71 research outputs found

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    A Router Architecture for Connection-Oriented Service Guarantees in the MANGO Clockless Network-on-Chip

    Get PDF
    Submitted on behalf of EDAA (http://www.edaa.com/)International audienceOn-chip networks for future system-on-chip designs need simple, high performance implementations. In order to promote system-level integrity, guaranteed services (GS) need to be provided. We propose a network-on-chip (NoC) router architecture to support this, and demonstrate with a CMOS standard cell design. Our implementation is based on clockless circuit techniques, and thus inherently supports a modular, GALS-oriented design flow. Our router exploits virtual channels to provide connection-oriented GS, as well as connection-less best-effort (BE) routing. The architecture is highly flexible, in that support for different types of BE routing and GS arbitration can be easily plugged into the router

    Packetizing OCP Transactions in the MANGO Network-on-Chip

    Get PDF

    Asynchronous design of Networks-on-Chip

    Get PDF

    An OCP Compliant Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip

    Get PDF
    The demand for IP reuse and system level scalability in System-on-Chip (SoC) designs is growing. Network-onchip (NoC) constitutes a viable solution space to emerging SoC design challenges. In this paper we describe an OCP compliant network adapter (NA) architecture for the MANGO NoC. The NA decouples communication and computation, providing memory-mapped OCP transactions based on primitive message-passing services of the network. Also, it facilitates GALS-type systems, by adapting to the clockless network. This helps leverage a modular SoC design flow. We evaluate performance and cost of 0.13 µm CMOS standard cell instantiations of the architecture. I

    A Scheduling Discipline for Latency and Bandwidth Guarantees in Asynchronous Network-on-Chip

    Get PDF

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    Modelling, Synthesis, and Configuration of Networks-on-Chips

    Get PDF
    • …
    corecore