selection in

learning Bayesian networks. Then it describes Markov equivalent network structures with

transformational characterization of equivalent structures. After introducing a definition of

sensitivity for Bayesian networks, the chapter gives a proof that Markov equivalent networks

have different sensitivities, and their sensitivities can be expressed by a simple linear function.

The establishment of this relationship leads us to a conclusion that sensitivity, measured as

the maximum value of parameter sensitivities, may not be an appropriate criterion for model
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selection.

5.2 LEARNING BAYESIAN NETWORK STRUCTURE

Learning the structure of a Bayesian network is an unsupervised learning problem which can

be informally stated as following: given a set of observations D = {d1, . . . ,dN} (training

data), find a network structure G that best matches D. Learning the network structure is

referred to as model selection, which is often viewed as an optimization problem with respect

to a particular scoring function defined on a Bayesian network. Then learning Bayesian

network structure is a greedy search process which always selects the structure that has the

highest score.

5.2.1 Bayesian approach

Following the Bayesian approach, to find a good network structure which encodes the physical

joint probability distributions Θ for multivariate X is to select a network structure that has

highest posterior probability given data set D. This posterior probability, p(G|D), can be

computed by Bayes’ rule:

p(G|D) = p(G)p(D|G)/p(D).

In this equation, p(D) is a normalization constant that does not depend on network structure.

For the sake of convenience, we can assume that all structures are equally likely. Then, to

determine p(G|D), one must compute the marginal likelihood p(D|G) for each of the possible

structures. For a complete data set with assumption of parameter independence[29], and

Dirichlet prior distribution, the likelihood can be computed as in the following equation:

p(D|G) =
n∏

i=1

qi∏
j=1

Γ(αij)

Γ(αij + Nij)
·

ri∏
k=1

Γ(αijk + Nijk)

Γ(αijk)
, (5.1)

where αij =
∑ri

k=1 αijk, Nij =
∑ri

k=1 Nijk, and Γ(·) is the Gamma-function which satisfies

Γ(x + 1) = xΓ(x) and Γ(1) = 1.
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Thus, the above equation provides a scoring metric that is proportional to the posterior

probability of G given data. It is often referred to as BDe metric (“B” for Bayesian, “D”

for Dirichlet, and “e” for likelihood equivalence). Note that a higher prior probability P(G)

to simpler models has the effect of penalizing complex models. Generally, when likelihood

equivalence does not hold, BD metric is used which combines P (G) and P (D|G) as a product.

Besides theBayesian score, other commonly used scoring functions include the Minimum

Description Length (MDL) criterion [62, 44], and the equivalent to it, Bayesian Information

Criterion (BIC) [63] (often called BIC/MDL). Other closely related information-theoretic

scoring functions include Akaike Information Criterion (AIC) and Minimum Message Length

(MML). These scores provides a tradeoff between the accuracy and the complexity of a

model by minimizing the sum of the encoding length of the model (i.e. its representation

complexity) and the encoding length of the data given the model, which is measured by the

negative log-likelihood and thus reflects the model error. For example, the MDL criterion

[62, 44] is

MDL(G|D) = −logP (D|G) +
logN

2
|Θ| , (5.2)

where |Θ| is the dimension of the model, e.g., the number of independent parameters in the

model, and N is the number of data cases. The first term is the negative log-likelihood of

the graph structure G given data D (which equals the number of bits needed to describe

D when using structure G), while the second term is the model complexity given as the

number of bits required to encode the network parameters. Thus, minimizing the MDL

criterion provides the shortest description of the training data (i.e. learning can be viewed

as data-compression), which at the same time favors models that predict data better (have

higher log-likelihood logP (D|G)) and have lower representation complexity ( logN
2
|Θ|).

5.2.2 Constraint-based Approach

An alternative approach to learning graph structure is constraint-based approach [71, 8]. In

constraint-based learning, training data are viewed as reflection of dependence relationships

between variables. Statistical tests, such as chi-squared or mutual information, are applied

to identify the dependencies directly. Recently, efficient algorithms were developed for con-
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ditional independence test using a information-theory based approach [9]. The independence

relations inferred from data are used to constrain the search space for possible graph struc-

tures. Consequently, the Bayesian network structure learned this way is a partially directed

acyclic graph (PDAG) which represents a class of Markov-equivalent networks. Since the

directed edges often have causal semantics, constraint-based learning is closely related to

learning causal relationships. See [55] for an in-depth discussion on this topic.

5.2.3 Equivalence Characteristics

Interestingly, the above scoring metrics that are popularly used in learning Bayesian networks

can not differentiate Markov equivalent graphs [10]. In other words, Markov equivalent

graphs are score equivalent under the criteria of AIC, BIC, BDe, ML, MDL etc. Recently,

the constraint-based approach is shown being equivalent to the scoring-based approach under

certain conditions, such as using same variable ordering and applying cross-entropy methods

for testing conditional independence [17].

5.3 MARKOV EQUIVALENCE

A Bayesian network for a set of variables X = {X1, X2, ..., Xn} represents a joint probability

distribution over these variables. Structurally a Bayesian network is an acyclic directed graph

(DAG in short). The structure of a Bayesian network defines the independence relationships

between the variables given by the Markov condition. That is, any node in the graph is

conditionally independent of its nondescendants given its parents.

Two DAGs are Markov equivalent if and only if they contain the same set of variables

and they represent the same conditional independence relationships on those variables. In

other words, two network structures G and G′ are equivalent if the set of distributions that

can be represented using G is identical to the set of distributions that can be represented

using G′. We use G ≈ G′ to denote the equivalence relationship between G and G′.

Formally, two DAGs G and G′ are equivalent if for every Bayesian network B = {G, Θ},
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there exists a Bayesian network B′ = {G′, Θ′} such that B and B′ define the same probability

distributions, and vice versa.

When two Bayesian networks have equivalent structures and they represent the same joint

probability distribution over the same domain of variables, we say that the two networks are

Markov equivalent.

Definition 1 (Markov Equivalence). Two Bayesian networks B = {G, Θ} and B′ = {G′, Θ′}

are Markov equivalent if G ≈ G′, and Θ and Θ′ represent the same joint probability distrib-

utions p(X1, X2, ..., Xn).

Equivalent graphs share the same skeleton, i.e., the undirected graph resulted from ig-

noring the directionality of edges in the graph. Also, equivalent graphs share the same

v-structures. A v-structure in DAG G is an ordered triple of nodes (X, Y, Z) such that G

contains the arcs X → Y and Z → Y but X and Z are not adjacent in G. As derived by

Verma and Pearl [75], sharing the same skeleton and the same v-structures is both necessary

and sufficient condition for two DAGs to be equivalent.

One interesting characterization of equivalent graphs is that a DAG G can be transformed

to its equivalent graph G′ by a sequence of edge reversals [10]. Only the covered edges are

necessary to involve in the reversal for the transformation. An edge X → Y is covered in G

if node X and node Y have identical parents in graph G, with the exception that X is not

a parent of itself. Formally, a covered edge is defined as below.

Definition 2 (Covered Edge). [10] An edge X → Y is covered in G if PaY = PaX

⋃
X

Clearly, any property that holds over all DAGs in an equivalent class must hold over

every pair of DAGs in that class which differ by the orientation of a single covered edge.

Chickering [10] proved the converse by showing that for any pair of equivalent DAGs G and

G′, we can transform G into G′ by a series of covered edge reversals, where each reversed

edge has different orientation in G and G′.

Theorem 3. [10] Let G and G′ be any pair of DAGs such that G ≈ G′, and let m be the

number of edges that have opposite orientation in G and G′. There exists a sequence of m

distinct edge reversals in G with the following properties:

1. Each edge reversed in G is a covered edge;
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2. After each reversal, G is a DAG and G ≈ G′;

3. After all reversals, G = G′.

For example, we know that the DAG G1 = X → Y → Z is equivalent to the DAG

G2 = X ← Y ← Z. To transform from G1 to G2, we can first reverse the covered edge

X → Y . What we get after the reversal is an equivalent DAG X ← Y → Z. Secondly

we reverse the covered edge Y → Z. The result of the two subsequent edge reversals is the

equivalent graph G2.

Based on Theorem 3, Chickering [10] derived a simple local characterization of equivalent

network structures. He showed that a property holds for all pairs of equivalent networks that

differ by a single covered edge orientation if and only if that property holds for all networks

in the equivalence class. This is very useful to prove a given property is invariant (or variant)

over all equivalent structures. Simply showing that the property is invariant (or variant) to

any reversal of a single covered edge is sufficient.

Using this technique, Chickering [10] proved that equivalent graphs are score equivalent

in terms of the scoring metrics such as likelihood, BIC, MDL, and BDe. I will use the

same technique to prove that the Markov equivalent networks are not necessarily sensitivity

equivalent.

5.4 MARKOV EQUIVALENCE DOES NOT IMPLY SENSITIVITY

EQUIVALENCE

5.4.1 Network Sensitivity Measures

Let X = {X1, X2, . . . , Xn} be a set of random variables modeled in a Bayesian network B.

Let ri be the number of possible values x1
i , . . . , x

ri
i for variable Xi, and let qi be the number of

Pai’s jth configuration. As a bit of notation, we define θijk to be the probability parameter

that Xi = xk
i given that Pai = Paj

i , where 1 ≤ k ≤ ri, and 1 ≤ j ≤ qi. We use the vector

θij = {θijk} = (θij1, . . . , θijk, . . . , θijri
)
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to denote the conditional probability distribution of Xi under its jth parent configuration.

Since the states of any variable Xi in a Bayesian network are mutually exclusive and collec-

tively exhaustive, we have by the laws of probability that

ri∑
k=1

θijk = 1

for each i, j.

Therefore, if a parameter θijk changes its value to θ′ijk, the remaining parameters θijk′

(where k′ 6= k with the same i, j) have to co-vary their values accordingly to comply with

the laws of probability. A popular method for the co-variation of the relevant parameters

is proportional scaling, which assigns the values of relevant probabilities a proportion of the

probability mass left that corresponds to their original ratios. It was proved that proportional

scaling results in the closest probability distribution to the original distribution [7].

Formally, proportional scaling can be defined as

θ′ijk′ =

 θ′ijk if k′ = k

θijk′
1−θ′ijk

1−θijk
otherwise

(5.3)

Based on the proportional scaling assumption, as defined in Equation 5.3, Castillo et al.

[5] identified some important properties of Bayesian networks for efficient sensitivity analysis.

The following theorems review these properties. Readers who are interested in the proofs of

these theorems can refer to the papers by Castillo et al. [5] or Kjærulff and van der Gaag

[42].

Theorem 4. [5] Let B be a Bayesian network, x be a probability parameter θijk, y be a query

on posterior probability of the target variable Xt with interest in Xt = xt, and e be evidence

entered into B. The posterior probability y = p(xt|e)(x) is a fraction of two linear functions

of x.

p(xt|e)(x) =
p(xt, e)(x)

p(e)(x)
=

αx + β

γx + δ
.
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As presented by Laskey [45], the partial derivative ∂y/∂x measures the sensitivity of

a single query y to the probability parameter x given evidence e. The sensitivity value is

a first-order approximation to the changing behavior of the posterior probability y due to

small changes in x under the evidence scenario e. This definition of sensitivity is very useful

in model validation for building Bayesian networks, where the probability parameters are

tuned to make the beliefs more in line with expert’s estimate.

The partial derivative ∂y/∂x is the most popular measure of the sensitivity for a probabil-

ity parameter x with regard to query y given evidence scenario e. It is widely used in recent

research on sensitivity analysis of Bayesian networks [45, 5, 42, 7], and in the corresponding

software packages too. Examples include SamIam which is developed in the University of

California at Los Angels (available at http://reasoning.cs.ucla.edu/samiam/), and GeNIe,

which is developed in University of Pittsburgh (available at http://www.sis.pitt.edu/ genie/).

In this thesis, I refer this sensitivity definition to parameter sensitivity.

Definition 5 (Parameter Sensitivity). Let B, x, y and e be as before. y’s sensitivity with

regarding to the parameter x given e is a partial derivative:

S(x)y|e =
∂p(xt|e)

∂x
=

αδ − βγ

(γx + δ)2
. (5.4)

Note that 9i8not all of the variables in a network are of interest for queries. Usually only

a subset of the variables are the query target. For example, in a medical diagnostic network,

queries are more often posted to disease nodes rather than symptom nodes. When there are

multiple query targets T = {T1, T2, ..., Tn} whose posterior probabilities are of interest, the

parameter x may have n different sensitivity values corresponding to T given an evidence

e. Similarly, for a set of evidence cases e = {e1, e2, ..., em}, x’s sensitivity value varies in a

range determined by the different evidence scenarios. The maximum value is the worst-case

sensitivity for x with regard to T and e. Without loss of generality, I use the maximum

value of the parameter sensitivities for x with regard to T and e to represent x’s parameter

sensitivity.

With the definition of parameter sensitivity, we can now define the sensitivity of Bayesian

networks. One way to measure the sensitivity of a Bayesian network is to take the maximum
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value of its parameter sensitivities, which represents the worst case of the performance de-

terioration with the changes on its probability parameters. Another measure is to take the

average value of its parameter sensitivities, which represents the average robustness of the

network’s performance.

Definition 6 (Maximum Network Sensitivity). Let B be a Bayesian network and x be a prob-

ability parameter. With the evidence cases e = {e1, e2,..., em}, and the posterior probability

queries posted on target nodes T = {T1, T2, ..., Tn}, B’s maximum sensitivity is :

S(B)max = max
x,ti,ej

S(x)p(Ti=ti|ej) =
∂p(Ti = ti|ej)

∂x
=

αδ − βγ

(γx + δ)2
. (5.5)

The computation of the parameter sensitivities for a Bayesian network can be done

efficiently using the algorithms [42, 7]. Appendix A presents a even faster algorithm I

developed based on Kjærulff and van der Gaag’s algorithm [42] with the relevance reasoning

turned on.

5.4.2 Sensitivity Inequivalence

Theorem 7. Let B = (G, Θ) and B′ = (G′, Θ′) are two Markov equivalent Bayesian net-

works, and G differs from G′ by only one edge orientation. Suppose that the edge is Xi → Xj

in G. Let PaG
i be the parents of Xi in G, then PaG

i

⋃
Xj be the parents of Xi in G′. Denote

Xi’s possible states x1
i , ..., x

k
i , ..., x

ri
i , and Xj’s possible states x1

j , ..., x
w
j , ..., x

rj

j , and Pai
G’s

possible configurations Pa1
i , ..., Pal

i, ..., Paqi

i . In addition, denote p(xw
j ) to be the marginal

probability that Xj = xw
j .

Now let θB
ilk be the probability parameter in B that Xi = xk

i given PaG
i = Pal

i, and let

θB′

ilwk be the probability parameter in B′ that Xi = xk
i given PaG

i = Pal
i and Xj = xw

j . Let

p(xt, e)(x) = αx + β be the marginal probability of query Xt = xt with evidence e in term

of the parameter x = θB
ilk. And let α′, β′ be the coefficients of the corresponding sensitivity

function in term of θB′

ilwk. Then α′ = αp(xw
j )

β′ = α
∑

u 6=w θB′

ilukp(xu
j ) + β
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Proof. Since in G′, Xi’s parents are PaG
i

⋃
Xj, and θB′

ilwk = p(xk
i |xw

j , Pal
i). Therefore,

θB′

ilwkp(xw
j ) = p(xk

i , x
w
j |Pal

i). By marginalizing out Xj, we have

rj∑
w=1

θB′

ilwkp(xw
j ) = p(xk

i |Pal
i) = θB

ilk . (5.6)

Take the Equation 5.6 into the sensitivity function p(xt, e)(x) = αx + β for x = θB
ilk, the

probability p(xt, e) can be expressed as below:

p(xt, e)(x) = αθB
ilk + β

= α
∑rj

w=1 θB′

ilwkp(xw
j ) + β

= αp(xw
j )θB′

ilwk + α
∑

u 6=w θB′

ilukp(xu
j ) + β

According to the definition of sensitivity function, in p(xt, e)(x) = αθB
ilk + β, αθB

ilk is

the only term that contains θB
ilk and β does not contains θB

ilk. And Substituting θB
ilk with∑rj

w=1 θB′

ilwkp(xw
j ) only introduces term αp(xw

j )θB′

ilwk that contains θB′

ilwk. Therefore, in the

above expression, αp(xw
j )θB′

ilwk is the only term that contains θB′

ilwk and α
∑

u 6=w θB′

ilukp(xu
j ) + β

does not contain θB′

ilwk. The sensitivity function can be rewritten as a function of x = θB′

ilwk:

p(xt, e)(x) = α′x + β′ ,

where  α′ = αp(xw
j )

β′ = α
∑

u 6=w θB′

ilukp(xu
j ) + β .

Similarly, the sensitivity coefficients γ′ and δ′ have the relationship with γ and δ as stated

in the following lemma.

Lemma 8. Let θB
ilk and θB′

ilwk be as before. Let γ, δ be the coefficients of the sensitivity

function for θB
ilk, and let γ′, δ′ be the coefficients of the sensitivity function for θB′

ilwk,then, γ′ = γp(xw
j )

δ′ = γ
∑

u 6=w θB′

ilukp(xu
j ) + δ.
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From Theorem 7 and Lemma 8, we can get the relationship of the parameter sensitivities

in B and B′ for the probability parameters of the same variable that involved in the covered

edge reversal.

Theorem 9. Let θB
ilk and θB′

ilwk be as before. Let S(θB
ilk)y|e and S ′(θB′

ilwk)y|e be the parameter

sensitivities for θB
ilk and θB′

ilwk respectively. Then

S ′(θB′

ilwk)y|e = S(θB
ilk)y|ep(xw

j )

Proof. From the definition of parameter sensitivity in Definition 5, we have the sensitivity

of the parameter θB′

ilwk in B′ expressed as a fraction:

S ′(θB′

ilwk)y|e =
∂p(xt|e)
∂θB′

ilwk

=
α′δ′ − β′γ′

(γ′θB′
ilwk + δ′)2

Take the sensitivity coefficients α′, β′, γ′ and δ′ as derived in the Theorem 7 and Lemma 8

into the above definition formula, we have the numerator of this expression

α′δ′ − β′γ′ = αp(xw
j )(γ

∑
u 6=w θB′

ilukp(xu
j ) + δ)− (α

∑
u 6=w θB′

ilukp(xu
j ) + β)γp(xw

j )

= αp(xw
j )γ

∑
u 6=w θB′

ilukp(xu
j ) + αp(xw

j )δ − αp(xw
j )γ

∑
u 6=w θB′

ilukp(xu
j )− βγp(xw

j )

= (αδ − βγ)p(xw
j )

The denominator of the expression can be derived as

(γ′θB′

ilwk + δ′)2 = (γp(xw
j )θB′

ilwk + γ
∑

u 6=w θB′

ilukp(xu
j ) + δ)2

= (γ
∑rj

w=1 θB′

ilwkp(xw
j ) + δ)2

= (γθilk + δ)2

Therefore,

S ′(θB′

ilwk)y|e =
α′δ′ − β′γ′

(γ′θB′
ilwk + δ′)2

=
(αδ − βγ)p(xw

j )

(γθilk + δ)2
= S(θilk)y|ep(xw

j )
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Consider the maximum network sensitivity, unless the maximum value of the parameter

sensitivity is larger than the sensitivity values of the two nodes involved in the covered edge

reversal, the network sensitivity changes with the edge reversal.

Example: Let A and B be boolean random variables that take the values {a, ã} and {b, b̃},

respectively. Their joint distribution can be represented by two equivalent Bayesian networks:

1. A→ B (meta-parameters θ = (p(a),p(b|a),p(b|ã))),

2. A← B (meta-parameters θ = (p(a|b),p(a|b̃)), p(b)).

Note that we only need to use meta-parameters in the networks instead of all the parame-

ters defined in the probability distributions. For example, p(a) is used as a meta-parameter

for node A in network A → B and p(ã) is ignored. This is because p(ã) = 1 − p(a), and

therefore, the absolute values of their parameter sensitivities are same.

Obviously, the node A has no parents in the network A → B, but has B as its single

parent in the network A← B. Its parameter p(a) can be decomposed as:

p(a) = p(a|b)p(b) + p(a|b̃)p(b̃)

First let us consider the case of p(xt, e) = xB
ilk. For a query p(a) posed to the network

A → B, the sensitivity for the parameter p(a) equals to 1. Therefore, α = 1 and β = γ =

δ = 0; For the same query posed to the network A ← B, the sensitivity function for the

parameter p(a|b) reduced to a linear function. The coefficients of this linear function is α′ = p(b) = αp(b)

β′ = p(a|b̃)p(b̃) = p(a|b̃)p(b̃) + β ,

Thus the parameter sensitivity S ′(p(a|b))p(a) = S(p(a))p(a)p(b). The result verifies the The-

orems 7 and 9. Same result can be obtained for the other decomposing factor p(a|b̃).

Second, let us consider the case of p(xt, e) = xB′

ilwk, for example, the query p(a|b). Note

that the decomposition of p(a) can be rewritten as the following form,

p(a|b) =
p(a)− p(a|b̃)p(b̃)

p(b)
.
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For the query p(a|b) posed to the network A→ B, the sensitivity function for p(a) is a linear

functioin with the coefficients as:  α = 1
p(b)

β = −p(a|b̃)p(b̃)
p(b)

.

The corresponding sensitivity function in the network A ← B for the decomposing factor

p(a|b) is the constant 1. The sensitivity coefficients for parameter p(a|b) can be expressed as

a function of the sensitivity coefficients for parameter p(a) as below:

 α′ = 1 = 1
p(b)

p(b) = αp(b)

β′ = 0 = 1
p(b)

p(a|b̃)p(b̃)− p(a|b̃)p(b̃)
p(b)

= αp(a|b̃)p(b̃) + β .

And thus the parameter sensitivity S ′(p(a|b))p(a|b) = S(p(a))p(a|b)p(b). Again, the result veri-

fies the Theorems 7 and 9. And the same result can be obtained for the other decomposing

factor p(a|b̃).

Third, let us consider the case of p(xt, e) = p(xw
j ), for example, the query p(b). For the

network A → B, p(b) can be expressed in the meta-parameters as p(b) = p(a)p(b|a) + (1 −

p(a))p(b|ã). Then the vector of parameter sensitivities is

∂q(θ)

∂θ
= (p(b|a)− p(b|ã), p(a), 1− p(a)) (5.7)

For the equivalent network A ← B, p(b) is a meta-parameter encoded in the network.

Therefore, the change of query p(b) can be directly determined by the meta-parameter with-

out any computation using the rest of parameters. So the p(b)’s parameter sensitivity with

regard to the query equals to 1 and all other parameters’ sensitivity equal to 0. The vector

of parameter sensitivities is

∂q(θ)

∂θ
= (0, 0, 1)

That is, S ′(p(a|b))p(b) = S ′(p(a|b̃))p(b) = 0 but S(p(a))p(b) = p(b|a) − p(b|ã) 6= 0 unless

p(b|a) = p(b|ã). The result, again, verifies the Theorems 7 and 9.
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5.5 SENSITIVITY IS NOT AN APPROPRIATE CRITERION FOR

MODEL SELECTION

As shown in the previous section, using maximum value of parameter sensitivity as a measure

of sensitivity for Bayesian networks, the relationship between the sensitivities of equivalent

networks reduces to a single, equivalent, local probability distribution after one edge reversal.

The covered edge reversal transforms a DAG into one of its equivalent graphs. Populating

the two graphs with the corresponding probability distributions, the equivalent networks

only differ in the local probability distributions for the two nodes Xi and Xj that involve

in the edge reversal. When node Xi adds node Xj as additional parent in the equivalent

graph G′, node Xj must deletes node Xi from its original parent lists in the equivalent graph

G. Therefore, the conditional probability distributions for node Xi before the edge reversal

is decomposed under the condition of Xj’s states. The decomposition effect reflects the

sensitivity difference and actually gives a simple relationship between the sensitivities of the

equivalent networks.

Now that the sensitivities of equivalent networks can be different, and their relationship

can be expressed linearly to the local probability distributions, using sensitivity to guide

the search for model selection is therefore reduced to the comparison of local probability

distributions. However, the fact is that equivalent networks have the same joint probability

distribution over the domain. For two equivalent networks that have only one edge direction

different , the local probability distribution is equivalent. The only difference is the factor of

decomposition. But the decomposition is actually symmetrical. In the above example, the

probability distribution of node Xi in G is decomposed in G′ with the edge reversal, at the

mean time, the probability distributions of node Xj in G′ is decomposed in G. In this sense,

we say that the local probability distribution is equivalent. Therefore, the sensitivity which

is only different in a factor expressed by the probability distribution is not appropriate to

guide the search for Bayesian networks.

Furthermore, based on the linear relationship of the sensitivities of the equivalent net-

works, selecting a low sensitive model from the equivalence class is essentially same as se-

lecting a model with low probability values in the local distributions for the nodes involving

72



in the edge reversal. As shown by Renooij and van der Gaag [61], a uniform probability

distribution has the lowest sensitivity bounds. Selecting a low sensitive model using such a

sensitivity measure then prefers uniform distributions, which is often interpreted as a total

random process with the highest uncertainty. This violates the principles of Bayesian net-

work modelling, which encodes the expert knowledge at the best effort and is supposed to

prefer certain level of certainties in the models. But selecting the low sensitive model leads to

the contrary choice, if the sensitivity measure is based on the maximum value of parameter

sensitivities.

Therefore, we can draw the conclusion that model selection using (maximum) sensitivity

criterion based on parameter sensitivity is not appropriate for learning Bayesian networks.

5.5.1 Discussion

Note that the assumption of proportional scaling was used in Coupe’s theory. It is the

foundation of the theories that I derived. In case that the fundamental assumption does

not hold, for example, the co-vary of probability parameters in the same distribution takes

another form in the Bayesian network modelling, then the parameter sensitivity and the

network sensitivity may take a different form and the different results can be derived. Also,

the network sensitivity definition can take other form regardless of the parameter sensitivity

definition. Or other measures are used for network sensitivity. Consequently, the conclusion

of the chapter may be different.
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6.0 USING SENSITIVITY ANALYSIS FOR SELECTIVE LEARNING OF

PROBABILITY PARAMETERS

6.1 INTRODUCTION

The results of Chapter 4 indicate that a Bayesian network often shows different sensitivity

to different sets of its probability parameters. That means, some probability parameters

may have a larger effect on the network’s performance than others. In other words, some

probability parameters are more influential on the network performance. The erroneous

estimate of these important parameters may greatly deteriorate the network quality. This

happens in both knowledge engineering approach and the machine learning approach to

building Bayesian networks.

Traditionally, Bayesian networks have been used as a knowledge-engineering tool for

representing expert knowledge and reasoning under uncertainty. However, such knowledge-

engineering approach can be quite expensive and time-consuming. Over the last decade, the

research focus is shifting more towards learning Bayesian networks from data, especially with

increasing volumes of data available in biomedical, internet, and e-business applications. In

the past few years, significant progress has been made in developing techniques for learning

Bayesian networks [29].

Among the various learning approaches, the Bayesian learning, which utilizes the domain

knowledge as well as the data, is the most appealing and becomes the standard method for

estimating probability distributions [14]. In this learning method, the prior knowledge of a

domain expert are treated as an equivalent pseudo (or imaginary) data set which observes

Dirichlet distributions [27]. The Dirichlet exponent parameters, referred to as hyperparame-

ters, are used to represent the equivalent sample size of the expert’s prior knowledge. Since
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the number of the hyperparameters is same as the number of the probability parameters

needed in a Bayesian network, providing informative hyperparameters for such learning al-

gorithms is highly demanding. If uniform hyperparameters are used in learning, the only

possibility to learn the accurate probability parameters seems to be having a sufficiently

large data set.

However, the data set can be relatively scarce for learning the large number of probability

parameters. A real-domain Bayesian network has typically hundreds or thousands of the

probability parameters. This requires a large data sets in order to learn accurate parameters,

especially for probability distributions describing rare events. Unfortunately, in real-life

settings, the data set is often too scarce, and the probability values computed from the

data set by the learning methods without informative hyperparameters may therefore be

erroneous, especially for the rare events. One of such instances happens in the Bayesian

network models built for airplane diagnosis. In these networks, the Line Replaceable Units

(LRUs) are represented as parentless nodes with prior probabilities describing their failure

rates. The LRUs are manufactured highly reliable to achieve very high standard for flight

safety. They are required to support over 105 flight hours before any failure occurs. Therefore,

the prior probabilities of the LRU failures are extremely small, usually less than 10−5. In

such cases, there may be very few data describing failure situation even though data set for

learning is large.

On the other hand, not all parameters are equally important because their effect on the

network’s performance can be different [40, 74]. Sensitivity analysis of Bayesian networks

studies the network’s reliability in the presence of noise in its parameters. Therefore, applying

sensitivity analysis on a network can identify the most important parameters for further

refinement. It may be sufficient for learning a good-quality network only providing the

informative hyperparameters to the most important parameters without allocating effort to

acquire prior knowledge for all of the probability distributions.

In this chapter, I will present a method that uses sensitivity analysis for selective learning

of the probability parameters for Bayesian networks [78]. This method first runs sensitivity

analysis on the Bayesian network learned with uniform hyperparameters to identify the

most important probability parameters. Then it updates this set of probabilities to their
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accurate values by acquiring their informative hyperparameters. The process is repeated

until further elaboration of probabilities does not improve the performance of the network

or other stopping rules satisfied.

The following sections start with a review of methods for learning probability parame-

ters. It then argues that parameter sensitivity is a more appropriate measure for parameter

importance than mutual information. The following section describes a procedure for se-

lective learning of probability parameters for Bayesian networks. The experimental results

will be presented to illustrate the convergence of the learned probability distributions to

the true probability distributions. Performance comparison will be given between the learn-

ing methods with uniform hyperparameters, with informative hyperparameters for the most

important parameters, and the exhaustive update for all the parameters with informative

hyperparameters. Finally I will give a discussion on applying the selective learning method

in automatic model validation and active learning.

6.2 LEARNING PROBABILITY PARAMETERS

In classical statistical approach, the probability parameters are viewed as physical property,

though unknown, of the world. They are assumed objective constants that can be estimated

purely from a data set of training examples using maximum-likelihood (ML) estimates. The

log-likelihood logP (D|Θ) can be decomposed according to the graph structure G using the

chain-rule representation of joint probability in the equation 6.1 and expressed as below:

logP (D|Θ) =
∑
i,j,k

Nijklogθijk, (6.1)

where Nijk are sufficient statistics representing the number of data instances matching the

instantiations Xi = xk
i and Pai = pai

j. It is easy to show that this expression is maximized

by the frequencies (maximum-likelihood estimates) θ̂ijk =
Nijk

Nij
, where Nij is the number of

samples matching the assignment Pai = pai
j, and Nij =

∑ri

k=1 Nijk.

Bayesian approach takes a different view at the probability parameters. In Bayesian

statistics, the probabilities represent degree of subjective belief. The parameters are unknown
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variables governed by probability distributions. We assume some prior belief (e.g., based

on background knowledge or historical information) in Θ that is represented by the prior

distribution P (Θ). When a new data set D becomes available, this belief is updated according

to Bayes’ rule P (Θ|D) = P (D|Θ)P (Θ)
P (D)

. Thus, the Bayesian approach takes advantage of prior

knowledge about the parameters, which is especially useful when data are scarce. Imagine

all possible values of Θ from which this data set could have been generated. The maximum a

posteriori (MAP) estimate of Θ is the expectation of Θ with respect to our posterior beliefs

about its value:

Ep(Θ|D)(Θ) =

∫
Θ p(Θ|D) dΘ .

A common approach to modelling the prior belief over multinomial variables X with

the parameters Θ uses Dirichlet distribution, a conjugate distribution to multinomial, which

has a nice property that the posterior P (Θ|D) belongs to the same conjugate family as the

prior P (Θ) [27]. For a variable Xi ∈ X, its probability distribution θij ∈ Θ which observes

Dirichlet distribution is defined as follows:

Dir(θij|αij1, . . . , αijri
) ≡ Γ(αij)∏ri

k=1 Γ(αijk)

ri∏
k=1

θ
αijk−1

ijk ,

where αij =
∑ri

k=1 αijk and Γ(·) is the Gamma-function which satisfies Γ(x + 1) = xΓ(x)

and Γ(1) = 1. The exponent parameters αijk are often called hyperparameters, in order to

distinguish them from the θijk parameters of the corresponding multinomial distribution.

A common interpretation for αijk parameter is the number of times that an expert has

previously observed the instantiation of Xi = xk
i and Pai = pai

j. For that, the α-parameters

are also called equivalent sample size (i.e. the size of a data set that is an equivalent of

the expert’s knowledge). Thus, greater hyperparameters reflect higher confidence in our

prior. Given a set of observations D on a multinomial variable Xi with the parameters

θij = {θijk|1 ≤ k ≤ ri}, it is easy to see that the posterior P (θij|D) is also Dirichlet:

P (θij|D) ∝ P (D|θij)P (θij)

∝
ri∏

k=1

θ
Nijk

ijk ·
ri∏

k=1

θ
αijk−1

ijk

∝
ri∏

k=1

θ
Nijk+αijk−1

ijk .
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Therefore (taking into account normalization constant),

P (θij|D) = Dir(θij|αij1 + Nij1, ..., αijri
+ Nijri

) .

Given a network structure G, a complete data set D without missing values, a set of

Dirichlet prior parameters αijk, and the assumption of parameter independence, which says

that θij is independent of θij′ for all j 6= j′, it can be shown that the expected value of the

parameters of the network with respect to the posterior distribution p(θij|D, G, αij) can be

estimated by Equation 6.2:

θ̂ijk =
αijk + Nijk

αij + Nij

, (6.2)

where αij =
∑ri

k=1 αijk, and Nij =
∑ri

k=1 Nijk.

As is apparent from Equation 6.2, the Dirichlet exponents αijk completely specify a

user’s current knowledge about the domain for purposes of learning probability parameters

of the Bayesian network. Unfortunately, the specification of αijk for all possible (xk
i ,paj

i)

configurations corresponding to all values of i, j, and k is demanding, to say the least.

Most existing learning algorithms simply adopt an uninformative assignment. For example,

Cooper and Herskovits [14] suggest a global uniform distribution with αijk = 1 for all values

of i, j, and k; Buntine [3] suggests an local uniform assignment αijk = α/(ri · qi), where

ri is the number of Xi’s possible values and qi is the total number of Pai’s configuration.

With additional assumption of likelihood equivalence 1 and introducing complete network

structures 2, Heckerman et al.[30] derived an exponent constraint on the αijk parameters.

As a consequence, informative prior for the αijk parameters can be constructed by building

a complete network Sc and assessing an equivalent sample size α for Sc.

αijk = α · p(Xi = xk
i ,Pai = paj

i) ,

1Likelihood equivalence says that, for any database D, the probability of D is the same given hypotheses
corresponding to any two equivalent network structures. Two network structures are said to be equivalent
when they encode the same independence relationships between nodes, only that the directions of edges can
be different.

2A complete network is a network that has no missing edges. It encodes no assertions of conditional
independence. In a domain with n variables, there are n! complete network structures.
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where p(Xi = xk
i ,Pai = paj

i) is the joint probability in the complete network Sc. Whereas

assessing an equivalent sample size α is simple, building a complete network and fully quanti-

fying it can be formidable. Most of the current learning algorithms simply ignore the variety

of background knowledge of the domain experts by using uninformative prior for the αijk

hyperparameters.

As discussed above, both maximum-likelihood (ML) estimate and maximum a posteriori

(MAP) estimate can be used to quantify a Bayesian network. However, a typically huge num-

ber of probability parameters in a Bayesian network may require very large data set in order

to get accurate estimates, especially for probability distributions involving rare events. In

many real-world applications, data are relatively scarce and result into extreme (close to 0 or

1) values for the probability parameters, especially in ML estimates. The MAP estimate can

avoid this problem by choosing appropriate hyperparameters that represent domain back-

ground knowledge. But by using uniform distributions for the hyperparameters, the learning

algorithms actually ignore the background knowledge. Therefore, the MAP estimates may

also deviate from the true probability values. As discovered in experiment in Chapter 3, the

values of αijk hyperparameters indeed affect the accuracy of learned probability values.

Since fully eliciting all of the hyperparameters necessary for learning a Bayesian network

is just as expensive as fully quantifying the network in knowledge engineering approach,

Selective learning the most important parameters in a network may provide a feasible ap-

proach to efficient fusion of expert knowledge and data. This technique is useful when data

is limited and experts are available. In the following sections, I first argue that parameter

sensitivity is a more appropriate measure for the importance of a parameter than mutual

information with regard to the query target. Then I give more detail on the mixed approach

to quantifying Bayesian networks using both learning and knowledge elicitation methods.

6.2.1 Mutual Information vs. Sensitivity as Importance Measure

One possible measure for importance is mutual information, which is closely related to the

definition of entropy and conditional entropy. The entropy of a discrete random variable X
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with probability mass function p(x) = p(X = x) is defined as

H(X) = −
∑

x

p(x) log p(x) .

The conditional entropy of a pair discrete random variables Y given X is defined as

H(Y |X) =
∑

x p(x)H(Y |X = x)

= −
∑

x p(x)
∑

y p(y|x) log p(y|x)

= −
∑

x

∑
y p(x, y) log p(y|x) .

(6.3)

It is easy to show that H(Y |X) = 0 when Y is a function of X, i.e., Y = g(X). Since for all

x with p(x) > 0, the value of Y is determined as y = g(x) with probability p(y|x) = 1.

Mutual information measures the amount of information one random variable contains

about another. For two random variables X and Y with a joint probability function p(x, y),

the mutual information I(X; Y ) is the relative entropy between the joint distribution p(x, y)

and the product distribution p(x)p(y), and can be expressed by entropy and conditional

entropy,

I(X; Y ) =
∑

x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
= H(Y )−H(Y |X) = H(X)−H(X|Y ) .

When Y is a function of X, I(X; Y ) degrades to the the entropy of the responsive variable

H(Y ), in other words, it becomes self information. In this case, the information gain of

knowing X is zero to Y .

Therefore, following the sensitivity function in Theorem 4, when measuring the impor-

tance of a probability parameter θijk to the query q in form of “what is q = p(Xt = xt|E =

e)?”, the mutual information between θijk and q is equal to the entropy of the q, which is

determined purely by q’s distribution without any association with θijk, for any i, j, k. θijk’s

changes do not affect the mutual information I(q, θijk). Using mutual information as an

importance measure is not appropriate in such situation. The derivative ∂q/∂θijk is more

indicative as it is the first order approximation of q’s changes as the effect of θijk’s variation

in a small range.
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6.3 SELECTIVE LEARNING THE PROBABILITY PARAMETERS FOR

BAYESIAN NETWORKS

Using parameter sensitivity as defined in Equation 5.4, we can identify which parameters in

a Bayesian network are the most important with respect to the queries. Intuitively, when

the different parameters undergo the same amount of variation, those with higher parameter

sensitivity causes bigger changes in the query, and thus, affect the network’s performance

stronger. Efficient algorithms for sensitivity analysis in Bayesian networks, such as the one

we presented in Algorithm 3, made it possible to quickly identify the important probabil-

ity parameters. As a result, we can focus our effort to refine the prior hyperparameters

corresponding to the important parameters in Bayesian learning.

Algorithm 1 Selective Parameter Refinement

Input: a Bayesian network B = (G, Θ), sensitivity threshold δ, sensitivity decreasing rate

ε

Output: a Bayesian network B = (G, Θ′)

cose effective = true;

while cost effective do

(1) Calculate sensitivity S(θ) for all meta parameters θ in B;

(2) Identify a set of the most sensitive parameters paraIndex = {θ : S(θ) > δ};

if all paraIndex have been refined before, or cost of knowledge elicitation is unaffordable

then

cost effective = false;

else

(3) Extract priors α for all paraIndex from experts or new data;

(4) Recompute parameters for all paraIndex with α and data counts;

(5) Update B with the new parameters Θ′, s.t. B = (G, Θ′);

(6) Update δ = δ − ε ;

end if

end while

Output B
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As summarized in Algorithm 1, the parameters in a Bayesian network can be selectively

refined as the following procedure. It begins with a Bayesian network learned from data with

uniform distributions for the prior hyperparameters. Then importance of each meta para-

meter in the network is computed using sensitivity analysis algorithm. Given a threshold

of the importance value, those parameters with a higher value than the threshold are iden-

tified and put into the important parameter set. For the important parameters not refined

before, informative prior parameters are collected from domain experts or learned from new

data. With the updated informative hyperparameters for the important probability parame-

ters, MAP estimates are recomputed for these probabilities and the network is repopulated

with the newly learned probability parameters. Iteratively perform sensitivity analysis and

re-parameterize the network with informative priors until the stopping rules are satisfied.

In this iteratively repeated procedure, the domain experts can focus their attention on the

probabilities to which the network’s behavior shows high sensitivity. Those uninfluential

parameters can be left with crude estimates.

Generally, the stopping rules should take into account the following criteria. a) Satisfac-

tory behavior of the network is achieved. b) higher accuracy can no longer be attained due

to lack of knowledge. c) Obtaining more accurate estimates for parameters is not affordable

any more, e.g., due to the limited time available from the domain experts or the high cost

of the interviewing process. And, d) all important parameters are refined already. Note

that this procedure is iterative, and the threshold for classifying parameters into class of

importance can be adjusted to accommodate the availability of resource.

6.4 EXPERIMENT AND RESULTS

The goal of the experiment is to illustrate the convergence of probability distributions with

selective refinement to the true probability distributions. Three networks were used for the

test: CPCS (179 nodes version), HEPAR network, and ALARM network. The learning

data sets were generated by probabilistic logic sampling[32]. I did not use the two airplane

diagnostic networks PNEUMATIC and OIL because the simulated data for learning were
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extremely scarce. Even though the sample size was as large as 10000, there was not a single

data point generated for failure case. It turned out that all of the 10000 data points describe

the normal behavior of airplanes without any LRU failures. This is because these two

networks have extremely low prior probabilities (typically less than 10−5) for the parentless

nodes, and the probabilistic logic sampling generates data based on the prior probabilities

of the event occurrence. Therefore, the rare events may not show up in the data sets at all.

For each of the tested networks, I sampled the learning data set with size of 1000, 3000,

5000, and 10000, each for 10 times, totally there were 40 data sets for learning. For each

individual data set, I applied the Bayesian learning methods with the identical structure of

the original networks. The probability parameters were learned by three learning procedures

respectively. The first learning procedure took uniform hyperparameters. The second learn-

ing procedure took the informative hyperparameters for the important parameters. And the

third learning procedure took informative hyperparameters for all of the parameters. In the

following paragraphs, I will refer to the three learning methods as uniform learning, selective

learning, and exhaustive learning respectively.

A parameter was selected as important when the node it belongs to has a maximum

sensitivity value greater than 106. The sensitivity analysis was performed based on 50

randomly generated evidence scenarios for each of the networks. Same as the experiment in

Chapter , the query targets for sensitivity analysis are the diagnostic targets that are preset

into the GeNIe network format.

The informative hyperparameters take the value of the product of the sample size and

the corresponding probability parameters from the original benchmark networks. The as-

sumption is that the experts have experienced the domain events at least the same size as

the learning data, and the domain events they experienced have the same probabilities as

encoded in the original networks, i.e., the original benchmark networks represent the domain

expert knowledge faithfully.

I used Kullback Leibler (KL) distance [43], (also known as relative entropy) between the

learned distributions to the true distributions encoded in the original benchmark network

to measure the accuracy of the learned probability values. KL distance between the two

83



probability distributions p(x) and q(x) is defined as

D(p||q) =
∑

x

p(x)log
p(x)

q(x)
.

For each run of the learning methods, The KL distances between the learned probability

distributions and the original probability distributions were calculated. Their average and

standard deviation were also calculated across the 40 runs for each of the learning procedure.

Table 6.1 and 6.2 show the experimental results on accuracy and time respectively.

Table 6.1: Learning Performance: Accuracy Comparison (KL-Distances Between The

Learned Probability Distributions And The Original Probability Distributions)

uniform learning selective learning exhaustive learning

µ σ µ σ µ σ

ALARM 40.4584 0.1244 14.4195 1.7937 0.0000 0.0000

HEPAR II 35.0126 0.1878 14.3133 1.4885 0.0000 0.0000

CPCS 165.7404 0.3445 14.6955 0.5203 0.0000 0.0000

As expected, the probability distributions learned by the uniform learning method have

the largest divergence from the original probability distributions. The selective learning

method reduced the KL-divergence by at least two to three folds. The exhaustive learning

method produced zero distance between the learned probability and the original probability

distributions, this is no surprise because the hyperparameters are assigned the true values

based on the original probability distributions and the learning sample sizes. And the large

sample size (1000, 3000, 5000,and 10000) used in the experiment represented a very strong

opinion of the domain expert.

Figure 6.1 displays the difference of the performance in terms of the accuracy of the

learned probability distributions. Obviously, the more informative hyperparameters are pro-

vided in learning, the more accurate probability parameters can be obtained by the Bayesian

learning methods. Under the constraint of availability of knowledge elicitation or the suffi-

cient data set for learning, the selective update of the probability parameters improves the

quality of the learned Bayesian networks.
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Figure 6.1: Learning Result Comparison: KL-Distances Between The Learned Probability

Distributions And The Original Probability Distributions

Table 6.2: Learning Performance: Time Comparison (In Seconds)

uniform learning selective learning exhaustive learning

µ σ µ σ µ σ

ALARM 0.0007 0.0000 0.0020 0.0001 0.0015 0.0000

HEPAR II 0.0020 0.0001 0.0065 0.0004 0.0042 0.0000

CPCS 0.0145 0.0005 0.1138 0.0189 0.0311 0.0020
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Table 6.2 lists average and standard deviation of the time used by each of the learning

procedures. From the table, we see that the uniform learning method is the most fastest

one, the exhaustive learning method takes about double the time as unform learning method,

and the selective learning method takes triple the time or longer. The exhaustive learning

is slower because of additional time needed for the access of the probability parameters in

the original Bayesian networks and the computation of informative hyperparameters. The

selective learning is even slower because it needs extra time for sensitivity analysis. Overall,

the learning procedures run pretty fast for the tested networks, each run can be finished

within a second.

6.5 DISCUSSION

In real practice in building Bayesian networks, the cost of eliciting domain knowledge is the

most expensive, and most of the time, the bottleneck of the whole procedure for building

Bayesian networks. From the experimental results, we see that the selective learning method

improves the accuracy of probability parameters with a small cost of sensitivity analysis.

When learning Bayesian networks from data, if domain knowledge is accessible, the selective

learning method can be applied to gain high quality of network without going through the

full knowledge acquisition, which is often too expensive and time-consuming.

The same technique can also be applied to automatic model validation. If we have a

set of test scenarios and use it as learning data records, we can use the existing probability

parameters in the network as prior knowledge, and selectively update the important para-

meters by learning from the test scenarios, i.e., only apply minimum change to the network

model to make it perform well on the testing data. This way the network model is validated

automatically.

Similarly, the selective learning can also be used in active learning of Bayesian networks,

where sensitivity analysis can suggest which data is the most informative for future data

collection or data processing.
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6.5.1 Automating Model Validation Using Selective Learning

After a Bayesian network is built, validation is necessary to see if the network performs

on test data as expected. Traditionally the validation is a procedure of manually testing

the network using some real scenarios and tuning the network probability parameters so

that the network agrees on the expert judgement, for instance, the posterior probabilities

of certain variables of interest fall in the expected range of values, or the rank of probable

faults is reasonable. Although tools are available for suggesting a valid range of probability

parameters in order to meet the expert judgement, the validation process is manual and ad

hoc [6]. The same parameter can be changed subsequently many times in various test cases,

which in turn, erases the values that work just fine for the previous tested cases.

To automate the validation process, the selective learning method can be applied. Given

a Bayesian network model and a set of records of real scenarios, we can modify some of

the parameters of the model by selective learning from the data such that the model, with

minimal changes as necessary, will perform better on the data but, at the same time, that it

will not over fit the data. The selective learning is more appropriate for automatic validation

than the exhaustive learning, because the built model has certain level of validity, and min-

imal changes only applied when necessary, implies highest reliability. The hyperparameters

can be readily obtained from the existing model, as we did in the experiment. They are used

as weight so that the prior over the model still has some importance.

The problem is that the data records for validation test often contain only values for

observable nodes and, possibly, values for fault nodes. The values for intermediate nodes are

often missing so that the data records are highly sparse. EM(Expectation and Maximization)

algorithm [20] may be applied in such case, but the overall performance of learning in such

extreme case may need further study.

6.5.2 Active Learning

The algorithm for refining the probabilities can also be used for active information gathering.

The active learning enables selecting new data for those important probabilities for more

accurate estimate. When collecting data is very expensive, or when data volume is extremely
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large and requires too long time to process, it may be unaffordable to get all of the probability

parameters at the same accuracy level. Under these situations, selective learning can be

adapted to active learning, where sensitivity can be used as a heuristic to guide the future

data collection by querying for certain types of samples for learning.

As discussed above, the selective learning method can be applied not only in the learning

algorithms for quantifying Bayesian networks, but also in automatic model validation and

active learning etc. These will be two of my research focuses that I would like to pursue in

the near future.
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7.0 SUMMARY

The contribution of this thesis can be concluded as follows:

• The investigation and development of user interface tools for navigation in CPTs and

elicitation of probabilities. The tools enhance greatly user navigation in CPTs during the

process of model building and help to improve both the quality and speed of elicitation.

Also, the flexible navigation and visualization of probability distributions help to detect

unspecified probabilities and inconsistency in responses. Combined, these tools provide

a pleasant and powerful visual environment in which experts can give their qualitative

estimates of numerical probabilities. Except CPTree, all of the graphical tools are now

adopted in the formal release of GeNIe 2.0.

• The investigation and development of the objective evaluation of the elicitation meth-

ods for probability distributions and the structure of probabilistic models. I invented a

method based on machine learning the expert’s beliefs when data of the expert’s learning

knowledge is available. The evaluation approach is justified based on experimental re-

sults. It can be used to evaluate the elicitation methods for probabilities across different

users. It can also be used to assess the best technique for a given expert.

• The discovery that log-odds normal distribution is valid as a model for sensitivity analysis

only in the range of standard deviations where the distribution is unimodal. I also show

that using average posterior probabilities as criterion to measure the sensitivity may not

be the most indicative, especially when the distribution is very asymmetric as is the

case at nominal values close to zero or one. It is proposed, instead, to use the partial

ordering of the most probable causes of diagnosis, measured by a suitable lower confidence

bound on the change in the rank order. Preliminary results of the sensitivity analysis
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experiments were shown with three Bayesian networks built for diagnosis of airplane

systems. The results showed that some networks are more sensitive to imprecision in

probabilities than previously believed.

• The finding of relationship between the sensitivities of the equivalent networks, and using

sensitivity may not be appropriate for learning Bayesian network structures. I gave a

proof that Markov equivalent networks have different sensitivities but their sensitivities

have a simple relationship that can be expressed using the local probability distributions

corresponding to only one edge reversal. The establishment of this relationship leads us

to a conclusion that sensitivity is not an appropriate criterion for model selection.

• The development of method that uses sensitivity analysis for selective learning of the

probability parameters for Bayesian networks [78]. This method first runs sensitivity

analysis on the Bayesian network learned with uniform hyperparameters to identify the

most important probability parameters. Then it updates this set of probabilities to their

accurate values by acquiring their informative hyperparameters. The process is repeated

until further elaboration of probabilities does not improve the performance of the network

or other stopping rules satisfied. The empirical test results show the usefulness of this

technique in building Bayesian networks in the domain that both subjective expert and

data are available.

For the future work, it is interesting to investigate applying the selective learning tech-

nique in automatic model validation. If we have a set of test scenarios and use it as learning

data records, we can use the existing probability parameters in the network as prior knowl-

edge, and selectively update the important parameters by learning from the test scenarios,

i.e., only apply minimum change to the network model to make it perform well on the test-

ing data. This way the network model is validated automatically. Similarly, the selective

learning can also be used in active learning of Bayesian networks, where sensitivity analysis

can suggest which data is the most informative for future data collection or data processing.
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APPENDIX

EFFICIENT SENSITIVITY ANALYSIS USING RELEVANCE REASONING

A.1 INTRODUCTION

Traditional approaches to sensitivity analysis are often time-consuming [45, 40]. For exam-

ple, the experimental approach used in the test in chapter 4 added log-normal noise using

Monte Carlo sampling to probability parameters under investigation, and generated a new

Bayesian network 100 times for each evidence scenario at each noise level to get statisti-

cally sound results. This means that there were 100 belief updates in the entire network.

Other approaches may have a large space complexity. The differential approach [18] is such

an example. It first compiles a Bayesian network into a multivariate polynomial and then

computes the partial derivatives of this multi-linear function with respect to each variable.

But the exponential number of terms in the polynomial causes large space requirements and

makes the method computationally infeasible for large Bayesian networks.

Another approach to sensitivity analysis on Bayesian networks focuses on the relation

between the probability parameters of the network and the posterior marginals of targets,

i.e., the variables of interest. Such a relation can be expressed by a simple mathematical

function. Castillo et al. [5] showed that a posterior marginal probability is a quotient of two

functions that are linear in the parameter. Based on this property, sensitivity analysis in

Bayesian networks can be reduced to the task of computing the coefficients of this function

to determine the effect of variation in probability parameters. Castillo et al. showed that,

for each coefficient to be established, a single network evaluation is sufficient.
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Kjærulff and van der Gaag [42] presented a more efficient algorithm for performing sen-

sitivity analysis. Their algorithm requires only two outward propagations in a junction tree

for establishing the coefficients in the functions for all possible parameters. In addition,

an inward propagation is required for processing evidence. This method makes sensitivity

analysis more computationally efficient than previous approaches. However, the propagation

steps in the junction tree for the entire network, especially one with very large cliques, can

still be computationally expensive. Even worse, the method may be infeasible for sufficiently

large networks.

Thus, applying methods that can reduce the size of junction tree or the size of cliques

can improve the efficiency of sensitivity analysis. In this chapter, I propose an algorithm

for sensitivity analysis that is based on relevance-based decomposition [48]. The essence of

relevance-based decomposition is computing the marginal posterior distributions over a large

network by decomposing the network into partially overlapping sub-networks. Belief updat-

ing in the identified sub-networks can be significantly more efficient than belief updating in

the entire network. We show that because message propagation in the corresponding smaller

junction trees can be performed much faster, relevance-based decomposition typically speeds

up sensitivity analysis. Furthermore, it facilitates sensitivity analysis of very large networks,

for which junction tree methods are infeasible when applied to the entire network.

In the following sections, I will present Kjærulff and van der Gaag’s method for sensi-

tivity analysis based on the junction tree representation. I describe the relevance reasoning

techniques that is used for faster inference and efficient sensitivity analysis and propose an

algorithm for sensitivity analysis over multiple target variables based on relevance-based de-

composition. Finally, I present empirical results that show that the algorithm compares very

favorably to the sensitivity analysis algorithm based on the junction tree representation.

A.2 SENSITIVITY ANALYSIS IN JUNCTION TREE

In the junction tree representation of a Bayesian network, the expressions for p(xt, e) and

p(e) in terms of x can be derived from the potential of a clique containing both the variable

92



Xi and its parents Pai to which the parameter x pertains, we refer this clique to the host

clique of Xi. One inward propagation towards a clique containing the query target variable

Xt and a subsequent outward propagation with an instantiation Xt = xt are sufficient to

determine the values of α and β [42].

Theorem 10. [42] Let B, J, x, y and e be as before, and let K be a host clique of Xi in J .

Now let x change its value from original θijk to θ′ijk, and denote the corresponding parameter

vectors θij and θ′
ij respectively. Suppose that, in J , an inward propagation has been per-

formed towards a clique containing Xt, and suppose that a subsequent outward propagation

has been performed with the value Xt = xt. Now let φK = p(K, xt, e) be the resulting clique

potential for clique K. Then

y = p(xt, e)(x) =
∑

K φK

y′ = p′(xt, e)(x) =
∑

K φK

θ′
ij

θij
.

(.1)

Therefore, p(xt, e)(x) = αx + β with

α =
y − y′

θijk − θ′ijk
and β =

y′θijk − yθ′ijk
θijk − θ′ijk

. (.2)

Similarly, we can compute γ and δ with only one outward propagation after an inward

propagation with evidence e.

Lemma 11. [42] Let all symbols be as before. Suppose that the evidence e has been processed

in J by an inward and a subsequent outward propagation. Let φ∗
K = p(K, e) be the resulting

clique potential for clique K. Then

z = p(e)(x) =
∑

K φ∗
K

z′ = p′(e)(x) =
∑

K φ∗
K

θ′
ij

θij
.

(.3)

Then p(e)(x) = γx + δ , where

γ =
z − z′

θijk − θ′ijk
and δ =

z′θijk − zθ′ijk
θijk − θ′ijk

. (.4)
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Note that even though for the sake of convenience, we use single probability parameter x

in the description of the theorems, the computation method in Theorem 10 and Lemma 11

applies to the sensitivity analysis of the same query with respect to all parameters without

any other message propagation. Simply choose a host clique K of the owner variable of

the probability parameter under investigation in the junction tree J . Then in Equation .1,

replace φK and θ parameters with the right φK and the right probability distributions θij

and θ′
ij . Using Theorem 10 and Lemma 11, we can immediately obtain the values of the

corresponding coefficients with regard to the probability parameters.

Algorithm 2 Kjærulff and van der Gaag’s Algorithm for Sensitivity Analysis[42]

(1) Enter evidence e into the junction tree J and perform an inward propagation towards

a clique K containing the variable of interest Xt;

(2) Perform an outward propagation from K;

(3) Compute z and z′ using Equation .3;

(4) Compute the coefficients γ and δ using Equation .4 for all relevant parameters, locally

per clique;

(5) Perform another outward propagation from K with additional evidence Xt = xt;

(6) Compute y and y′ using Equation .1;

(7) Compute the coefficients α and β using Equation .2 for all relevant parameters, locally

per clique;

It follows from Theorem 4 that all parameter sensitivities of a Bayesian network can be

quantified by the coefficients of the sensitivity functions. To compute parameter sensitivity

S(x→ y|e), one only needs to bring the values of α, β, γ, δ, and x = θijk in Equation 5.4 and

solve the equation.

A.3 EFFICIENT SENSITIVITY ANALYSIS USING RELEVANCE

REASONING

Algorithm 2 is computationally more efficient than other approaches to sensitivity analysis

that require many message propagations and belief updates. However, propagation in a
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junction tree for an entire network, especially a network with large cliques, can still be

computationally expensive and, for sufficiently large networks, infeasible. A critical factor in

junction tree propagation is the size of the junction tree and especially the size of its cliques.

This depends directly on the topology of the graph underlying the Bayesian network or, more

precisely, to its connectivity. Generally, the exact inference algorithms, including message

propagation, is subject to growth in complexity that is exponential in the size of the graph.

And the worst case remains NP-hard [13].

Thus, applying methods that can reduce the size of junction trees or the size of cliques can

improve the efficiency of sensitivity analysis and even make it computationally feasible. Given

this observation, I adopted relevance-based decomposition technique [48] in junction tree

framework for sensitivity analysis. The approach allows for propagation only on the relevant

part of the Bayesian network with regard to the query targets given observed evidence.

In this section, I review the basic concepts of relevance reasoning that will be useful in

the algorithm, and present a multi-target sensitivity analysis algorithm based on relevance

reasoning technique.

The concept of relevance is relative to the model, to the focus of reasoning, and to the

context in which reasoning takes place [22]. In other words, relevance is identified in the graph

G with regard to the query target nodes T (i.e., reasoning focus), and the evidence nodes

E (i.e., reasoning context). The major relevance reasoning methods include d-separation,

deleting barren nodes, and network decomposition.

A.3.1 D-separation

The fundamental tool of relevance reasoning in graphical models is a basic property known

as the d-separation condition [19, 54] which ties the concept of conditional independence to

the structure of the graph. In the directed acyclic graph, a node A can have three kinds of

possible connections with other nodes.

1. Serial connection from B to C via A, e.g, B → A→ C, evidence from B to C is blocked

only when we have hard evidence about A.

2. Diverging connection where B and C have the common parent A, e.g., B ← A → C,
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evidence from B to C is blocked only when we have hard evidence about A.

3. Converging connection where A has parents B and C, e.g., B → A ← C, any evidence

about A results in evidence transmitted between B and C.

Definition 12 (D-separation). Two nodes X and Y in a Bayesian network are d-separated

if, for all paths between X and Y, there is an intermediate node A for which either:

1. the connection is serial or diverging and the state of A is known for certain; or

2. the connection is converging and neither A (nor any of its descendants) have received

any evidence at all.

Informally, an evidence node blocks the propagation of information from its ancestors to

its descendants. At the same time, it also makes all its ancestors interdependent. Removing

those nodes that are probabilistically independent from the target nodes given the evidence

nodes reduces the graph size and, therefore, allows for a faster message propagation in the

corresponding smaller junction tree.

A.3.2 Barren Nodes

Removal of barren nodes [64] is another factor that contributes to reducing of the graph size

for inference. Nodes are barren if they are neither evidence nor target and have no descen-

dants, or all of their descendants are barren. Barren nodes may depend on the evidence,

but they do not contribute to the change in probability of the target nodes. That is, barren

nodes are computationally irrelevant with respect to the target nodes. Formally, we define

the barren node rule as below:

Definition 13 (Barren Node Rule). Let ψ be a set of potentials in junction tree J for domain

X. Let T ⊂X be the target nodes and E ⊂X be evidence nodes, and let ψ↓T =
∑
X\T ψ

denote the result of marginalizing out all variables X except the members of T . For a node

Xi 6∈ T and Xi 6∈ E , if the only potential in ψ with Xi is of the form p(Xi|Xj), then Xi is

barren and can be marginalized by discarding p(Xi|Xj), i.e.,

p(T |E) = ψ↓T =
∑

X\{Xi}\T

ψ \ {p(Xi|Xj}
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From the barren node rule, it is straightforward to see that barren nodes have no impact

on computing posterior probabilities of target nodes given observed evidence. Therefore,

barren nodes have zero sensitivity values.

Theorem 14. Let Xi be a barren node in J with regard to a query y on target T given

evidence scenario e for E. And let x ∈ {θijk} be a probability parameter owned by Xi. Then,

S(x→ y|e) = 0.

A.3.3 An Algorithm for Sensitivity Analysis Based on Relevance Reasoning

Decomposition is the essence of relevance reasoning that I used to speed up computation in

Bayesian networks. Typically, decomposition is to divide a network B into several partially

overlapping subnetworks, where each subnetwork is computationally relevant to the group

of the target nodes, and all sets combined cover the entire network. This allows for perform-

ing the computation in the identified subnetworks with smaller junction trees and possibly

smaller clique sizes.

The detailed decomposition algorithm can be found in Lin and Druzdzel’s paper [48].

Here I outline the algorithm in the context of sensitivity analysis as below. For each of

the target nodes Ti, I use relevance reasoning techniques described in the previous sections,

mainly, d-separation and removing barren nodes, to identify a subnetwork that is relevant

for computing Ti given evidence e. Then the Algorithm 2 is employed to compute the

sensitivities for each of the probability parameters. The sensitivity value is updated when

necessary to keep its maximum value as the measure of the parameter’s sensitivity with

regard to the target set T.

The computational irrelevance holds true in most of the Bayesian network inference,

especially with partial observation as evidence. When there are multiple target nodes, de-

composition can speed up reasoning in many of the practical cases. In sensitivity analysis,

computation is typically expensive because the large number of probability parameters in

a Bayesian network requires hundreds and thousands of the coefficients to be established

in the sensitivity functions. Usually the query to a network is on more than one target

node, especially in case of diagnosis and trouble-shooting with multiple suspects of possible
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diseases and failures. In this case, for each target Ti ∈ T , the nodes are pruned in B that

are computationally irrelevant to updating p(Ti|E). The size of the subnetwork for Ti can

be much smaller than B when not all nodes in B are computationally relevant to Ti.

In the algorithm presented below, I select the cliques where the target nodes reside as

root in junction tree for message propagation. The algorithm computes parameter sensitiv-

ity values by applying Algorithm 2 in the subnetworks. Because the algorithm deals with

multiple targets, I choose for each parameter the maximum sensitivity value over all targets.

Algorithm 3 A Multi-Target Sensitivity Analysis Algorithm Using Relevance-Based De-

composition

Input: a Bayesian network B = (G, Θ), query y on a set of target nodes T , and evidence

scenario e on evidence nodes E

Output: Sensitivity value S(x→ y|e) for each x ∈ Θ

(1) Initialize S(x→ y|e) = 0 for all x ∈ Θ;

for each target Ti ∈ T , do

(2) Prune the irrelevant nodes in B with regard to Ti given e, denote the resulted

subnetwork Bs;

(3) Establish the junction tree J for Bs;

(4) Set the host clique of Ti as root of J ;

(5) Apply Algorithm 2 on J to compute the sensitivity coefficients;

(6) Compute S(x→ ti|e) for the relevant parameters x using Equation 5.4;

if S(x→ ti|e) > S(x→ y|e) then

(7) Update S(x→ y|e) = S(x→ ti|e);

end if

end for
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Table A1: Summary Of The Tested Networks

#nodes #parameters #targets #evidence ave#findings

ALARM 37 752 7 16 11.94

HEPAR II 72 2139 9 61 42.08

OIL 38 312 13 7 4.86

PNEUMATIC 56 2786 16 17 11.64

CPCS 179 17413 8 74 49.8

A.4 EMPIRICAL RESULTS

I implemented sensitivity analysis algorithm using relevance reasoning as described in Algo-

rithm 3. To show the performance difference due to relevance reasoning technique, I tested

Algorithm 3 against Algorithm 2 in computation of parameter sensitivities for comparison.

The implementation of the junction tree algorithm was identical for the two algorithms

except that Algorithm 3 has the relevance-based decomposition turned on.

The test bed consisted five real-domain Bayesian networks: ALARM, HEPAR II, OIL,

PNEUMATIC and CPCS. The ALARM [1] network is a model for diagnosing potential

anesthesia problems in operating rooms. ALARM has totally 37 nodes. Among them,

7 nodes represent 8 diagnostic problems and 16 represent medical findings such as patient

symptoms, signs and laboratory test results. HEPAR II [53] network is a model for diagnosing

liver disorders in a clinical setting. It contains 11 different liver diseases (represented by

9 nodes) and 61 medical findings. OIL and PNEUMATIC [41] are two Bayesian network

models built in The Boeing Company for diagnosis of 737 airplane oil and pneumatic systems

respectively. In these two models, the diagnostic targets are the relevant Line Replaceable

Units (LRUs). When a LRU fails, it triggers certain events visible to pilots in the cockpit

which are called Flight Deck Effects (FDEs), or other perceived anomalies such as abnormal

sounds, smells, or visible cues (e.g, smoke in the cabin). In the OIL and PNEUMATIC
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models, the FDEs are the main observables used for troubleshooting. The OIL model has 13

LRUs, 7 FDEs and 18 intermediate nodes. In the PNEUMATIC model, there are totally 56

nodes, among which, 16 are LRUs and 17 are FDEs. In addition, we tested the algorithms

on the CPCS (Computer based Patient Case Study) network [57] that was built for a subset

of the domain of internal medicine. The version of CPCS that we used in our test consists

totally 179 nodes 1. In this version of CPCS, 8 nodes describe internal diseases and 74 nodes

describe possible predispositors and symptoms.

For each of the networks, I used diagnostic targets (i.e., diseases or LRUs) as the target

nodes for relevance reasoning. For each observable or finding node (i.e., a symptom, a FDE),

I randomly chose its possible evidential and ignorant state, i.e., either an observation of its

possible states, or simply unknown state when there is no observation on this node at all.

Therefore, each evidence case is an n-dimentional array that contains such simulated states

for all n observable nodes. I generated a total of 50 test cases for each of the networks in

our experiment.

The networks in the test contain only discrete nodes. Table A1 summarizes some at-

tributes of these networks that may influence the run time of sensitivity analysis algorithms.

In the table, the “#parameters” column gives the total number of probability parameters in

the network, the “ave#findings” column gives the average number of the simulated evidential

states of the observable nodes.

I ran both sensitivity analysis algorithms to compute all the probability parameter sen-

sitivities with the generated test cases input as evidence. I recorded the run time of the

algorithms on each test case. The host computer was a Dell Latitude laptop with 1.2MHz

CPU and 512MB memory running Windows 2000. The test results for individual cases on

HEPAR II model and ALARM are presented in Figure A1 and Figure A2. Algorithm 3

(denoted in the figure by “w/ RR”) runs typically orders of magnitude faster than Algo-

rithm 2 (denoted in the figure by “w/o RR”). Table A2 lists the mean time and standard

deviation as summary on all test runs for each of the tested networks. Again, our algorithm

with relevance-based decomposition has considerably better performance on all of the tested

1The full CPCS network we have does not have meaningful diagnostic definition available. It consists
more than 400 nodes and is considered typically large network in real-domain applications.
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Table A2: Summary Of The Simulation Results For The Tested Networks

w/ RR w/o RR t-test

ALARM µ 0.0031 0.0251 4.9323

σ 0.0006 0.0050 ∗10−36

HEPAR II µ 0.0020 0.0659 2.1969

σ 0.0010 0.0406 ∗10−15

OIL µ 0.0004 0.0172 1.9220

σ 0.0006 0.0039 ∗10−35

PNEUMATIC µ 0.0117 1.0267 6.56

σ 0.0181 1.7251 ∗10−5

CPCS µ 0.0026 29.4158 2.12

σ 0.0018 29.1870 ∗10−9

networks.

Apparently, the total run time of Algorithm 2 on the PNEUMATIC model and the

CPCS network is much longer than the run time of other models in our test (see Figure A3).

Note that in Figure A3 and Figure A4, we used log scale of the run time to show the large

differences in run time in one picture. Figure A4 shows the averaged run time per parameter

in the tested networks for both algorithms. From the figure, we see that, for Algorithm 2, the

averaged run time of PNEUMATIC and CPCS are still longer than the average run time of

other networks. This confirms that the major reason for performance of sensitivity analysis

algorithm in junction tree reasoning framework is not only the number of parameters but

also the structure topology. The reason for a slow run on CPCS is obvious because of its

very large scale. The cause for a slow run on PNEUMATIC may be the network topology

which induces large clique sizes.

But the performance of Algorithm 3 is steadily faster than its counterpart on all of the

networks. This result proves that pruning irrelevant part of the networks and propagating

messages only in the relevant subnetworks with regard to the query targets provides signif-
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Figure A1: Run Time Of The Sensitivity Analysis Algorithms On Individual Test Cases Of

Hepar II

Figure A2: Run Time Of The Sensitivity Analysis Algorithms On Individual Test Cases Of

Alarm

Figure A3: Total Run Time Of The Sensitivity Analysis Algorithms With/without Relevance

Reasoning
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Figure A4: Run Time Per Parameter Of The Sensitivity Analysis Algorithms With/without

Relevance Reasoning

icant improvement on sensitivity analysis algorithms in junction tree framework. Table A2

shows the results of paired, one-tailed t-tests testing the hypotheses that the relevance-based

decomposition-based algorithm is as fast as the original algorithm. The hypothsis can be

rejected at a very low significance level (on the order of 10−36, 10−15, 10−35, 10−5 and 10−9).

A.5 DISCUSSION

I developed an efficient sensitivity analysis algorithm using relevance reasoning for Bayesian

networks. The algorithm is based on Kjærulff and van der Gaag’s algorithm using clustering

inference in junction tree framework. I added relevance-based decomposition to the inference

algorithm to speed up sensitivity analysis. I performed an empirical test on five real Bayesian

networks in comparison of the performance of the two algorithms. The test results show that

the relevance reasoning technique is in general very useful for faster sensitivity analysis.

I noted that Coupe and van der Gaag [16] present a method to preprocess a Bayesian net-

work and identify a sensitivity set based on the d-separation criterion. Using their method

can save the computational cost on the calculation of sensitivity coefficients for the irrel-

evant probability parameters given specific evidence and targets. But the junction trees

were built for the entire Bayesian networks, as if all of the probability parameters are rele-
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vant. Propagation in such junction trees does not take the advantage of the identification

of the sensitivity set. Therefore, the computation for the sensitivity coefficients of relevant

parameters is slower than the computation based on the decomposed, smaller junction trees.
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[49] Urbano Adolfo López Gómez. Communicating very Low Probability Events. PhD thesis,
Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh,
PA, May 1990.

[50] Miley W. Merkhofer. Quantifying judgmental uncertainty: Methodology, experiences,
and insights. IEEE Transactions on Systems, Man, amd Cybernetics, SMC-17(5):741–
752, 1987.

[51] M. Granger Morgan and Max Henrion. Uncertainty: A Guide to Dealing with Uncer-
tainty in Quantitative Risk and Policy Analysis. Cambridge University Press, Cam-
bridge, 1990.
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