19,005 research outputs found

    A conceptual framework and protocol for defining clinical decision support objectives applicable to medical specialties.

    Get PDF
    BackgroundThe U.S. Centers for Medicare and Medicaid Services established the Electronic Health Record (EHR) Incentive Program in 2009 to stimulate the adoption of EHRs. One component of the program requires eligible providers to implement clinical decision support (CDS) interventions that can improve performance on one or more quality measures pre-selected for each specialty. Because the unique decision-making challenges and existing HIT capabilities vary widely across specialties, the development of meaningful objectives for CDS within such programs must be supported by deliberative analysis.DesignWe developed a conceptual framework and protocol that combines evidence review with expert opinion to elicit clinically meaningful objectives for CDS directly from specialists. The framework links objectives for CDS to specialty-specific performance gaps while ensuring that a workable set of CDS opportunities are available to providers to address each performance gap. Performance gaps may include those with well-established quality measures but also priorities identified by specialists based on their clinical experience. Moreover, objectives are not constrained to performance gaps with existing CDS technologies, but rather may include those for which CDS tools might reasonably be expected to be developed in the near term, for example, by the beginning of Stage 3 of the EHR Incentive program. The protocol uses a modified Delphi expert panel process to elicit and prioritize CDS meaningful use objectives. Experts first rate the importance of performance gaps, beginning with a candidate list generated through an environmental scan and supplemented through nominations by panelists. For the highest priority performance gaps, panelists then rate the extent to which existing or future CDS interventions, characterized jointly as "CDS opportunities," might impact each performance gap and the extent to which each CDS opportunity is compatible with specialists' clinical workflows. The protocol was tested by expert panels representing four clinical specialties: oncology, orthopedic surgery, interventional cardiology, and pediatrics

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    A Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to Knowledge Acquisition

    Get PDF
    Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to knowledge acquisition is proposed in this paper as a viable solution to the challenges of rule-based unwieldiness and sharp boundary problem in building a fuzzy rule-based expert system. The fuzzy models were based on domain experts’ opinion about the data description. The proposed approach is committed to modelling of a compact Fuzzy Rule-Based Expert Systems. It is also aimed at providing a platform for instant update of the knowledge-base in case new knowledge is discovered. The insight to the new approach strategies and underlining assumptions, the structure of FARME-D and its practical application in medical domain was discussed. Also, the modalities for the validation of the FARME-D approach were discussed

    Appropriateness of oral anticoagulants for long-term treatment of atrial fibrillation in older people: results of an evidence-based review and international consensus validation process (OAC-FORTA 2016)

    Get PDF
    Background: Age appropriateness of anticoagulants for stroke prevention in atrial fibrillation is uncertain. Objective: To review oral anticoagulants for the treatment of atrial fibrillation in older (age >65 years) people and to classify appropriate and inappropriate drugs based on efficacy, safety and tolerability using the Fit-fOR-The-Aged (FORTA) classification. Methods: We performed a structured comprehensive review of controlled clinical trials and summaries of individual product characteristics to assess study and total patient numbers, quality of major outcome data and data of geriatric relevance. The resulting evidence was discussed in a round table with an interdisciplinary panel of ten European experts. Decisions on age appropriateness were made using a Delphi process. Results: For the eight drugs included, 380 citations were identified. The primary outcome results were reported in 32 clinical trials with explicit and relevant data on older people. Though over 24,000 patients aged >75/80 years were studied for warfarin, data on geriatric syndromes were rare (two studies reporting on frailty/falls/mental status) and missing for all other compounds. Apixaban was rated FORTA-A (highly beneficial). Other non-vitamin K antagonist oral anticoagulants (including low/high-intensity dabigatran and high-intensity edoxaban) and warfarin were assigned to FORTA-B (beneficial). Phenprocoumon, acenocoumarol and fluindione were rated FORTA-C (questionable), mainly reflecting the absence of data. Conclusions: All non-vitamin K antagonist oral anticoagulants and warfarin were classified as beneficial or very beneficial in older persons (FORTA-A or -B), underlining the overall positive assessment of the risk/benefit ratio for these drugs. For other vitamin-K antagonists regionally used in Europe, the lack of evidence should challenge current practice

    How Registries Can Help Performance Measurement Improve Care

    Get PDF
    Suggests ways to better utilize databases of clinical information to evaluate care processes and outcomes and improve measurements of healthcare quality and costs, comparative clinical effectiveness research, and medical product safety surveillance

    Simulated case management of home telemonitoring to assess the impact of different alert algorithms on work-load and clinical decisions

    Get PDF
    © 2017 The Author(s). Background: Home telemonitoring (HTM) of chronic heart failure (HF) promises to improve care by timely indications when a patient's condition is worsening. Simple rules of sudden weight change have been demonstrated to generate many alerts with poor sensitivity. Trend alert algorithms and bio-impedance (a more sensitive marker of fluid change), should produce fewer false alerts and reduce workload. However, comparisons between such approaches on the decisions made and the time spent reviewing alerts has not been studied. Methods: Using HTM data from an observational trial of 91 HF patients, a simulated telemonitoring station was created and used to present virtual caseloads to clinicians experienced with HF HTM systems. Clinicians were randomised to either a simple (i.e. an increase of 2 kg in the past 3 days) or advanced alert method (either a moving average weight algorithm or bio-impedance cumulative sum algorithm). Results: In total 16 clinicians reviewed the caseloads, 8 randomised to a simple alert method and 8 to the advanced alert methods. Total time to review the caseloads was lower in the advanced arms than the simple arm (80 ± 42 vs. 149 ± 82 min) but agreements on actions between clinicians were low (Fleiss kappa 0.33 and 0.31) and despite having high sensitivity many alerts in the bio-impedance arm were not considered to need further action. Conclusion: Advanced alerting algorithms with higher specificity are likely to reduce the time spent by clinicians and increase the percentage of time spent on changes rated as most meaningful. Work is needed to present bio-impedance alerts in a manner which is intuitive for clinicians
    corecore