

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Modelling, Synthesis, and Configuration of Networks-on-Chips

Stuart, Matthias Bo; Sparsø, Jens; Nannarelli, Alberto

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Stuart, M. B., Sparsø, J., & Nannarelli, A. (2010). Modelling, Synthesis, and Configuration of Networks-on-Chips.
Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). (IMM-PHD-2010-230).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13736456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/modelling-synthesis-and-configuration-of-networksonchips(b54aff8f-a32a-430d-b2f7-92029dfb5484).html

Modelling, Synthesis, and Configuration
of Networks-on-Chips

Matthias Bo Stuart

Kongens Lyngby 2010
IMM-PHD-2010-230

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

This thesis presents three contributions in two different areas of network-on-
chip and system-on-chip research: Application modelling and identifying and
solving different optimization problems related to two specific network-on-chip
architectures. The contribution related to application modelling is an analytical
method for deriving the worst-case traffic pattern caused by an application and
the cache-coherence protocol in a cache-coherent shared-memory system. The
contributions related to network-on-chip optimization problems consist of two
parts: The development and evaluation of six heuristics for solving the network
synthesis problem in the MANGO network-on-chip, and the identification and
formalization of the ReNoC configuration problem together with three heuristics
for solving it.

i

ii

Resumé

Denne afhandling præsenterer tre bidrag til to forskningsomr̊ader inden for
network-on-chip og system-on-chip omr̊aderne: Modellering af applikationer
og identifikation og løsning af forskellige optimeringsproblemer vedrørende to
forskellige network-on-chip arkitekturer. Bidraget til applikationsmodellering
er en analytisk metode til at udlede worst-case trafikmønsteret for̊arsaget af en
applikation og cachekohærens protokollen i et cachekohærent shared-memory
system. Bidragene til network-on-chip optimeringsproblemer best̊ar af to dele:
Udvikling og evaluering af seks heuristikker til at løse netværkssynteseprob-
lemet i MANGO arkitekturen og identifikation og formalisering af ReNoC kon-
figureringsproblemet samt tre heuristikker til at løse det.

iii

iv

Preface

This thesis was prepared at DTU Informatics, the Technical University of Den-
mark in partial fulfillment of the requirements for acquiring the Ph.D. degree
in engineering.

The work has been supervised by Professor Jens Sparsø and co-supervised
by Associate Professor Alberto Nannarelli.

Kgs. Lyngby, Februar 2010

Matthias Bo Stuart

v

vi

Acknowledgements

Many people have helped me arriving at this point. I am grateful to you all.

vii

viii

List of Figures

2.1 Example of a task graph. 9
2.2 Example of a bandwidth graph. 11

3.1 An example of representing a solution in genetic algorithms. . . . 23
3.2 An example of a crossover operation. 24

5.1 A cache-coherent non-uniform memory access system. 34
5.2 Results for large caches. 43
5.3 Results for small caches. 44
5.4 Worst-case results. 45
5.5 Best-case results. 46
5.6 Comparison of the execution time. 47

6.1 Main components of the MANGO router. 50
6.2 Implementation of guaranteed services in MANGO. 51
6.3 Results for PBGs with 16 IP cores. 63
6.4 Results for PBGs with 64 IP cores. 65
6.5 Results for PBGs with 256 IP cores. 66

7.1 The ReNoC architecture. 71
7.2 An example application. 72
7.3 A logical topology with unidirectional links. 73
7.4 Network model of ReNoC. 75
7.5 Example of unconfiguring topology switches. 77
7.6 Pseudo code for the constructive algorithm. 79
7.7 An example of the constructive algorithm. 82
7.8 Pseudo code for generating initial solutions. 84

ix

x LIST OF FIGURES

7.9 Pseudo code for specialization A. 85
7.10 An example of specialization A. 85
7.11 Pseudo code for specialization B. 87
7.12 An example of specialization B. 88
7.13 ReNoC power overhead. 92
7.14 Comparison of the physical architectures. 93
7.15 Comparison of the heuristics on the two physical architectures. . 95

List of Tables

5.1 The contributions to a bandwidth graph from an input edge. . . 38
5.2 The contributions to a bandwidth graph from an output edge. . . 40

6.1 Tuning parameter values for simulated annealing. 62
6.2 Tuning parameter values for tabu search. 62

7.1 Energy- and power-consumption of ReNoC components. 90
7.2 Characteristics of the applications. 91
7.3 Characteristics of the best found solutions. 94

xi

xii LIST OF TABLES

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Network-on-Chip . 1
1.2 Research Challenges . 3
1.3 Contributions . 4
1.4 Thesis Overview . 5

2 Modelling Approaches 7
2.1 Graph-Based Modelling . 7

2.1.1 Applications . 7
2.1.2 Networks-on-Chip . 10

2.2 Simulation-Based Modelling . 12
2.2.1 Applications . 13
2.2.2 Networks-on-Chip . 15

3 Optimization Algorithms 17
3.1 General Terminology . 18
3.2 Greedy Algorithms . 20
3.3 Simulated Annealing . 21
3.4 Tabu Search . 21
3.5 Genetic Algorithms . 22

xiii

xiv CONTENTS

3.6 Heuristic Comparison . 25

4 Related Work 27
4.1 Application Mapping . 27

4.1.1 Task Graph on IP Cores 27
4.1.2 IP Cores on Interconnect Interfaces 28

4.2 Network-on-Chip Synthesis . 29
4.3 Application-Specific Routing . 30
4.4 Network-on-Chip Architectures 31
4.5 Derivation of Bandwidth Graphs from Task Graphs 31

5 Analytical Derivation of Bandwidth Graphs 33
5.1 (Distributed) Shared Memory . 33
5.2 Analytical Derivation of Bandwidth Graphs 35
5.3 Simulator . 40
5.4 Experiments . 41
5.5 Results . 42
5.6 Summary . 47

6 Topology Synthesis in MANGO 49
6.1 The MANGO Network-on-Chip 49
6.2 Problem Formulation . 52
6.3 Modelling Latency in MANGO 53
6.4 Optimization Approaches . 56

6.4.1 Simulated Annealing . 57
6.4.2 Tabu Search . 57

6.5 Experiments . 60
6.6 Results . 62

6.6.1 Parameter Tuning . 62
6.6.2 Parameter Testing . 63

6.7 Summary . 67

7 The ReNoC Configuration Problem 69
7.1 The ReNoC Architecture . 69
7.2 Modelling ReNoC . 74
7.3 Optimization Approaches . 78

7.3.1 Constructive Algorithm 80
7.3.2 Specializing Algorithms 83

7.4 Experiments . 88

CONTENTS xv

7.5 Results . 91
7.6 Summary . 97

8 Conclusions and Future Directions 99
8.1 Conclusions and Perspective . 99
8.2 Future Directions . 101

xvi CONTENTS

Chapter 1

Introduction

Over the past decades, scaling of integrated circuit manufacturing technologies
has allowed ever-increasing complex circuits and systems to be built. Thus, the
amount of area occupied by a single microcontroller in the past is currently
and in the future occupied by multi- and many-core systems featuring multiple
microprocessors and on-chip peripherals. Such a whole system integrated on a
single chip is commonly called a System-on-Chip (SoC). One requirement for
such systems to be feasible is the existence of a scalable interconnect. Almost a
decade ago, network-on-chip (NoC) was suggested for this purpose [5, 25]. Since
then, it has evolved into a research area of its own with many different imple-
mentations of networks, models, algorithms for solving optimization problems,
etc.

The next section gives a brief introduction to networks-on-chips. The reader
is assumed to be mostly familiar with the general topic. If not, several textbooks
on the area of interconnection networks [23, 28] can be recommended together
with a survey of research and practices of network-on-chip [8]. Section 1.2
presents some of the research challenges in network-on-chip, while section 1.3
outlines the contributions of the work presented in this thesis to the research
area of network-on-chip. Section 1.4 gives an overview of the thesis’ structure.

1.1 Network-on-Chip

As mentioned above, increasingly complex systems can be built on a single chip.
However, this complexity comes with a price in increased design effort, time-to-

1

2 1. Introduction

market, and production costs (particularly non-recurring engineering costs) of
these systems. These factors have led to the prediction that application-specific
integrated circuits (ASICs) are becoming an infeasible way of implementation
for many applications [45].

One way of handling these challenges is to improve the reusability of designs
by providing processors, memories, on-chip peripherals, etc. with standardized
interfaces to the interconnect. This allows system designers to use off-the-shelves
components from multiple independent vendors to construct their systems. For
this reason, the processors, memories, peripherals, etc. are commonly denoted
intellectual property (IP) cores.

Such IP-based systems require an interconnect with similarly standardized
interfaces. Although busses can accommodate these interfaces, they do not
scale well with the increasing number of IP cores: As every transaction on a
bus is broadcast to every device attached to the bus, each IP core’s share of
bandwidth is inversely proportional to the number of IP cores connected to the
bus. Furthermore, connecting many IP cores to a single bus increases the bus’
capacitance, leading to higher power consumption for driving the bus. Point-
to-point links scale poorly to larger systems and also complicate the reuse of IP
cores, as a given core may need two links in one system, but only one link in
another system.

NoCs provide a scalable interconnect without any of these issues at an in-
creased cost in the complexity of the interconnect. However, it is the only known
generic type of interconnect that scales well with the number of IP cores, which
makes it highly interesting for on-chip, system-level interconnects.

NoCs can be used as the interconnect in both ASICs and in generic plat-
forms on which many different applications may execute. For ASICs, the NoC
can be adapted to the specific application, providing a highly efficient intercon-
nect, while for generic platforms, a similarly generic NoC can be used to provide
a flexible interconnect, servicing multiple different applications’ communication
requirements. The decision to use either a customized or a generic implemen-
tation is a trade-off of cost versus efficiency: ASICs provide high efficiency at
high cost, while platform chips provide low efficiency (compared to ASICs) at
low cost. The ReNoC architecture [71] – which is considered in chapter 7 –
aims at providing an interconnect with high efficiency at low cost by allowing
the interconnect in a generic platform to be adapted to a specific application’s
requirements at run-time of the application.

The design and implementation of links, router, and network interface archi-
tectures is one aspect of NoCs. Another aspect is the tools and design method-
ologies that are required to make the use of NoCs feasible. Some of the individual

1.2. Research Challenges 3

tools and algorithms are described in the related work in chapter 4, while some
of the proposed overall design flows are discussed here.

Many researchers have suggested design flows for application-specific NoCs
[14, 30, 55]. While these design flows have been developed for different NoCs,
they share certain characteristics that are common to most design flows: The
flow takes a number of inputs including a model of the application, power, area,
and performance models of the NoC components, and different constraints that
the output must satisfy. These inputs are given to one or more tools that
perform various tasks such as mapping the application to IP cores, mapping IP
cores to network interfaces, synthesizing a network topology, finding deadlock-
free routes in this topology, performing floorplanning of the synthesized system,
and solving optimization problems that are specific to the considered NoC. The
output of each individual tool is evaluated against the given constraints, which
may trigger the restart of one of the earlier steps in the flow, thereby causing
multiple iterations of the design to be made. Once an acceptable solution is
found, the design flow provides synthesis, simulation, and verification models as
needed. Use of these design flows is claimed to produce high-quality solutions
in a matter of hours instead of weeks [55].

The research presented in this thesis is in the context of two specific NoC
architectures: Message passing, Asynchronous Network-on-chip providing Guar-
anteed services over OCP interfaces (MANGO) [7] and the Reconfigurable NoC
(ReNoC) architecture [71]. MANGO is an asynchronous or clockless network-
on-chip architecture that provides absolute guarantees on the worst-case latency
experienced by individual flits. ReNoC is an architectural extension rather than
a specific NoC implementation and allows the network topology in which routers
are connected to be configured after the NoC has been manufactured. More de-
tails about these NoCs are provided in chapters 6 and 7 respectively.

1.2 Research Challenges

This section provides a brief overview of some of the research challenges related
to NoCs in connection to the work presented in this thesis. A detailed overview
of NoC research problems can be found in [50].

Communication characterization refers to the problem of determining the
traffic pattern between IP cores a given application is expected to cause.
Depending on the available information about the application, the diffi-
culty of determining the traffic pattern varies. The overall flow of the

4 1. Introduction

application may be extracted from various sources, such as design docu-
ments or through simulation or instrumentation [77, 42]. In chapter 5, re-
search into analytically determining the traffic pattern in a cache-coherent,
shared-memory system from an abstract model of the application is pre-
sented.

Application mapping refers both to the problem of mapping applications to
IP cores and to that of mapping IP cores to network interfaces (in [50] the
former is referred to as application scheduling). Multiple approaches to
solving these problems are discussed in the related work. Although these
problems are not considered in this thesis, they are included for the sake
of completeness.

NoC synthesis refers to the synthesis of either application-specific or generic,
irregular or conventional network topologies. Several methods for solving
this problem are discussed in the related work. Chapter 6 presents research
into synthesizing application-specific topologies in the MANGO network-
on-chip, while topology synthesis is also part of the ReNoC configuration
problem, which is the topic of chapter 7.

Routing concerns the paths packets take through the network. The challenges
in routing include avoiding congestion, minimizing energy consumption,
and avoiding (or recovering from) deadlocks. Finding deadlock-free rout-
ing algorithms for irregular, application-specific network topologies is also
part of the ReNoC configuration problem presented in chapter 7.

Topology mapping is a problem specific to the ReNoC architecture. As de-
scribed above, ReNoC aims at providing highly efficient, low cost intercon-
nects in generic platform chips. The topology mapping problem consists of
mapping an application-specific network topology onto a generic network
topology in a power-efficient manner. Topology mapping is also part of
the ReNoC configuration problem presented in chapter 7.

1.3 Contributions

This thesis presents three contributions: (1) Communication characterization
in cache-coherent shared-memory systems, (2) development and evaluation of
heuristics for synthesizing application-specific topologies in MANGO, and (3)
identification and formalization of the ReNoC configuration problem and devel-
opment and evaluation of heuristics for solving this problem.

1.4. Thesis Overview 5

The first contribution (chapter 5) constitutes research into analytically de-
riving the worst-case traffic pattern in a cache-coherent shared-memory system
from an abstract model (known as a task graph) of an application. Commonly,
a simple one-to-one mapping of communication edges in task graphs to commu-
nication in traffic patterns has been assumed, corresponding to message passing
directly between processors. The work presented here relaxes this assumption
and provides an analytical method for deciding the traffic pattern caused by
task graphs when taking the cache-coherence protocol into consideration.

The second contribution (chapter 6) concerns the synthesis of application-
specific topologies in the context of MANGO. Six different optimization algo-
rithms are designed and evaluated. An untraditional approach is taken to the
optimization objective: Rather than being given a specific goal, the optimiza-
tion algorithms attempt to find the topology that allows the fastest possible
execution of the application providing the designer – who knows the actual tar-
get execution time – with knowledge that can be used to decide between adding
features to the application or slowing down the interconnect to save power.

The third contribution (chapter 7) is related to the ReNoC architecture
[71]. The contributions of this thesis to ReNoC consist of the identification and
formalization of the ReNoC configuration problem as well as the design, imple-
mentation, and evaluation of a number of optimization algorithms for solving
it. The problem consists of three parts: Topology synthesis, topology map-
ping, and deadlock-free routing in highly irregular network topologies in which
bidirectional links can not be assumed.

1.4 Thesis Overview

This thesis is structured in eight chapters of which this introduction is the
first. The chapters can be divided in three categories: Background material
and related work, contributions, and conclusions and future directions. The
following presents an overview and a reader’s guide to the remainder of this
thesis.

Background Material and Related Work

Chapter 2: Presents an overview of the modelling approaches used in later
chapters. Specific models (task graphs and bandwidth graphs) are defined.
The reader who is familiar with the subject should pay attention to the
definitions, as they are used in later chapters.

6 1. Introduction

Chapter 3: Presents an overview of and introduction to optimization algo-
rithms. The reader who is familiar with this subject may skip most of the
chapter, but should skim section 3.6, where the basic technique used for
comparing different heuristics in chapter 6 is presented.

Chapter 4: Presents the related work.

Contributions

Chapter 5: Presents the first contribution as outlined above.

Chapter 6: Presents the second contribution as outlined above.

Chapter 7: Presents the third contribution as outlined above.

Conclusions and Future Directions

Chapter 8: Presents the conclusions, puts the presented research into perspec-
tive, and discusses future directions.

Chapter 2

Modelling Approaches

This chapter defines some of the models used for representing applications and
networks when doing design-space exploration. The chapter focuses on the mod-
els that are applied in later chapters. Some of the models are expanded upon in
those chapters in order to make them better reflect the applications or networks
being considered. The aim of the models is to sufficiently accurately reflect
the characteristics of applications and networks-on-chip such that they may be
used for performing design-space exploration and for analytically determining
whether or not certain properties – such as absence of deadlocks – are fulfilled.
Using models for this purpose obviously allows for more rapid evaluation of a
larger number of points in the design space than having to actually manufacture
each point in order to evaluate it. First, graph-based modelling is discussed in
section 2.1 followed by simulation-based modelling in section 2.2.

2.1 Graph-Based Modelling

This section presents various graph-based models for applications and networks.

2.1.1 Applications

This section presents two graph-based models for applications: Task Graphs and
Bandwidth Graphs. These models have both been used in NoC research previ-
ously, although various different names have been used to describe them. The
models capture the behavior of an application at different levels: Task graphs

7

8 2. Modelling Approaches

model dependencies and communication between the computational parts of
applications, while bandwidth graphs model the actual communication between
IP cores.

Task Graphs

Def. 2.1. A task graph TG = (T,D) is a directed, acyclic graph, where a
vertex t ∈ T represents a task, and an edge di,j ∈ D represents a dependency
on ti by tj . Each vertex ti represents computation in the application and has an
attribute characterizing its computational demand on different IP cores, e.g., by
associating an instruction count with each task and a clocks-per-instruction with
each IP core [66]. Each edge di,j represents communication in the application
and has a weight ndata,i indicating the amount of data transferred along the
edge.

Task graphs are useful at modelling static applications, i.e., applications
whose execution does not vary significantly due to variations in the application’s
environment, including inputs and ordering of memory accesses, especially ac-
cesses to synchronization variables. For example, safety critical applications
with hard deadlines typically exhibit such static behavior, while applications in
general may – but do not necessarily have to – do so. When using task graphs
to model applications with such variations, care much be taken not to not fall
into the following pitfall caused by making too broad assumptions about the
correspondence between the model and the actual execution of the application.

Consider the example in Figure 2.1, where a producer puts two workloads
(a large one, wl, and a small one, ws) on a queue, and two consumers each read
the workloads off the queue and perform the associated computations. The task
graph in Figure 2.1(e) models this situation. Assuming this task graph is used
to map the application on a heterogeneous multiprocessor system with one fast
and one slow processor for the consumers, wl would be mapped to the faster
processor. However, during execution, the allocation of workloads to consumer
threads depends entirely on the order in which the consumer threads acquire the
semaphore s and the order in which workloads are put on the queue. Thus, even
if the task graph in Figure 2.1(e) is an accurate model of the application’s flow, it
is not a useful model for application mapping, as the application’s behavior (here
the allocation of workloads to consumers) is not static. This is one example,
where the model – although correct – does not reflect the application’s execution,
where it is threads, not workloads, that are allocated to processors, and the
allocation of workloads to threads is arbitrary.

2.1. Graph-Based Modelling 9

Producer(Queue q, Semaphore s)
1: Generate workloads wl and ws
2: Pass s
3: Put wl and ws on q
4: Release s

Consumer(Queue q, Semaphore s)
1: while true do
2: Pass s
3: Get workload w from q
4: Release s
5: Solve w

(a) (b)

main()
1: Queue q
2: Semaphore s
3: Start thread Producer(q, s)
4: Start thread Consumer(q, s)
5: Start thread Consumer(q, s)

(c) (d)

(e)

Figure 2.1: An example of an application modelled by a task graph: (a), (b),
and (c) show the application in pseudo code, (d) shows a schematic of the
application, and (e) shows a task graph model of the application.

10 2. Modelling Approaches

One outstanding issue with respect to task graphs is determining the traffic
pattern that mapping a given task graph on a given system results in. So far,
it has been assumed that data is communicated directly between processors
[66, 41]. However, this requires sufficiently large memories at each processing
node, which is unrealistic for applications with data sets larger than a few
megabytes in on-chip systems. Chapter 5 presents research into determining
the traffic pattern (bandwidth graph) resulting from mapping a task graph on
a cache-coherent shared-memory system.

A widely used tool for generating synthetic task graphs is Task Graphs For
Free (TGFF) [26].

Bandwidth Graphs

Def. 2.2. A bandwidth graph is a directed graph BG = (O,C), where each
vertex oi ∈ O represents an IP core and each directed edge ci,j = (oi, oj) ∈ C
represents a connection from oi to oj . Each edge ci,j has a weight bi,j that
indicates the connection’s bandwidth requirement.

Bandwidth graphs are used to model the communication between IP cores.1

The graph can model parts or the entirety of an application’s communication,
e.g., a bandwidth graph could be used to model the main flows of a signal-
processing application, while irregular traffic between IP cores, such as updat-
ing filter coefficients, is omitted. Care must be taken when using such partial
bandwidth graphs for synthesizing topologies for example, as some synthesis
algorithms may produce topologies that are not strongly connected, i.e., a pair
of IP cores oi and oj may exist such that there is no path in the network topol-
ogy from oi to oj . An example of a bandwidth graph is the VOPD application
shown in Figure 2.2 and also in Figure 7.2(a).

Bandwidth graphs are widely used – sometimes with minor adaptations – in
literature, although they are given different names in different papers, including
Core Graphs [55], Application Task Graphs [78], and Application Characteriza-
tion Graphs [38].

2.1.2 Networks-on-Chip

Various aspects of networks in general, and thereby also networks-on-chip, may
also be modelled using graphs. In the following, the common graph models for

1Actually, the modelled communication is between network interfaces. However, the sim-
plification that communication is between IP cores is used in general and in this thesis.

2.1. Graph-Based Modelling 11

70 362

362

362

49
27

357

353

16

300

500 313

94

313

vld rld iscan

iDCT iQ ac/dc

str
mem

us VOPR

VOP
MEM

ARM pad

Figure 2.2: An example of a bandwidth graph. The vertices are IP cores, the
edges are connections on which data flows, and the weights on edges indicate
the bandwidth of the data flowing along the connection.

network topologies and dependencies in networks are described.

Network Topology

Def. 2.3. A network topology graph is a directed graph NTG = (N,L), where
each vertex n ∈ N describes a network node consisting of a router, a network
interface, and an IP core, and each edge li,j = (ni, nj) ∈ L describes a link
between the network nodes ni and nj . Links may be associated with a capacity,
indicating either the peak or sustainable bandwidth that may be communicated
along the link.

The model as described here specifies that network nodes consist of one
router, one network interface, and one IP core, which is not always the case.
For networks with multiple IP cores connected to each router, the model may be
changed such that a network node includes all IP cores connected to the router
or by letting a vertex describe either a router or an IP core.

The model as described in definition 2.3 is used in chapter 6 in connection
with the MANGO network-on-chip, while a more detailed model for modelling
ReNoC-based networks-on-chip is presented in chapter 7.

12 2. Modelling Approaches

Routing Dependencies

Graphs can also be used to model routing dependencies in the network [20].
This can be used to analytically determine whether routing deadlocks may or
may not occur.

Def. 2.4. A dependency graph is a directed graph DG = (C,D), where each
vertex c ∈ C represents a channel in the network, and each edge (ci, cj) = di,j ∈
D represents a routing dependency by ci on cj , i.e., a flit travelling on ci may
continue on cj .

A dependency graph describes all the possible paths flits may take through
the network, and absence of cycles in this graph guarantees freedom from routing
deadlocks. Assuming that flits are eventually extracted from the network at
their destination, absence of cycles in the dependency graph guarantees absence
of deadlocks in general in the network. This assumption is not always valid
however: Consider for example a memory module with finite input and output
buffers. If the input buffer is full, no further flits carrying requests to the
memory can be extracted from the network until the memory has extracted a
request from its input buffer. However, in order to do so, the memory needs
to make a reply to the previous request in case of a read, which requires it to
be allowed to insert a packet in the network. In this way, a dependency arises
between two channels through the memory, although no routing dependency
exists between the two channels. This type of dependencies is termed message
dependencies and the deadlocks that may arise from them message dependent
deadlocks. These have been discussed in the context of Networks-on-Chip by
Hansson et al. [34]. These deadlocks are not considered further in this thesis, as
the presented methods do not concern the network implementations, but rather
assume that the considered networks are free from such deadlocks.

2.2 Simulation-Based Modelling

An alternative approach to determining the behavior of an application or a
system is to make a model that may be used to simulate the application or
system. Arguably, some of the models described above may be used in sim-
ulations, e.g., a bandwidth graph can be input to traffic generators that then
produce the specified traffic pattern, but the bandwidth graph by itself can
not be simulated. The main difference between graph and simulation-based

2.2. Simulation-Based Modelling 13

modelling is in the type of information that may be extracted from the mod-
els: Graph-based and other similar models provide qualitative information, e.g.,
that routing deadlocks are not possible, which can not be readily determined
through simulation, while simulation provides quantitative information, such as
a network’s saturation bandwidth, which is difficult to determine from graph-
based models. Simulation models of applications and networks are discussed in
sections 2.2.1 and 2.2.2 respectively.

2.2.1 Applications

As described above, the graph-based models may be used as a basis for simulat-
ing the traffic patterns that an application gives rise to. This section concerns
variations of executing the actual application in a simulator rather than sim-
ulating a model of an application. As the main interest of applications in the
context of networks-on-chip is on the communication rather than the computa-
tional aspects, the focus is on the communication generated by the application
that should be serviced by the network.

Full Simulations

Given an application, the most straight-forward way of determining its traffic
pattern is to simulate the execution of the application on the intended target
system. In this way, the expected traffic pattern for one or more given use-
cases can be determined. However, as discussed for task graphs previously,
even small variations in the system may lead to completely different traffic
patterns: Using the same example as in Figure 2.1, assuming that the data sets
for ws and wl are located in different on-chip memories or accessed through
different memory controllers, a change in the order in which the semaphore is
acquired changes the traffic pattern significantly, as the processors executing the
consumer threads access different memories depending on the order of acquiring
the semaphore. Therefore, in some cases, a single run of the simulator does not
produce one traffic pattern that is representative for all possible executions of
the application. However, if all relevant aspects of the application and the
system on which it is executing are deterministic, a simulation yields the exact
traffic pattern produced by the application.

The disadvantage of full system simulations is the fact that such simulations
are very time consuming. Making use of simulations for design-space exploration
leads to longer iterations than is the case when using models. One method for
speeding up the simulation is to perform the computational parts of the appli-

14 2. Modelling Approaches

cation natively on the computer running the simulation, while only simulating
the interconnect. Such an approach is possible using SystemC [40]. Another
method is to perform the full simulation once and record the communication in
a manner that allows it to be played back, as is described in the following.

Trace-Based Simulations

An alternative to doing a full system simulation in every iteration of a design-
space exploration, is to do the full system simulation once, and – in the case
of shared-memory architectures – record every memory access made by every
processor, thereby creating a memory access trace that may be played back
essentially recreating the application’s traffic pattern. The advantage of this
approach is the omission of actual computation during the simulation: Only
the parts of the application that are relevant to the interconnect are simulated,
potentially speeding up the simulation significantly.

One implementation of such a trace-based simulation is the Reactive IP
Emulator (RIPE) [1, 46, 48, 47]. The reactive part of RIPE comes from the fact
that the trace contains information about both semaphores and the timing of
requests. The timing information allows the emulator to be reactive to variations
in the interconnect’s latency and the latency of processing memory requests,
e.g., the emulator waits for a specific number of clock cycles after receiving the
response to a read before issuing the next memory request emulating the IP
core being stalled while waiting for the response, then performing the required
computation, and then issuing the next request. Changes in the interconnect’s
latency and the utilization of the memory are thus reflected in the generated
traffic pattern.

Semaphores are handled by emulating the application’s behavior upon en-
countering a semaphore instead of playing back the recorded trace. For example,
the recorded trace might indicate that the semaphore is acquired on the 200th
attempt at doing so, and playing back this recording would only be correct, if ex-
actly 200 attempts are actually required to pass it. In truth, changes in the sys-
tem during design-space exploration may cause the correct number of attempts
to change significantly, thereby making the trace-based simulation inaccurate.
Therefore, the emulator emulates the behavior of these parts rather than sim-
ply plays back the recorded trace. Although this produces the correct behavior
of accessing semaphores, it does not capture the consequences of changing the
order in which different threads or processes acquire the semaphore: Again us-
ing the example in Figure 2.1, the processor that executed wl when the trace
was recorded emulates executing wl in all subsequent playbacks of the trace

2.2. Simulation-Based Modelling 15

irrespectively of the order in which the semaphore is acquired by the different
processors.

2.2.2 Networks-on-Chip

While the previous section discussed simulating the application in a full system
simulation, this section concerns simulating the interconnect. Simulation models
of a network-on-chip – like any other hardware component – range from register-
transfer level (RTL) models over behavioral models to high level models [72, 24].
The trade-offs of these different modelling levels – higher accuracy and slower
simulation at lower levels of modelling and lower accuracy and faster simulation
at higher levels of modelling – are considered well-known, and are not discussed
further here.

16 2. Modelling Approaches

Chapter 3

Optimization Algorithms

This chapter gives a brief introduction to the optimization or search algorithms
that have been used in the related work and that form the basis of the opti-
mization algorithms described in chapters 6 and 7. A reader who is familiar
with this subject may skip most of this chapter, but should pay attention to
section 3.6, where it is presented how to compare different heuristics.

Many of the challenges or problems in NoC research listed in section 1.2
require a vast problem space to be searched for a solution that both is optimal
with respect to a certain optimization criteria (e.g., power consumption, latency,
throughput) and satisfies one or more constraints (e.g., freedom of deadlocks in
routing, upper bound on router sizes, maximum power consumption, minimum
throughput). Common for these problems is that the search space typically
is too large to be searched exhaustively for the optimal solution, and that no
method has yet been found that is guaranteed to find the optimal solution with
less than an exhaustive search. In the following, the main focus is on solving
optimization problems using heuristics. A few papers in relation to NoC have
used linear programming methods to solve some of the related optimization
problems [68, 69]. However, these methods fall outside the purview of this
thesis.

This chapter first presents the general terminology used in describing opti-
mization problems and heuristics for solving them. Then, four different meta-
heuristics (greedy algorithms, simulated annealing, tabu search, and genetic
algorithms) are described, and finally, the methodology used for comparing
heuristics is presented. A textbook on the subject of meta-heuristics is [15],
which contains most of the meta-heuristics described here. The only exception

17

18 3. Optimization Algorithms

is greedy algorithms, which are discussed in many textbooks, including [19].

3.1 General Terminology

This section describes the general terminology used in optimization or search
algorithms or heuristics.

Optimization objective: The optimization objective is the measure that is
being optimized, e.g., power consumption. Some optimization problems
have multiple optimization objectives.

Constraints: An optimization problem can specify a set of constraints that a
solution must satisfy.

Solution: A solution to an optimization problem is any solution that satisfies
the given constraints. The solution that has the optimal value for the
optimization objective is denoted the optimal solution. The best solution
is typically used to denote the best found solution during the search, i.e.,
the solution for which the value of the optimization objective is closest
to that of the optimal solution. In most cases, the best solution is not
the optimal one, while if it is the case that the optimal solution has been
found, it is often very difficult to prove.

Evaluation function: A function that calculates the value of the optimization
objective for a given solution.

Search space: The search space is the set of solutions that is searched in order
to find the best solution. Due to the size of the search space, this set is
normally not physically maintained in the implementation of a heuristic.
Rather, a method is provided for producing a solution, either from scratch
or based on one or more given solutions. Procedurally generating solutions
may lead to invalid solutions, i.e., solutions that violate the constraints
specified in the optimization problem, and that therefore are outside of
the search space. How such invalid solutions are handled depends on the
specific heuristic, but the common options are to ignore them or to change
them in such a way that they become valid.

Initial solution: Most heuristics start out with one or more initial solutions.
This may be any valid solution and is typically either a randomly generated

3.1. General Terminology 19

solution or generated by a method that is expected to yield a good solu-
tion. The second approach may however lead to initial solutions close to a
local optimum rather than the global optimum, artificially restricting the
search. A compromise between these extremes is to add non-determinism
to the method used to generate what is expected to be a good solution,
e.g., GRASP [29]. However, this approach may also lead to initial solu-
tions that are close to local optima, but far from the global optimum.

Multi-objective optimization: Some optimization problems require multi-
ple objectives to be optimized, e.g., synthesizing a NoC topology with the
best combination of high bandwidth and low power consumption. With
a single objective, deciding if one solution is better than another one is
easy: The lower the power consumption, the better. With multiple objec-
tives making this decision becomes more difficult: Is a topology that can
support a uniform traffic pattern at 50 Mb/s using 10 mW better than
one that can support the same traffic pattern at 100 Mb/s using 20 mW?
In some cases, the multiple values can be combined in one using addition
or multiplication, thereby allowing the use of a heuristic that optimizes
a single objective. However, if the individual values of objectives are of
interest, the notion of a single best solution disappears. Instead, a set of
non-dominated solutions is found, where one solution is said to dominate
another solution if and only if it is no worse in all objectives than the other
solution, and it is strictly better in at least one objective than the other
solution [15]. The optimization algorithm thus provides the user with a
number of solutions from which the user must decide the best one.

Parameters: Most meta-heuristics have one or more parameters for which
good values need to be found for each optimization problem the heuristic
is applied to. These parameters are described together with the heuristic
in the following sections, while the method for evaluating the quality of a
given set of parameter values is described in section 3.6.

Move: Some heuristics (simulated annealing, tabu search, etc.) make use of
walks through the solution space. A move is a change in a solution ac-
cording to a well-defined method, e.g., changing which IP core a task is
mapped to in the application mapping problem.

Neighborhood: A solution’s neighborhood consists of those solutions that
may be reached in a single move from the given solution. In general,
an n-bit neighborhood is the set of reachable solutions in a single move,

20 3. Optimization Algorithms

where a move is defined as changing n “bits” in the solution, e.g., changing
which IP cores n tasks are mapped to in the application mapping problem.

Given a solution, choosing which move to make can be done in different
ways, depending on the heuristic. Some heuristics choose a random move,
others make an exhaustive search of the neighborhood and choose the best
move, while yet others start an exhaustive search of the neighborhood but
terminate the search when the first move producing a better solution than
the current one has been found. The preferred method depends on both
the heuristic and the type and size of the problem.

The meta-heuristics described here may also be used to iteratively construct
a single solution. In this case, a move adds (or possibly subtracts) from the
solution being created.

3.2 Greedy Algorithms

Greedy algorithms are the conceptually simplest of the optimization algorithms.
First, an initial solution is found using one of the methods described above.
Then, in each iteration, the move that leads to the best neighboring solution is
made, i.e., the move for which the evaluation of the resulting solution is the best.
Depending on the implementation of the algorithm, termination may occur in
one of two cases:

• With the above description of greedy algorithms, it is possible for the algo-
rithm to take one move away from a local optimum, as the neighborhood
in general does not include the current solution. However, in most cases,
the algorithm will return to the local optimum in the next iteration. Thus,
the termination criterion should be that the same solution is encountered
for the second time.

• Alternatively, the search can be terminated when no move exists that
improves the current solution.

The disadvantage of greedy algorithms is that no mechanism exists for es-
caping local optima. Even in the first case above, where it is possible for the
algorithm to take one move away from the local optimum, it will return in the
very next iteration. This is caused by a lack of memory, which is addressed by
the tabu search meta-heuristic described in section 3.4.

3.3. Simulated Annealing 21

3.3 Simulated Annealing

Simulated annealing provides a mechanism for escaping local optima in the form
of randomly accepting a move which results in a worse solution than the current
one. This is done by making use of an exponentially decreasing temperature

τi = τ αi

start (3.1)

where τi is the temperature in iteration i, τstart is the starting temperature, and
α is the rate at which the temperature decreases. Given the current solution,
sc, a move resulting in a new solution, sn, an evaluation function, eval(s), and a
random number between zero and one, r, the new solution is accepted – becomes
the current solution for the next iteration – if either of two conditions are true:

eval(sn) < eval(sc) (3.2)

r < exp
(
− (eval(sn)− eval(sc))

τi

)
(3.3)

The condition in equation 3.2 states that the new solution will be accepted, if it is
better with respect to the optimization criteria than the current solution. This is
similar to the behavior of greedy algorithms. The condition in equation 3.3 gives
a probabilistic acceptance of a worse solution with respect to the optimization
criteria. The probability of accepting a worse solution depends on the iteration
number (through the decrease of the temperature) and on the difference between
the quality – measured by the evaluation function – of the current and new
solutions: As the temperature decreases, the probability also decreases, while
as the difference decreases, the probability increases, i.e., a new solution that is
not significantly worse than the current one has a higher probability of being
accepted than a new solution that is much worse than the current one. Through
the condition in equation 3.3, simulated annealing is able to escape a local
optimum.

Simulated annealing has two parameters: The starting temperature τstart

and the rate of cooling α. The intervals for these parameters’ values are]0;∞[
for τstart and]0; 1[for α, both belonging to the set of real numbers.

3.4 Tabu Search

Tabu search is another meta-heuristic with the capability of escaping local op-
tima. The basic functionality is similar to that of greedy algorithms, where

22 3. Optimization Algorithms

the entire neighborhood is searched for the best move, but memory is added
to the algorithm to avoid the situation where one move is taken out of a local
optimum, only to take the same (or inverse) move back to the local optimum in
the very next iteration.

This added memory is a list of the most recently encountered solutions or
moves made, which are disallowed as long as they reside in the list – they are
said to be tabu. A move (or solution) is added to the list when it is taken and
is removed again after a certain number of iterations. In essence, the list works
as a fixed capacity FIFO buffer, where one move is inserted at the front of the
buffer, and another move falls off the end of the buffer in every iteration. The
number of iterations that a move is tabu is called the length of the tabu list.
This is tabu search’s only parameter and may take any natural number as its
value.

The tabu list represents a case of short term memory: The memory only goes
back as many iterations as the length of the tabu list. Depending on the nature
of the optimization problem, longer term memory than what can reasonably be
provided by tabu lists may be required to escape local optima. The means for
acquiring this long term memory is highly dependent on the optimization prob-
lem, but one example is a counter that keeps track of the number of iterations
without finding a new best solution. This long term memory may for example
be used to detect that the search is in an uninteresting part of the search space.

When the long term memory indicates a lack of progress, a change in the
search can be forced. This is typically done as either an intensification or as
a diversification. Intensifying the search means that the search focuses on the
area around a known, good solution to see if an even better solution may be
found in that area. Diversifying the search means that a change is made to the
current solution such that the search is forced to a different part of the search
space. As with deciding on the means for acquiring long term memory in the
tabu search, deciding on what to do, when that long term memory indicates a
lack of progress is highly dependent on the optimization problem.

3.5 Genetic Algorithms

Genetic algorithms are a different type of heuristic compared to the other heuris-
tics described here. The name and functionality of the meta-heuristic are in-
spired by biology. The meta-heuristic brings Darwinian evolution to optimiza-
tion problems: Instead of a single current solution, a set of current solutions
– called the population – is maintained. In each iteration, a number of solu-

3.5. Genetic Algorithms 23

Task (array index) 0 1 2 3 4 5 6 7
IP core 3 1 2 2 0 3 1 2

Figure 3.1: A representation of a solution to the task mapping problem. In
genetic algorithms, each task’s mapping is considered a gene in the solution.

tions are paired to produce offspring (new solutions) consisting of parts of both
parent solutions, and a number of solutions are eliminated from the population.
Additionally, a mutation may be applied to the new solutions in the population.
The aim of the heuristic is to have good solutions evolve into better ones, while
bad solutions are pruned from the population.

Each solution is considered as made up of a number of genes, each gene
describing part of the solution. As an example, consider the application mapping
problem: If the solution is represented by an array describing which IP core
each task is mapped to as illustrated in Figure 3.1, each element in the array
is considered a gene. When pairing two solutions, a crossover operator is used
to determine which genes are taken from each of the parent solutions and put
into the child solutions, each child getting a complementary set of genes from
each parent. Considering the example in Figure 3.2, the parent solutions are
shown in (a) and (b) with a crossover point between genes 3 and 4. The child
in (c) receives all the genes on one side of the crossover point – indicated with
gray – from one parent and all the genes on the other side of the crossover point
from the other parent, while the child in (d) receives the complementary set of
genes from each parent. While the crossover point is typically decided randomly
for each pair of parents, the number of crossover points is a parameter of the
meta-heuristic. When multiple crossover points are used, the children receive
the set of genes from the first gene to the first crossover point from one parent,
the set of genes between the first and second crossover points from the other
parent, the set of genes between the second and third crossover points from the
first parent and so on alternating between the parents.

Multiple factors influence on how solutions are chosen to be parents: Both
the speed with which the population should be renewed and the weight that
should be put on good solutions in the population can be adjusted. Two types
of evolutions are bacteria and elephant evolutions, which are named for their
respectively fast and slow renewing of the population: In bacteria evolution, all
solutions in the population are randomly paired, thereby changing the entire
population in a single iteration, whereas in elephant evolution, two solutions
are pruned from and another two solutions added to the population in each

24 3. Optimization Algorithms

Task 0 1 2 3 4 5
IP core 0 1 2 3 0 1

(a) Parent 1

Task 0 1 2 3 4 5
IP core 3 2 1 0 3 2

(b) Parent 2

Task 0 1 2 3 4 5
IP core 0 1 2 3 3 2

(c) Child 1

Task 0 1 2 3 4 5
IP core 3 2 1 0 0 1

(d) Child 2

Figure 3.2: An example of a crossover operation. The parents are shown in (a)
and (b), while the children are shown in (c) and (d).

iteration. Choosing which two solutions to pair and which to remove in elephant
evolution can be done randomly with a uniform probability, randomly with the
probability weighted by the solutions’ quality, or in any number of other ways.
Going into more detail on these points is beyond the scope of this introduction
to the subject.

Mutations are very similar to moves in simulated annealing and tabu search:
One or more genes are changed to a random value. The number of genes to
change is a parameter of the meta-heuristic and corresponds to the number of
bits in the neighborhood.

This section has given a very generic introduction to genetic algorithms.
For each of the operators (crossover and mutation), it is also possible to define
problem specific versions. Additionally, problem specific operators may also be
designed together with evolutions that fall between the extremes of elephant and
bacteria evolution. The parameters for the generic genetic algorithms presented
here include the population size, the number of crossover points, the number of
mutations to make in each iteration, the type of evolution, and how to select
which solutions to pair. For a genetic algorithm that has been adapted to a
specific problem, the number of parameters may increase further. In summary,
genetic algorithms have many aspects to customize in order to create a heuristic
for solving a specific optimization problem.

3.6. Heuristic Comparison 25

3.6 Heuristic Comparison

Before a meaningful comparison of multiple heuristics for solving a given opti-
mization problem can be made, good values need to be found for the heuristics’
parameters. The process for finding these parameter values is called parameter
tuning, and the steps outlined for tabu search in [15] are generally applicable to
other heuristics.

The aim of parameter tuning is to find those parameter values that con-
sistently produce good results across a set of representative benchmark appli-
cations. Finding these values is accomplished by experimenting with different
values for each parameter. Either parameter values are varied individually, in
groups, or all at the same time. In the first case, experiments are first done
to determine which parameters have only a small influence on the heuristic’s
performance, and values are locked for these parameters. Then, the remaining
parameter values are decided by experimenting with one parameter value at a
time. In case two or more parameters influence on each other, these parameters
should be varied as a group, i.e., a good value should not be found for one pa-
rameter at a time while assuming certain values for the others. Instead, all of
the interdependent parameters should be varied together. Alternatively, all the
parameters may be varied as one large group, i.e., a range of values are decided
for each parameter, and all combinations of these values are then evaluated.
This type of tuning may be very time consuming though.

Independently of the tuning method, it should be ensured that the best
found parameter values are not on the edge of the explored values. If this is the
case, the search should be extended to include the neighboring values iteratively
until the best parameter values are no longer on the edge of the explored area.
Parameter tuning is an optimization problem in itself, and the process outlined
above leads to a local – possibly the global – optimum for the parameter values.

After determining the parameter values that yield the best results, the
heuristics are applied to a second set of benchmarks using these parameter
values. This process is called parameter testing and uses a second set of bench-
marks to avoid situations, where the heuristics have been specialized to such
a degree that they produce very good solutions to a limited set of benchmark
problems but produce bad solutions to all other problem instances. A compar-
ison of two or more heuristics is based on the solutions they produce during
parameter testing. In order to provide a fair comparison of the heuristics, they
should be given equal conditions in their execution. Typically this means a fixed
execution time for all heuristics.

As many optimization problems have a high degree of variation in their

26 3. Optimization Algorithms

objective function over different problem instances – consider for example the
power consumption in a 16 versus a 1024 node NoC – a measure of the quality of
the solutions produced by the heuristics that is independent of the problem size
is required. For this purpose, the percentage gap is introduced. This measure
describes the percentage difference between the result of a single execution of
the heuristic, z, and the optimal solution, z′. It is defined for problems where
the objective is to minimize or maximize z respectively as:

emin = 100
z − z′

z′
(3.4)

emax = 100
z′ − z
z′

(3.5)

Due to the nature of most optimization problems, the optimal solution is typ-
ically not known. The best known solution for the given problem can then be
substituted for the optimal solution in this calculation.

Another issue to take into consideration when comparing heuristics and when
performing the parameter tuning is the fact that most heuristics include a cer-
tain degree of non-determinism, e.g., randomly finding initial solutions and ran-
domly choosing a move to take. In order to prevent a single exceptionally good
or bad random choice in the execution of the heuristic from leading to false
conclusions, multiple samples of the heuristic’s performance should be taken.
Calling the number of samples N , the average percentage gap is found by aver-
aging the samples’ percentage gaps:

E =
∑N
i=1 ei
N

(3.6)

As the percentage gap is a statistical measure of a heuristic’s ability to find
good solutions, not only the average, but also the standard deviation should be
used in the comparison:

σ =

√∑N
i=1(ei − E)2

N − 1
(3.7)

Determining the best parameter set during tuning or the best heuristic during
testing thus requires considering both E and σ: Lower values of E signify that
the solutions are closer to optimality on average, while lower values of σ signify
consistency in the quality of the solutions. Obviously, if both of these values
are low, a good parameter set has been found, but more commonly, a trade-off
needs to be made between average performance and consistency.

Chapter 4

Related Work

This chapter gives an overview of the related work. First the literature on appli-
cation mapping is described in section 4.1, then the related research into synthe-
sizing network-on-chips is discussed in section 4.2 followed by a brief overview
of application-specific routing in on-chip systems in section 4.3. In section 4.4,
the NoC architectures in which the optimization algorithms presented in chap-
ters 6 and 7 operate are briefly introduced. More thorough descriptions of these
architectures are given in the respective chapters. Finally, section 4.5 presents
related work on deriving a traffic pattern from an application model.

4.1 Application Mapping

This section presents the related work on application mapping. Although no
research in methods for automating application mapping is presented in this the-
sis, this description of the related work is included for the sake of completeness.
The term “application mapping” covers multiple problems: It can be used both
to describe the mapping of a task graph (definition 2.1) on a set of IP cores and
to describe the mapping of a set of IP cores on interconnect interfaces. These
two cases are treated separately in the following.

4.1.1 Task Graph on IP Cores

This specification of the application mapping problem can be formulated as
follows.

27

28 4. Related Work

Def. 4.1. Given a task graph TG = (T,D) as defined in definition 2.1 and a
set of IP cores O, find a function M : T → O that maps each task t ∈ T to an
IP core o ∈ O. Typically, some objective is specified that the mapping should
optimize.

One example of this type of application mapping is proposed by Lei and
Kumar [41]. An optimization algorithm in two steps is presented, where the
first step finds a mapping of tasks to IP cores such that the overall execution
time of the application modelled by the task graph is minimized. In the second
step, the mapping of IP cores on interconnect interfaces described in the next
section is solved with the same optimization objective. The difference between
the two steps is the accuracy of the underlying model of the system, where a
coarse model is used in the first step, and a more fine-grained model is used in
the second step.

Another approach is taken by Madsen et al. [44], who use a genetic algo-
rithm to find both the mapping of tasks to IP cores and of communication to
links with the constraint that deadlines are met while optimizing multiple ob-
jectives: Power consumption, memory size, buffer sizes in the interconnect, and
component cost. The presented algorithm can be used both to map tasks to a
static architecture (set of IP cores) and to synthesize the architecture and map
the tasks on it simultaneously.

Manolache et al. [49] address the problem of mapping communication to
NoC links in a scenario where faults may trigger packages to be dropped. The
aim of the mapping is to minimize power consumption, while satisfying certain
message-arrival probabilities and task deadlines.

Mapping applications onto the ReNoC and MANGO NoCs considered in
later chapters is an interesting problem to consider in the future. However,
the methods presented in literature are not directly applicable, as they do not
consider the special characteristics of these two NoC architectures.

4.1.2 IP Cores on Interconnect Interfaces

The second specification of the application mapping problem can be stated as
follows:

Def. 4.2. Given a bandwidth graph (definition 2.2) BG = (O,C) and a net-
work topology graph (definition 2.3) NTG = (N,L), find a function M : O → N
that maps the IP cores in O on the network nodes in N .

Multiple papers have addressed this problem in the context of different
network-on-chip architectures and network topologies.

4.2. Network-on-Chip Synthesis 29

Hu and Marculescu [38, 37, 39] have considered mapping of IP cores and rout-
ing in a 2D mesh topology with the objective of minimizing power consumption
constrained by performance (bandwidth) requirements. A branch-and-bound
algorithm is used to solve the problem. A similar use of constraints for perfor-
mance requirements while optimizing power consumption is used in the context
of ReNoC in chapter 7.

Ascia et al. [2, 3] have considered mapping IP cores to tiles in a 2D mesh
topology with multiple optimization objectives. A genetic algorithm is used to
optimize both performance (measured as execution time) and energy consump-
tion.

Murali and De Micheli [59, 60] map the IP cores on multiple different topolo-
gies and then select the best topology and mapping with the objective of mini-
mizing the sum of products of bandwidth requirements and distance between IP
cores. The optimization is performed in context of the ×pipes NoC [21, 6]. This
topology selection has also been extended with floorplanning of the IP cores and
network routers [56].

Lu et al. [43] extend a simulated annealing heuristic with clustering of IP
cores to speed up the search compared to a basic simulated annealing heuris-
tic. The speed-up is achieved without worsening the results produced by the
heuristic.

4.2 Network-on-Chip Synthesis

In this section the related work on synthesizing application-specific network-
on-chip topologies is presented. Various approaches have been used in various
network architectures.

Bolotin et al. [14] optimize a mesh topology by removing unused links and
router ports in the context of QNoC [12]. Routing in such a degenerated mesh
is described in [13].

Ogras and Marculescu [62] take the opposite approach and customize mesh
topologies by adding application-specific long-range links in order to increase
the network’s saturation bandwidth.

Murali et al. [61] have presented a method for synthesizing an application-
specific topology, while taking the synthesized system’s floorplan into considera-
tion. The method also provides deadlock-free routing algorithms while improv-
ing both performance and power consumption over regular network topologies.

Chan and Parameswaran [18] show further improvements by extending Mu-
rali’s method [61]. Point-to-point links are inserted directly between frequently

30 4. Related Work

communicating IP cores, while taking into consideration the cost of adding ad-
ditional communication interfaces to the IP cores.

Hansson et al. [35, 33] present a combination of mapping groups of IP cores to
interfaces, synthesizing a network topology, finding routes through the network,
and allocating time-slots to connections in context of the networks-on-chip with
time division multiple access mechanisms, such as Æthereal [65] and Nostrum
[52, 51]. Instead of mapping individual IP cores to interfaces, groups of IP
cores share a single interface using time-slots to arbitrate access to the network
and to provide guaranteed service. The unified mapping, routing, and time-
slot allocation problem is solved through an extension of path selection. The
approach taken for optimizing in ReNoC in chapter 7 also combines topology
synthesis and routing in a single problem.

Hansson’s approach solves the problem for a single bandwidth graph. Murali
et al. extend the approach for multiple bandwidth graphs or multiple use-cases
by finding the worst-case use-case (combining all the bandwidth graphs into
one) [57] and by restricting the possible combinations of bandwidth graphs [58].
This approach is further extended by Hansson [31] to allow for some applications
to be persistent across switches between different use-cases. Hansson et al. also
present a methodology for making these use-case switches in a safe manner [32].

While many approaches to synthesizing application-specific networks-on-
chips certainly exist, they are not directly applicable to the network architec-
tures presented in later chapters: MANGO is sufficiently different from other
network architectures to make porting an optimization algorithm very difficult,
while in ReNoC, the application-specific topology is instantiated at run-time
rather than at design-time: Using one of the above approaches most likely re-
sults in topologies that are infeasible to map on ReNoC. Instead, the topology
synthesis and mapping problems are combined in one problem in chapter 7.

4.3 Application-Specific Routing

Synthesizing application-specific network topologies necessitates application-
specific routing in order to actually use the synthesized networks, although
application-specific routing can also be applied to regular topologies. Duato
[27] has developed the method of using channel-dependency graphs to design
deadlock-free, adaptive routing algorithms. Palesi et al. [63] has extended this
work by taking an application’s traffic pattern into consideration in order to de-
sign application-specific, deadlock-free, adaptive routing algorithms. A similar
approach is used in chapter 7 for developing deterministic, application-specific,

4.4. Network-on-Chip Architectures 31

deadlock-free routing algorithms in ReNoC.

4.4 Network-on-Chip Architectures

Chapters 6 and 7 present algorithms for optimizing in two different NoC archi-
tectures: MANGO [7] and ReNoC [71]. In-depth descriptions of these architec-
tures are given in the respective chapters.

Modaressi et al. [53, 54] have presented a NoC router architecture with
characteristics resembling a reduced version of ReNoC implemented using pri-
oritized, virtual circuits as in MANGO. In this way, individual connections are
given high-priority communication through the network, bypassing many of the
arbitration mechanisms. Only one connection can be prioritized in each router
port in Modaressi’s approach, while MANGO allows multiple connections with
each connection having a unique priority to share each router port. Addition-
ally, MANGO decouples the usual connection between bandwidth and latency,
which prevents starvation of connections with lower priorities. In ReNoC, mul-
tiple connections share the physically circuit-switched long links, while only one
connection can make use of the virtually circuit-switched long links in Moda-
ressi’s approach.

The router presented by Modaressi represents an interesting point in the
design space and may in fact (as any other router) be combined with the ReNoC
architecture.

4.5 Derivation of Bandwidth Graphs from Task
Graphs

Chapter 5 deals with analytically determining the traffic pattern (bandwidth
graph) caused by a task graph mapped to a cache-coherent shared-memory
system. The derivation of a bandwidth graph from a task graph has not been
explicitly considered in literature. Rather, multiple papers [41, 66, 44, 49] have
assumed that message-passing semantics for inter-task communication translate
to message-passing communication between the IP cores these tasks are mapped
to, resulting in a one-to-one mapping of edges in a task graph to edges in a
bandwidth graph.

32 4. Related Work

Chapter 5

Analytical Derivation of
Bandwidth Graphs

Chapter 2 presented two graph-based application models: Task graphs (defini-
tion 2.1) and bandwidth graphs (definition 2.2). This chapter considers how to
analytically derive a worst-case bandwidth graph from a task graph assuming a
cache-coherent shared-memory architecture. Considering the NoC design flows
discussed in section 1.1, this derivation is useful for determining the traffic pat-
tern after the task graph has been mapped to IP cores. Using an analytical
approach allows determining the bandwidth graph much faster than through
simulation. The chapter is based on the work presented in [74].

5.1 (Distributed) Shared Memory

In a shared-memory organization, all memory in the system is shared between
all processors. From a programming point of view, all communication between
different processes and threads go through variables stored in memory. Syn-
chronization is done on special synchronization variables that are also stored
in memory and accessed using special instructions such as atomic test-and-set
operations or load-linked and store-conditional [36].

One of the main issues in shared-memory systems is ensuring memory con-
sistency between caches belonging to different processors [36]. In systems us-
ing a network structure as the interconnect, broadcast-based methods such as
snooping on other processors’ memory accesses would quickly saturate the in-

33

34 5. Analytical Derivation of Bandwidth Graphs

terconnect, making such approaches impractical. Here, a cache-coherent non-
uniform memory access (CC-NUMA) architecture using a directory to ensure
cache-coherence is therefore assumed. This system is sketched in Figure 5.1.

Figure 5.1: A CC-NUMA system consisting of processors with caches, memories,
and one or more directories is assumed.

For maintaining memory coherence, a simplified protocol similar to the MSI
protocol [20] is used: As the focus here is on the traffic generated in the system,
i.e., the data and the protocol messages, the intricacies of the protocol are
not modelled. Thus, only the overall flow of protocol messages and data is
included in the model. In the considered protocol, a cache-line may be in one
of the following three states: Modified, shared, or invalid. In the following,
the protocol messages caused by respectively load and store instructions are
described.

Load: When a processor issues a load instruction, first its local cache(s) are
checked for the requested data. In case of a cache hit, no contribution is
made to the traffic pattern. In case of a cache miss on the other hand, the

5.2. Analytical Derivation of Bandwidth Graphs 35

cache sends a message to the directory requesting a copy of the cache-line
containing the address. At the directory, two different cases may occur
depending on the state of the requested cache-line:

• If the cache-line is not present in the system, the request is forwarded
to the memory, which retrieves the cache-line and sends it directly
to the requesting processor.

• If the cache-line is present in the system, i.e., cached in one or more
other processors’ caches, the request is forwarded to one of these
processors, which sends a copy of the cache-line in question to the
requesting processor.

Finally, at a later point in the execution of the application, the cache-line
may be evicted from the cache, which requires the processor to send a
message to the directory, informing it of this such that the list of caches
containing the cache-line can be updated.

Store: Similar to loads, the first action on a store instruction is to check
whether the local cache(s) contain the requested address. As for loads,
a miss may occur, indicating that the cache-line is not present in the lo-
cal cache, triggering the same events and messages as for a load to bring
the cache-line in to the local cache. However, even if the cache-line is
present in the cache, the processor is not necessarily allowed to modify
it, as other caches may also contain the cache-line. These other copies
need to be invalidated before the processor is allowed to modify its local
copy. Thus, a request is sent to the directory, which sends out messages
to all other caches containing a copy of the cache-line in question, inform-
ing them to invalidate the cache-line. Additionally, whenever a modified
line changes state, either through eviction or because another processor
requests a copy of the line, the directory sends a message to the cache
containing the modified cache-line instructing it to send the updated data
to main memory.

5.2 Analytical Derivation of Bandwidth Graphs

Above, the shared-memory architecture including the cache protocol was de-
scribed. The following discusses how to analytically derive a variation of a
bandwidth graph from a task graph in such a system. The variation consists
in changing the unit on the bandwidth graph’s edges from a bandwidth to an

36 5. Analytical Derivation of Bandwidth Graphs

amount of data. The average bandwidth on each edge can be found by dividing
this amount of data by the application’s execution time. The contributions to
the bandwidth graph come from both data being transmitted between differ-
ent caches and memory and from the cache-coherence protocol messages. The
analysis discerns between these two types of messages, and in the following,
“protocol message” refers to a packet not carrying any data and “cache-line
message” refers to a packet carrying a cache-line.

In order to use a task graph for the purpose outlined above, it is necessary
to augment the task graph model with information about the memory locations
used for inter-task communication. For each edge in the task graph, a property α
is added that represents the set of addresses on which data is exchanged between
the two tasks connected by the edge. It is then assumed that the edge’s source
writes its output to these addresses, while the edge’s target reads its input from
the addresses. It is assumed that the modelled application does not contain any
race conditions. This requirement can be stated as follows:

Given a task graph TG , an address a, and a set E of all edges in TG for
which a ∈ α, for any pair of edges e0, e1 in E, a path exists either from the
target of e0 to the source of e1 or from the target of e1 to the source of e0, or
a single task is the source of both e0 and e1. Using src(e) and tgt(e) for the
source and target of an edge respectively, this can be formalized as

∀eo, e1 ∈ E : ∃〈tgt(e0) . . . src(e1)〉 ∨ ∃〈tgt(e1) . . . src(e0)〉 ∨ src(eo) = src(e1).
(5.1)

This formulation ensures that all tasks reading the value written to a by their
respective predecessors have actually done so before another task writes a new
value to a, which means that no race condition can exist.

For the analysis presented here, the following assumptions are made:

• For each edge, α constitutes a contiguous range of addresses.

• If multiple edges have a given address a ∈ α, all the addresses found in
α on each edge are found in α for all these edges, e.g., if one edge ex has
αx = [0; 63], any other edge ey with any address between 0 and 63 in αy
must also have αy = [0; 63].

• Each edge’s address range is aligned to cache-lines. Together with the
above item, this prevents false sharing in the application.

• Each task reads each of its input- and writes each of its output-addresses
sequentially, and these are the only memory accesses made by the tasks.

5.2. Analytical Derivation of Bandwidth Graphs 37

• No race conditions exist in the application.

• The cache organization is fully associative with a least-recently-used re-
placement policy.

Finally, a map of tasks to IP cores, M : T → O, is required.
The assumption that memory accesses are performed sequentially has the

effect that each task has at most one miss per cache-line it either reads or writes.
If a task both reads from and writes to a given cache-line, two misses may be
produced by the cache-line, one for each access. Given the above assumptions
and requirements, each task’s contribution to the bandwidth graph can be de-
rived as follows.

The analysis is made by looping over all tasks and for each task looping over
all edges incident on the task with a separate analysis being made for input-
and output-edges corresponding to reads and writes respectively.

For an input edge ei of a task t, the contiguous address range α is divided by
the cache-line size, cls, and rounded up to get the potential number of misses,
which equals the number of cache-lines cl that α is spread over. As outlined
above in the description of the cache-coherence protocol, each of these misses
produces one protocol message from the IP core to the directory, one protocol
message from the directory to a cache containing the requested cache-line or to
main memory, and one cache-line message from main memory or another cache
to M(t)’s cache (the cache of the IP core t is mapped to) in order to send the
actual cache-line.

Using tp to describe the task that is the source of ei, i.e., that of t’s prede-
cessors that writes α, the list of caches that potentially contain the requested
cache-line can be determined analytically: Given that t reads the cache-line,
tp must have written it, thus it may be found in M(tp) cache. Additionally, if
tp has multiple output edges with the address range α, each of the tasks that
are the destinations of these edges (denoted by Ts) may have already read or
be in the process of reading α. Thus, the cache-line may also be found in t’s
siblings’ IP cores’ caches. As t and the tasks in Ts may be reading α concur-
rently, it is possible for M(Ts)’s caches to be instructed to send the full data
set to M(t)’s cache, even if the data set is larger than the cache. However, tp
has finished accessing α, when t is reading it. The largest amount of data that
can be transmitted from M(tp)’s cache to M(t)’s cache is therefore the size of
M(tp)’s cache.

Based on the above, the set C of caches that may contain the cache-lines in
α can be determined as well as whether the full data set or at most as many

38 5. Analytical Derivation of Bandwidth Graphs

cache-lines as the cache holds may be found in each of these caches. The set of
IP cores these caches are attached to is given by

C = ({M(tp)} ∪ {M(ts) : ts ∈ Ts}) \ {M(t)}. (5.2)

The caches described by the second term (t’s siblings) may – due to concurrent
execution – hold every cache-line of α when it is requested by t. The full data
set may thus be sent from these caches to M(t)’s cache, while the amount of
data sent from M(tp)’s cache is bounded by the cache size. If M(tp) is included
in {M(ts) : ts ∈ Ts}, i.e., one of t’s siblings is mapped to the same IP core
as tp, the full data set may be sent from this IP core’s cache to M(t)’s cache.
If t is mapped to the same IP core as one of its siblings or its predecessor, no
contribution is made to the bandwidth graph for this IP core.

Using cs for the cache size and ds for the size of the data set α addresses (α
times the word size), the following contributions are added to the bandwidth
graph for a read: cl protocol messages from M(t) to the directory, either cl or
dmin(ds,cs)

cls e protocol messages from the directory to the unique elements of C as
described above, cl cache-line messages from main memory to M(t), and either
cl or dmin(cs,ds)

cls e cache-line messages from the unique elements of C to M(t).
Finally, the read cache-lines may be evicted from the cache to make room

for other cache-lines. This eviction results in cl protocol messages from M(t) to
the directory. The contributions to the bandwidth graph from each input edge
are summarized in Table 5.1.

From → To Protocol messages cache-line messages
M(t) → Directory 2cl -

Directory → Memory cl -
Directory → M(tp) dmin(ds,cs)

cls e -
Directory → M(ts) cl -
Memory → M(t) - cl

M(tp) → M(t) - dmin(ds,cs)
cls e

M(ts) → M(t) - cl

Table 5.1: The contributions to a bandwidth graph from an input edge. The
contributions involving M(ts) are added for each IP core on which one or more
of t’s siblings reading α is mapped as long as t is not mapped to that IP core as
well. The contributions involving M(tp) are conditional on none of t’s siblings
reading α or t being mapped to M(tp).

5.2. Analytical Derivation of Bandwidth Graphs 39

For each output edge eo of t, the address range α is also divided by the
cache-line size to get the potential number of misses, also labeled cl. As these
misses require the cache-line to be retrieved, they contribute to the bandwidth
graph in a similar manner to input edges: A protocol message is sent from
M(t) to the directory, which sends a protocol message to those locations that
may contain the cache-line that is then sent from this location to M(t). The
difference to input edges is which locations may contain the cache-line. Due to
the requirement that no race conditions exist, the tasks that may have accessed
the currently valid version of the cache-line are the latest task (if any) of t’s
predecessors that has written α and those of its children that have read α.
Denoting the latest writing predecessor tw and those of its children that have
read the address range Tr, only the caches belonging to the IP cores to which
these tasks are mapped may hold a copy of the cache-line. It is a requirement
that all tasks in Tr are predecessors to t, as otherwise a race condition would
exist, as described by equation 5.1. As no other tasks can access α while t is
writing, the amount of data that may be fetched from M(tw) and M(tr) : Tr ∈
M(tr) is bounded by the cache size. As for input edges, the set C of unique IP
cores whose caches may contain the cache-line and to which M(t) is not mapped
is determined.

C = ({M(tw)} ∪ {M(tr) : tr ∈ Tr}){M(t)} (5.3)

Additionally, the cache-line may be found in main memory.
In the analytical model, fetching a cache-line as part of an output edge thus

contributes cl protocol messages fromM(t) to the directory, dmin(ds,cs)
cls e protocol

messages from the directory to each unique element in C, cl protocol messages
from the directory to the memory, cl cache-line messages from the memory to
M(t), and dmin(ds,cs)

cls e cache-line messages from each unique element in C to
M(t).

When an IP core requests write access to a cache-line, the directory also
needs to instruct those caches containing a copy of the cache-line to invalidate
it. Thus, for the address range α, additional dmin(ds,cs)

cls e protocol messages are
sent from the directory to each unique element in C.

The cache-lines containing α may also be evicted from the cache, which
requires sending a protocol message to the directory for each cache-line, resulting
in cl protocol messages from M(t) to the directory. The written cache-lines
eventually have to be written back to main memory. This write-back is triggered
by the directory, which sends cl protocol messages from the directory to M(t).
For the actual write-back, cl cache-line messages are sent from M(t) to main

40 5. Analytical Derivation of Bandwidth Graphs

memory.
The contributions to the bandwidth graph from an output edge are summa-

rized in Table 5.2.

From → To Protocol messages cache-line messages
M(t) → Directory 2cl -
M(t) → Memory - cl

Directory → M(t) cl -
Directory → Memory cl -
Directory → M(tw) dmin(ds,cs)

cls e -
Directory → M(tr) dmin(ds,cs)

cls e -
Memory → M(t) - cl

M(tw) → M(t) - dmin(ds,cs)
cls e

M(tr) → M(t) - dmin(ds,cs)
cls e

Table 5.2: The contributions to a bandwidth graph from an output edge. The
contributions involving M(tr) are added for each IP core on which one or more
of the tasks in Tr are mapped as long as t is not mapped to that IP core as well.
Likewise, the contributions involving M(tW) are not added if M(t) = M(tw).

5.3 Simulator

This section describes the simulator used to find the expected bandwidth graph
for a task graph mapped on a shared-memory system. This is done by simulating
both the task graph’s execution as well as the caches’ behavior.

The simulator does not use a fixed time scale, but rather operates with
memory accesses – whether cache hits or misses – as discrete time units: In
each time unit or simulation cycle, each IP core is able to make one memory
access including the handling of possible cache misses.

Each task is mapped to an IP core using the same mapping function as the
analytical derivation, M : T → O. Additionally, each task is given an execution
time measured in simulation cycles. The execution semantics for the task graph
have been chosen such that they more closely resemble execution in a shared-
memory system. Specifically, communication is part of the tasks execution in
the simulator: When a task starts executing, it reads its inputs sequentially,
while at the end of its execution, it writes its outputs sequentially. Therefore,

5.4. Experiments 41

a task’s execution time has a lower bound given by the number of memory
accesses it makes. The execution time for a task measured in simulation cycles
is a static property of the task in the task graph.

Besides the mapping of tasks to IP cores, a schedule describing each task’s
start of execution is required. Here, as-soon-as-possible (ASAP) scheduling is
used.

During simulation, the simulator keeps track of the contents of the caches.
Each memory access thus either generates a hit or a miss, where misses trigger
simulation of the cache-coherence protocol. By counting the number of mes-
sages and the amount of data communicated in the system during simulation,
a bandwidth graph can be constructed.

5.4 Experiments

This section presents the task graphs and system configurations used for compar-
ing the analytical derivation of the bandwidth graphs to the bandwidth graphs
produced through simulation.

Synthetic task graphs have been used for the evaluation. Sixteen task graphs
have been generated, four each with 16, 32, 128, and 1024 tasks. A system
configuration consists of two parts: The number of IP cores used for executing
tasks – i.e., excluding the directory and main memory – and the number of
cache-lines in a cache, where the cache-line size is assumed constant at four
32-bit words, or 16 bytes. A protocol message takes up 8 bytes. Whenever a
cache-line is transmitted, a protocol message is included, bringing the size of a
message containing a cache-line to 24 bytes. Four different system configurations
are generated by varying these two parameters over two values each: 16 and 64
IP cores, and cache sizes of 1 and 256 cache-lines. For each of the two system
sizes (number of IP cores), five random mappings are made of each task graph
to the IP cores. As stated previously, the same mapping is used for both the
simulation and the analytical derivation of the bandwidth graph.

The synthetic task graphs represent an average case for evaluating by how
much the analytical method overestimates the communication bandwidth. The
worst case is represented by a task graph, where one task writes an address
range that is read by many tasks. In this case, the analytical method is unable
to determine in which order the sibling tasks read the given address range.
Therefore, it adds bandwidth to the worst-case bandwidth graph corresponding
to each task receiving the data from all of its siblings. This worst case is
evaluated using task graphs with 4, 8, 16, and 32 tasks mapped to separate

42 5. Analytical Derivation of Bandwidth Graphs

IP cores, where one task writes an address range that is read by the remaining
tasks.

Conversely, the best case is represented by a task graph with no two edges
having the same values for α, corresponding to the situation where no two
tasks have the same input data and no address range is used for multiple data
exchanges, and where all tasks execute on a single IP core. However, this case
is uninteresting as a uniprocessor system has no need for shared memory and
cache-coherence. Therefore, the approximately best case is evaluated using four
synthetically generated task graphs with 16, 32, 128, and 1024 tasks with a
random mapping of tasks to both 16 and 64 IP cores with only a single cache-
line in each cache.

Each execution of both the simulator and the analytical derivation is timed.
The time is measured from just after the input files have been read to just before
the output files are written in both cases.

5.5 Results

This section presents a comparison of the results of the analytical derivation of
bandwidth graphs and simulation. As previously stated, the analytical deriva-
tion produces a worse-than-worst case bandwidth graph. The presented results
show by how much the analytical method overestimates the total bandwidth
compared to the bandwidth observed in the simulation.

The results from the synthetic task graphs show that different mappings
have negligible influence on the accuracy of the analytical transformation. Two
mappings result in different bandwidth graphs only when two tasks sharing data
are mapped to the same IP core in one mapping but not in the other. In the
case where the two tasks are mapped to the same IP core, the protocol messages
from the directory to the IP core and the cache-line messages between the two
IP cores are not transmitted. The interesting variables are therefore the task
graph size, the number of IP cores, and the cache size.

Figure 5.2 shows the percentage difference in total bandwidth averaged over
all four task graphs of each size between the analytical method and the simu-
lation for systems with large caches (256 cache-lines). Formally, the reported
result can be expressed using the notation for the bandwidth from definition 2.2
as ∑

TGs

∑
i∈O

∑
j∈O(bana

i,j − bsim
i,j)

|TG |
(5.4)

5.5. Results 43

Figure 5.2: Overestimate by the analytical method for systems with large caches.

where superscript ana indicates the analytical method, and superscript sim
indicates simulation.

The first observation is the decreasing difference between the analytical
method and the simulation as the task graph size increases, i.e., the analytical
method is more accurate with larger task graphs. This tendency is explained
by the fact that smaller task graphs result in less evictions from the caches in
simulation, as a larger portion of the tasks are the last ones to execute on their
respective IP cores. For example, when 16 tasks execute on 64 IP cores, even
with a completely random mapping, each task is likely to have its own IP core.
Therefore, all evictions during simulation are caused by the tasks’ data sets
being larger than the cache, whereas with 1024 tasks, evictions are also caused
by one task executing on an IP core on which another task previously executed.
Therefore, the cache contains the previous task’s data set, which needs to be
evicted to allow the following task to load its data set.

The second observation is the difference caused by changing the number of
IP cores while keeping the number of tasks constant. In this case, the analytical
derivation is more accurate with fewer IP cores with the difference being more

44 5. Analytical Derivation of Bandwidth Graphs

pronounced with bigger task graphs. Again, the main contribution is a differ-
ence in the number of evictions: With fewer IP cores, more of the analytically
predicted evictions actually occur, while with more IP cores, the larger amount
of cache memory in the system results in a larger portion of main memory being
kept in caches leading to fewer replacements and thereby evictions.

Figure 5.3: Overestimate by the analytical method for systems with small
caches.

Figure 5.3 shows the same percentage difference in the bandwidth deter-
mined through simulation and by the analytical method for smaller caches.
This graph shows the same tendencies as the one for larger caches, also caused
by the analytical method overestimating the number of evictions. The differ-
ence is in the results ranging from approximately 1% to 15% compared to 25%
to 65% for larger caches. This difference is explained by the inherent unpre-
dictability of systems with caches: As memory contents are stored in multiple
places, it is almost impossible to predict from which of these places the memory
contents actually are fetched during execution. The analytical method therefore
adds bandwidth corresponding to the data being fetched from all these places in
order to find the worst-case bandwidth communicated between individual pairs

5.5. Results 45

of IP cores, while in reality, it is only fetched from one of them. Thus, reducing
the cache size has the effect of also reducing the uncertainty in the predictions
at the price of significantly reduced performance.

The above results concerned synthetic task graphs that represent problems
somewhere between the best and worst cases for the analytical method. The
following concerns approximations of these two extremes.

Figure 5.4: Worst-case overestimate by the analytical method.

The worst case for the analytical method is many tasks that are mapped to
different IP cores and read the same input with no dependencies between them,
as it is impossible to analytically determine the sequence in which the tasks read
the input. The analytical method overestimates the total bandwidth in this case
by up to 2500%, as shown in Figure 5.4. The degree of the overestimate increases
with the number of siblings reading the same address range in the task graph.
This is as expected, as the analytical method is unable to determine the actual
flow of data between caches, and therefore assumes data is copied from every
cache to every other cache in the system.

The best case for the analytical method has no two tasks reading from or

46 5. Analytical Derivation of Bandwidth Graphs

Figure 5.5: Best-case overestimate by the analytical method.

writing to the same addresses. Figure 5.5 shows the overestimate in this case.
Comparing to Figure 5.3, very little difference is seen between the best case
and the average case with small caches. This indicates that the impact of a few
tasks reading from or writing to the same address range has very little impact.

It is impossible to determine the analytical method’s accuracy for real ap-
plications through the results presented here. Depending on the application’s
pattern of sharing data, the overestimate may be anything between the best
case of approximately 1% and the worst case, which depends on the number of
tasks sharing the same input data.

The average execution times of the analytical method and the simulation
for the different problem sizes (number of IP cores and number of tasks) are
shown in Figure 5.6. In all cases, the execution time of the analytical method
is less than 5% of that of the simulation, and in most cases, it is closer to 1%.
Increasing the number of tasks and the number of IP cores both lead to an
increase in execution time.

5.6. Summary 47

Figure 5.6: Comparison of the execution time of the analytical method and
simulation.

5.6 Summary

This chapter presented an approach to analytically derive a bandwidth graph
from a task graph in a shared-memory system by considering the communication
caused by the cache-coherence protocol.

The analytical method was evaluated by comparing the bandwidth graphs
it produced to those generated through simulations of the application and the
shared-memory system including the cache-coherence protocol. Varying the
number of tasks, the number of IP cores, and the cache sizes all impacted
the analytical method’s accuracy for average-case task graphs: The accuracy
increases with the number of tasks, while it decreases as the number of IP
cores is increased, both primarily due to fewer evictions in the simulations.
Having a system with very small caches significantly improves the accuracy
of the analytical method, as most of the communication occurs through main
memory, while larger caches lead to overestimates of the total bandwidth of 25%
to 65%.

For approximate best- and worst-case task graphs, the analytical method

48 5. Analytical Derivation of Bandwidth Graphs

overestimates the total bandwidth by up to 15% and 2500% respectively for
the investigated task graph sizes. The worst case overestimate depends on the
number of tasks in the task graph. The overestimate for a real application will
be somewhere between these extremes.

Chapter 6

Topology Synthesis in
MANGO

This chapter presents methods for synthesizing topologies in the MANGO NoC.
The objective of the synthesis is to find a topology that minimizes the execution
period of a periodic application. First, in section 6.1 an introduction to MANGO
is given, in section 6.2 the problem formulation is presented, and the modelling
of MANGO is discussed in section 6.3. Then, in section 6.4, the optimization
approaches are presented, and in section 6.5 the problems used to evaluate the
heuristics are described. Finally, the results are presented in section 6.6, and
conclusions are given in section 6.7. The MANGO NoC was developed by Tobias
Bjerregaard [7]. This chapter is based on the work presented in [73].

6.1 The MANGO Network-on-Chip

MANGO [7] is a NoC that is designed and implemented using clockless or asyn-
chronous design principles [67]. The MANGO router architecture [10] provides
both connection-oriented guaranteed service and connection-less best effort com-
munication. For guaranteed service connections, an absolute guarantee is given
on the worst-case end-to-end latency of individual flits, provided the network
adapters adhere to a maximum rate for injecting flits. Virtual circuit-switching
is used to form guaranteed service connections, while best effort communication
uses packet-switching with source routing and credit-based flow control. For
connecting IP cores to the NoC, network adapters with OCP [64] interfaces are

49

50 6. Topology Synthesis in MANGO

provided [9]. Figure 6.1 shows the main components of the MANGO router.

Figure 6.1: The main components of the MANGO router. Only one input and
one output port is shown, as well as only one guaranteed service (GS) virtual
channel in the output port.

Providing absolute latency guarantees in an environment with no global
timing reference is accomplished by utilizing the virtual channel flow control
and a special scheduling discipline called Asynchronous Latency Guarantees
(ALG) [11]. This scheduling discipline is used to arbitrate individual virtual
channels’ flits’ access to each link. The components involved are sketched in
Figure 6.2.

Flow control is provided for each virtual channel using a sharebox and an
unsharebox, which together ensure that at most one flit is in flight between two
succeeding virtual channel buffers on a connection. Furthermore, the unshare-
box includes a latch which guarantees that a flit will not block the switching
structure in the router ensuring that the only dependencies between flits on dif-
ferent connections are those that occur in arbitration for access to links. When
a flit, fi, leaves a virtual channel buffer, it passes through the sharebox which
prevents the succeeding flit, fi+1, from leaving the buffer. Only when fi has
passed through the unsharebox in front of the succeeding virtual channel buffer,
the sharebox is unlocked allowing fi+1 to leave. This mechanism prevents flits
on two connections sharing one or more links from blocking each other, thereby
providing the basis for giving latency guarantees on individual connections.

The link arbitration consists of two parts: A static priority arbiter (SPQ)
and an admission control in front of the arbiter. The arbiter assigns each virtual
channel a static priority for accessing the link, while the admission control is

6.1. The MANGO Network-on-Chip 51

Figure 6.2: Implementation of guaranteed services in MANGO. The flow control
mechanism consisting of shareboxes and unshareboxes prevents a virtual channel
from sending a flit that would block the link and switching structures due to
insufficient buffer capacity.

used to prevent starvation of virtual channels with low priorities. This is done
by allowing a flit on a high priority virtual channel to only preempt a single flit
on each of the lower prioritized virtual channels, e.g., if virtual channels 0, 2, and
5 have flits ready for transmission, the highest prioritized (0) is granted access
to the link, but the next flit on virtual channel 0 is blocked by the admission
control until one flit from each of virtual channels 2 and 5 has been granted
access to the link. The best effort virtual channels are also connected to the
link through the arbiter, thereby avoiding starvation of the best effort traffic.

Combining arbitration, admission control, and flow control allows maximum
latency guarantees to be given, provided the users of the NoC (the network
adapters) adhere to some constraints. Specifically, the user of a high prior-
ity connection is guaranteed fast transmission of flits, as long as the temporal
distance between succeeding flits is sufficient to guarantee that the admission
control does not block the later flits.

The combination of arbitration and admission control guarantees an equal
share of bandwidth to all virtual channels in all cases. However, if the high
priority connections seldom send flits, these flits are allowed to overtake flits on
lower prioritized connections in each arbiter along their route. Alternatively,
a connection may make full use of its bandwidth guarantee, exchanging the
guarantee on individual flits’ latency for bandwidth. However, a maximum
latency can also be determined in this case, as the admission control at most
delays a flit until the time at which it would have arrived had it adhered to the
given constraint.

52 6. Topology Synthesis in MANGO

6.2 Problem Formulation

This chapter considers synthesizing application-specific topologies in MANGO.
Applications are assumed to have a periodically recurring communication pat-
tern, which is modelled using a variation of a bandwidth graph. Instead of
associating the weights on the bandwidth graph’s edges with an amount of data
per second, they are taken as indicating the amount of data per execution pe-
riod of the application. The optimization objective is to minimize this period,
i.e., finding the topology that handles a given communication load the fastest.

Considering the edge weights as the number of flits per periodic execution
of an application allows a designer to use the approach presented here to de-
termine the obtainable period and compare that one to the required period.
The difference between the actual and required periods may then be utilized to
either reduce the speed of the system, saving power, or adding features to the
application, if possible.

A formal definition of the optimization problem is as follows:

Def. 6.1. A periodic bandwidth graph PBG = (O,C) is a directed graph
modelling the communication in a periodically executing application. Each
vertex o ∈ O represents an IP core, and each directed edge ci,j ∈ C represents
a connection from oi to oj . Each connection ci,j ∈ C has a weight bi,j which
indicates the number of flits transmitted on ci,j in each periodic execution of
the application.

Def. 6.2. A topology graph TG = (V,L) is an undirected graph, where each
vertex v ∈ V represents a network node consisting of an IP core and a router,
and each edge li,j ∈ L represents a bidirectional link between vi and vj .

Def. 6.3. A mapping M : O → N maps each vertex in O to a vertex in V . M
is required to be bijective, i.e., a given vertex in O maps to one and only one
vertex in V , and each vertex in V has a vertex in O mapped to it.

The optimization problem can now be defined as: Given PBG , V , and M ,
synthesize L such that the period of the communication in the application spec-
ified by PBG is minimized, subject to

∀x, y ∈ V ∃〈vx . . . vy〉 (6.1)
@v ∈ V : degree(v) > 4 (6.2)

The constraint in equation 6.1 states that the topology must be connected,
i.e., a path must exist between any two network nodes.

6.3. Modelling Latency in MANGO 53

The constraint in equation 6.2 specifies that the degree of any network node
may not be greater than four, i.e., the largest routers allowed are five-port
routers including the port used by the IP core. As the optimization objective
is simply to minimize latency, the optimal topology will is a fully connected
graph, i.e., the topology will have point-to-point connections between all pairs
of network nodes. Such a topology is undesirable when factors such as area,
power consumption, and feasibility of layout are taken into consideration, and
constraining the maximum degree of network nodes prevents such topologies
from occurring.

6.3 Modelling Latency in MANGO

Given the above optimization problem, a model of MANGO is required to cap-
ture the latency of the execution of one period of the modelled application when
using guaranteed service connections. For this purpose, the latency guarantee
that can be given for individual flits is not interesting, as the interesting mea-
sure is the latency of all flits on each connection, i.e., it is the bandwidth rather
than the latency guarantees provided by MANGO that is considered here. The
model should thus describe the latency of transmitting a number of flits on a
connection under the worst-case assumption that flits are blocked for the maxi-
mum possible time in the admission control. In this case, the admission control
and arbitration essentially have the functionality of a round-robin arbiter which
is therefore used in the following analysis.

In order to determine the latency of an application modelled as a periodic
bandwidth graph, this graph, a topology graph, the mapping of IP cores to
network nodes, and routes for each connection in the periodic bandwidth graph
are required.

For a connection c, the link along the route servicing c that is shared by
the highest number of other routes is found. The number of routes sharing
this link is denoted by nbottleneck ,c as this link constitutes the bottleneck for
the bandwidth guarantee given to the route. Further, given an injection rate,
ρinj , which is the maximum rate at which network adapters inject flits in the
network, and a link rate, ρlink , which is the maximum rate at which flits may
be transmitted on a link, the rate at which flits are actually injected on c in a
steady state of the network is determined as

ρmax ,c = min
(
ρinj ,

ρlink

nbottleneck ,c

)
(6.3)

54 6. Topology Synthesis in MANGO

i.e., as the minimum of the rate with which the network adapter attempts
to inject flits with and the rate with which flits are transmitted through the
network. It is assumed that flits may be ejected from the network at a greater
rate than that with which they are injected.

The worst-case latency for a flit to be transmitted through the network has
two contributions: The best-case latency (i.e., the latency assuming no stalls
in the arbitration or admission control) and the amount of time stalled in the
arbitration and admission control. The first contribution is determined by the
route’s length or hop count, nhops,c, multiplied by the latency of a hop, thop ,
which includes the fall-through latency of the admission control, arbiter, link,
switching structures, the flow control mechanism, and the virtual channel buffer.
Note that one or more of these components may be pipelined, such that

thop ≥
1

ρlink

The second contribution is determined by the number of other routes with
which each link along the route is shared and the rate with which flits are
transmitted on each link. The number of routes with which a link is shared
determines the worst-case number of times a flit is not granted access to the
link in arbitration, while ρlink determines the delay incurred by each stall in
arbitration. Using nshared,i to denote the number of routes sharing link i and
nshared,c =

∑
i (nshared,i − 1) (the subtraction by one comes from the fact that

a route does not share a link with itself, i.e., it does not compete with itself in
arbitration), the latency of an individual flit on the connection c can thus be
described as

tflit,c = nhops,c × thop +
nshared,c

ρlink
(6.4)

assuming no stalls due to flow control. While this assumption does not reflect the
actual behavior of MANGO as implemented in [7] under certain circumstances,
a simple change to credit-based flow control for the virtual channels used for
guaranteed service will bring the model and implementation in agreement with
each other. Specifically, if ρmax ,c < 1

thop
, a connection in the model has a

higher rate of transmitting flits than is achievable in reality. However, as the
proposed change is simple to implement and improves the best-case bandwidth
of individual guaranteed service connections, i.e., the bandwidth a connection
can achieve when it is the only connection using a given link, this is what has
been chosen for the model. Alternatively, the model can be made to reflect the

6.3. Modelling Latency in MANGO 55

current implementation by modifying equation 6.3 to

ρmax ,c = min
(
ρinj ,

ρlink

nbottleneck ,c
,

1
thop

)
although this still assumes that stalls due to insufficient buffer capacity causing
the flow control to block flits that would otherwise win arbitration for the link
do not occur.

So far, this section has described how to find the latency of individual flits.
The objective of interest for the optimization problem is the total latency of
transmitting all flits in one period of the application. First, the latency of
transmitting all flits, nflits,c, on a given connection, c, is

tc =
nflits,c

ρmax ,c
+ tflit,c (6.5)

This equation reflects the pipelined nature of transmitting flits: A flit is injected
in the network every 1

ρmax,c
second until all flits have been injected, at which

point it takes tflit,c seconds for the last flit to reach its destination. The second
term in equation 6.5 may be omitted if the application periods are allowed to
overlap. However, in most cases, the first term will dominate the second term.

Given the latency of individual connections, the maximum period of the
application can be determined as

Tapp = max
c∈C

(tc) (6.6)

which is the measure of interest. The connection with the highest tc, i.e., the
connection that determines the period of the application, is referred to as the
critical connection, ccritical , due to its resemblance with the critical path in
combinatorial, digital logic.

In most cases, the model described above finds a worse than worst-case
period of the application described by the PBG : In general, different connections
have a different amount of flits, i.e., bx,y 6= bu,v, which is not considered when
calculating tc for each of the connections cx,y and cu,v. The model assumes that
all flits incur the maximum waiting time in the admission control and arbitration
even if one of the connections sharing a link only transmits a single flit in each
period of the application. In this extreme case, at most one flit on each of the
other connections sharing a link with this single-flit connection would experience
the maximum delay in the admission control. For the remaining flits, nshared,c

in equation 6.4 should be decreased by one in order to reflect the actual latencies

56 6. Topology Synthesis in MANGO

of individual flits, while ρmax ,c in equation 6.3 could potentially be increased
due to a decrease in nbottleneck ,c. However, capturing all these interdependencies
between different connections is left for future work.

One aspect that is necessary to evaluate the quality of a topology, but which
is not included in the optimization at this time, is routing. The route for a
connection ci,j is found using a breadth-first search in the topology graph with
M(i) as the source vertex. This type of search guarantees routes with minimal
hop counts to be found. However, in some cases, non-minimal routes may lead to
a lower latency for the application: By rerouting certain connections on longer
routes, nbottleneck of the critical connection, ccritical , may be lowered, thereby
shortening tccritical

and Tapp . However, which connection is the critical one may
also be changed by this rerouting. Conducting experiments involving routing
beyond breadth-first search is left for future work.

The values used in the experiments for the different model parameters are
as follows.

ρinj =
1
5

flits
ns

(6.7)

ρlink =
1
3

flits
ns

(6.8)

thop = 6ns (6.9)

6.4 Optimization Approaches

This section describes the heuristics that have been implemented to solve the
optimization problem defined above. The heuristics are based on the simulated
annealing and tabu search meta-heuristics described in chapter 3. Both of these
meta-heuristics require an initial solution, a means of handling invalid solutions
(solutions that violate the constraints in equations 6.1 and 6.2), and a definition
of moves and neighborhoods.

For the initial solution, a random, valid solution is used to avoid artificially
restricting the search, as discussed in chapter 3.

A solution is invalid, if it violates either or both of the constraints in equa-
tions 6.1 and 6.2. A breadth-first search is used to determine whether a solu-
tion is connected: Starting the search at a given node, vstart , all nodes that are
reachable from vstart are found. If all nodes are reachable, the solution satisfies
the constraint. If unreachable nodes exist, two sets are formed: One with the
reachable nodes and one with the unreachable nodes. A random node is selected

6.4. Optimization Approaches 57

from each set, and a link is added between these two nodes. This procedure is
repeated until the solution is connected.

If the constraint on the maximum degree of a node is violated, random links
are removed from the node until the constraint is satisfied. Removing links
may lead to the solution becoming unconnected, violating the first constraint,
while making the solution connected may increase the degree of a node beyond
the maximum allowed, violating the second constraint. Thus, it is possible
that making a solution satisfy these two constraints leads to infinite cycling.
However, due to the non-deterministic nature of the corrections made to the
solutions, the number of cycles is limited in practice.

The n-bit neighborhood of a solution is defined by those solutions that differ
in the presence of n links in the topology. The exact number of links is considered
a parameter of the heuristics. A move is thus defined as toggling the presence
of n links, although making a solution satisfy the given constraints may lead to
a different number of links actually being toggled.

6.4.1 Simulated Annealing

One of the considered heuristics is simulated annealing. The heuristic itself is
implemented as described in section 3.3, using the above choices for initial solu-
tion, neighborhood, and moves, and the model described in section 6.3 for the
evaluation function. The heuristic’s parameters are thus the starting tempera-
ture, τstart , the cooling rate, α, and the number of links to toggle in each move,
nnhood .

6.4.2 Tabu Search

The other considered meta-heuristic is tabu search. Five variations of the tabu
search meta-heuristic have been considered: Plain tabu search without any long
term memory and two variations of adding long term memory to the heuristic
with two different diversifications being triggered by the long term memory.
Each of these is described in the following sections.

Base Tabu Search

The initial solution, move, and neighborhood are defined as above. As opposed
to the simulated annealing, the neighborhood is fixed at 1-bit, i.e., the presence
of only a single link is toggled in a move. This is done to keep the size of the

58 6. Topology Synthesis in MANGO

neighborhood reasonable for doing an exhaustive search. In a problem with N
IP cores, there are

N(N − 1)
2

links whose presence may be toggled. With a nnhood -bit neighborhood, the
number of neighbors to a solution is described by the binomial coefficient(N(N−1)

2

nnhood

)
Given a system with 256 IP cores, a 1-bit neighborhood thus results in any
given solution having 32640 neighbors, while a 2-bit neighborhood results in
532668480 neighbors. Although some (even many) of these neighbors most
likely are invalid solutions, performing an exhaustive search of that many solu-
tions is prohibitively slow assuming a requirement of at least a few iterations of
the tabu search per second. Additionally, the neighborhood search is terminated
after finding the first solution with a lower latency than the current solution.

The base tabu search has a single parameter: The length of the tabu list,
ltabulist .

Long Term Memory

As mentioned above, two variations of adding long term memory to the heuristic
have been investigated. Note that the description “long term” is used even
though the results presented later show that, in some cases, this added memory
produces better solutions if the long term memory triggers a diversification
earlier rather than later.

Both variations are built over the same theme: A counter that keeps track
of the number of iterations without improvement in the best found solution.
The limit of the counter (the number of iterations without improvement that
triggers a diversification) is designated by nnoimp .

The first variation (V1) triggers a diversification after nnoimp iterations with-
out improvement since the last diversification (or the start of the search), re-
gardless of whether any improvement has been made since then, i.e., the counter
is incremented in each iteration without improvement in the best found solution
and is reset only when a diversification is triggered (when the counter equals
nnoimp).

The second variation (V2) is very similar to the first one, but differs in
the criteria for resetting the counter: The counter is both reset when it reaches

6.4. Optimization Approaches 59

nnoimp (and triggers a diversification), and when the search encounters a solution
with lower latency than the currently best found solution, i.e., when the best
found solution is updated.

In the first variation, the long term memory is associated with the particular
segment of the search space that the latest diversification moved the search to.
This is also true in the second variation, but resetting the counter upon finding
a new best solution extends the search of the particular search space segment,
trading off the number of segments explored to the depth with which each
segment is explored. Both variations add one parameter to the heuristics using
them: The number of cycles without improvement that triggers a diversification,
nnoimp .

Diversifications

Both of the considered diversifications make a change in the critical connection,
ccritical , in an attempt to reduce its latency, tccritical

, and thereby the period of
the application, Tapp .

The first diversification (Dchange) forces a change in the route servicing the
critical connection by removing all links along it and adding them to the tabu
list. In this way, the search is moved to a different part of the search space and
forced in a different direction, as the removed links are disallowed for as many
iterations as the length of the tabu list.

The second diversification (Dshort) changes the critical connection’s route
by making it a single hop, i.e., given ccritical = cx,y, the link lM(x),M(y) is
inserted. If adding this link causes either node’s degree to violate the constraint
in equation 6.2, the link that was previously part of the critical route is removed.

It can be argued whether or not these changes in a solution should be clas-
sified as diversifications: The changes affect only a small part of the solution,
producing solutions that could be reached in only a handful of regular moves in
most cases, which would normally not fall in the diversification category. How-
ever, an analysis of the characteristics of the evaluation function reveals why
they are considered diversifications here, why they are necessary, and why they
are expected to be efficient:

Given that the evaluation function reports the latency of the critical con-
nection (which is dominated by nflits/ρmax), only some links’ presence in the
topology has an impact on the evaluation function. These links are:

1. The links that are used by the route servicing the critical connection. Re-
moving one of these links may change nbottleneck ,ccritical

as the contributing
routes are rerouted on different links.

60 6. Topology Synthesis in MANGO

2. The links that are included in the topology and are used by the routes
sharing the critical connection’s bottleneck link, i.e., the links that are
used by routes that contribute to nbottleneck ,ccritical

. By removing one or
more of these links, the routes using them are rerouted, which most likely
impacts nbottleneck ,ccritical

.

3. The links that are not included in the topology, but when included would
be used by either the critical connection or the routes contributing to
nbottleneck ,ccritical

.

4. The set of links, excluding the links in the three above sets, whose presence
or absence, if toggled, would change which connection is the critical one.

From these four sets of links, the first three may either improve or worsen the
critical connection’s latency, while the links in the last set can only lead to a
new critical connection with a higher latency than the existing one. Given the
neighborhood exploration in tabu search, toggling the presence of a link from
the first three sets can only be chosen as the best move to make, if doing so
improves the critical connection’s latency, or if no non-tabu links improves (or
maintains) the critical connection’s latency, and this is the link that worsens it
the least. A link from the fourth set may also only be chosen in this second
case.

However, there is a fifth set of links that contains all the remaining links.
These links’ presence can be toggled with no impact, positive or negative, on the
critical connection’s latency. Thus, all links in this fifth set maintain the result
of the evaluation function, which has the effect that the tabu search prefers
toggling a link from this set to a link that worsens the critical connection’s
latency. Therefore, considering the evaluation function as a landscape, local
minima are not points in the landscape, but plateaus surrounded by crater-like
slopes. Even if the tabu list pushes the search one step up the slope, the search
will run along the contour lines around the plateau instead of moving further up
the slope and over the edge onto the neighboring plateau or local minima. The
diversifications however have the effect of moving the search from one plateau
to another, as they consider the critical connection and force a change in its
route.

6.5 Experiments

For evaluating the six heuristics (simulated annealing, base tabu search, and
tabu search extended with all combinations of long term memory and diversifi-

6.5. Experiments 61

cations), three synthetically generated periodic bandwidth graphs are used for
tuning the heuristics’ parameters, while six others are used for testing the found
parameters, i.e., for comparing the heuristics.

The nine synthetic periodic bandwidth graphs are varied over three graph
sizes (number of IP cores) and three traffic patterns. The graph sizes are 16,
64, and 256 IP cores, while the traffic patterns are:

Toroidal communication (TC): Assuming a bi-directional torus topology,
the number of flits transmitted on the connection ci,j is

bi,j =
{
rα,β oi and oj neighbors (6.10)
0 otherwise (6.11)

where rα,β is a uniformly distributed random variable in the interval]α;β[.

Random (R): Given a probability p, the number of flits transmitted on the
connection ci,j is

bi,j =
{
rα,β r0,1 < p (6.12)
0 otherwise (6.13)

This produces a completely random traffic pattern.

Hybrid (H): This traffic pattern is a random traffic pattern with a tendency
towards communication between toroidal neighbors. Given a probability
p, the number of flits is given by

bi,j =

2rα,β r0,1 <

3
2p and oi and oj neighbors (6.14)

rα,β r0,1 <
p
2 (6.15)

0 otherwise (6.16)

These nine PBGs (three traffic patterns and three graph sizes) are generated
once and used throughout all executions of the heuristics. Each PBG is referred
to using its abbreviation (indicated in parenthesis in the above description) and
the number of IP cores, e.g., H256 for the hybrid traffic pattern with 256 IP
cores.

For both tuning and testing, fifteen repetitions are made of each run to min-
imize the possible interference from a particularly good or bad initial solution.
Each run is allocated 60 seconds of CPU time (the heuristic terminates in the
first iteration finishing after the 60 second mark) on a Sun Fire V440 with four
UltraSPARC III CPUs running at 1062 MHz and with 1 MB L2 cache.

62 6. Topology Synthesis in MANGO

τstart α nnhood

100, 200,300, 400 0.97,0.98, 0.99, 0.999 1,2, 3

Table 6.1: The parameter values explored during parameter tuning for simulated
annealing.

Variation ltabulist nnoimp

Base tabu search 3, 5, 10, 15,20, 25, 30 -
V1, Dchange 3, 5, 10, 15, 20, 25,30, 35 1, 3, 5, 10, 15, 20,25, 30
V1, Dshort 5, 10, 15,20, 25, 30, 35 1, 3, 5, 10, 15, 20
V2, Dchange 5,10, 15 10,15, 20
V2, Dshort 5,10, 15 5,10, 15, 20

Table 6.2: The parameter values explored during parameter tuning for the tabu
search variations. As the base tabu search has no long term memory, nnoimp is
not a parameter for this variation.

6.6 Results

This section presents the results of the parameter tuning and testing of the
heuristics. The three PBGs used for parameter tuning are TC256, R64, and
H16, yielding a representative selection of both traffic patterns and problem
sizes. The remaining PBGs are used for parameter testing.

6.6.1 Parameter Tuning

For the parameter tuning, a range of parameters has been selected for each
heuristic, and the quality of the solutions produced by the heuristics with all
combinations of parameter values has been determined. As described in chap-
ter 3, the parameter values’ range is iteratively extended until the parameter
values yielding the best solutions are no longer on the edge of the range.

Tables 6.1 and 6.2 show the parameters and the ranges of their values for each
heuristic with the best parameter values highlighted. It is interesting to note
that for both (V1, Dchange) and (V1, Dshort), nnoimp is less than ltabulist , i.e., the
best option is to have the “long term” memory work over a smaller number of
iterations than the tabu list, which is supposed to be an instance of “short term”
memory. However, for (V2, Dchange) and (V2, Dshort), nnoimp is greater than or
equal to ltabulist . As V2 inherently has more iterations between diversifications

6.6. Results 63

than V1 (due to resetting the counter more often), this difference in nnoimp can
not be attributed to a desirable frequency with which diversifications should
occur. Indeed, no explanation has been found for this difference: For now, it
must be accepted that these are the best parameter values found by empirical
means.

6.6.2 Parameter Testing

The results of the parameter testing are shown in Figures 6.3, 6.4, and 6.5. For
each heuristic and problem, marks show the percentage gap of each of the fifteen
repetitions, while a box shows the interval [µ−σ;µ+σ]. Including the individual
repetitions makes it possible to determine whether any statistical outliers are
present. SA indicates simulated annealing, BTS the base tabu search, V1C (V1,
Dchange), etc.

-10

0

10

20

30

40

50

60

P
er

ce
n
ta

ge
 g

ap

Heuristic

TC16 R16

S
A

B
T

S

V
1C

V
1S

V
2C

V
2S

S
A

B
T

S

V
1C

V
1S

V
2C

V
2S

Figure 6.3: Results for PBGs with 16 IP cores.

64 6. Topology Synthesis in MANGO

For the smaller (16 IP cores) PBGs, the results are shown in Figure 6.3. In
TC16, and to a certain degree in R16, simulated annealing has a single outlier,
skewing the box indicating the mean and standard deviation. However, the
remaining solutions produced by simulated annealing are all within 20% of the
best found solution, which is also the case for V1S, V2C, and V2S. On the
other hand, both BTS and V1C perform worse than the other heuristics with
only a few solutions less than 20% from the best one for BTS and none for
V1C. It is interesting to note that BTS performs better than V1C, i.e., that
diversifying the search in this way is worse than performing the search without
any diversification. Considering the diversifications, for both V1 and V2, Dshort

produces better results than Dchange . This is as expected, as the changes made
to the solution by Dshort directly cause a reduction in the critical connection’s
latency, while the changes made by Dchange force a change in the route servicing
the critical connection, but not necessarily a change that reduces its latency. The
relative performance of the heuristics on R16 is similar to that for TC16, except
for V2C which produces solutions that are more spread out.

Overall, for the small problems, V1S produces the best solutions followed
by V2S and SA that both are reasonably close to V1S, despite SA’s outliers.
After these, V2C, BTS, and V1C produce solutions that, while not exceptionally
good, are not exceptionally bad either.

For the medium sized (64 IP cores) PBGs, the heuristics’ relative perfor-
mance shown in Figure 6.4 differs significantly from that for the smaller PBGs.
First, BTS’s performance is in line with, and in some cases better than, that of
the other tabu search variations. Also, for V1, the performance of Dchange is
better than that of Dshort , while for V2, the two diversifications’ performances
are similar to each other. As stated above, Dshort is expected to produce better
results than Dchange , as the changes made are more likely to reduce the criti-
cal connection’s latency. One possible explanation for this not being the case
for these applications is the same explanation for why choosing an expectedly
good initial solution for the search can lead to suboptimal performance of the
heuristic: The good solution may be close to a locally optimal solution, but far
from the globally optimal one.

Considering SA, it is seen that it performs better than the tabu search vari-
ations. The main reason for this is the difference in the amount of calculations
needed in each iteration of the heuristics: The 1-bit neighborhood used in the
tabu search variations contains 2016 solutions, each of which is checked whether
or not it is a valid solution and, if so, is evaluated. On the available hardware,
some iterations last more than a second, which severely limits the number of
iterations of the search in the allocated time.

6.6. Results 65

0

10

20

30

40

50

60

70

80

P
er

ce
n
ta

ge
 g

ap

Heuristic

TC64 H64

S
A

B
T

S

V
1C

V
1S

V
2C

V
2S

S
A

B
T

S

V
1C

V
1S

V
2C

V
2S

Figure 6.4: Results for PBGs with 64 IP cores.

66 6. Topology Synthesis in MANGO

0

100

200

300

400

500

600

700

800

900

1000

P
er

ce
n
ta

ge
 g

ap

Heuristic

R256 H256
S
A

B
T

S

V
1C

V
1S

V
2C

V
2S

S
A

B
T

S

V
1C

V
1S

V
2C

V
2S

Figure 6.5: Results for PBGs with 256 IP cores.

6.7. Summary 67

The difference between SA and the tabu search variations is even more dis-
tinct for the PBGs with 256 IP cores, shown in Figure 6.5. Noticing the change
of scale between Figures 6.3 and 6.4 and Figure 6.5, it is seen that none of
the tabu search variations find solutions within 200% of those found by sim-
ulated annealing. Iteration times up to twenty seconds are observed for the
tabu search variations for these sized problems. With the small number of iter-
ations the tabu search variations can make in the allocated time, they can not
be expected to perform much better than random sampling, as is indicated by
the very large spread of the best found solutions. Comparing their individual
performance therefore brings limited value to this discussion.

Overall, simulated annealing must be said to be the best heuristic of the
ones investigated here, although V1S and V2S perform somewhat better for
small problems.

6.7 Summary

In this chapter, the topology synthesis problem in context of the MANGO NoC
has been investigated. An analytical model has been presented for finding the
(worse than) worst case period for the communication of a periodic application
that is modelled by a periodic bandwidth graph. Six different heuristics for
solving the topology synthesis problem have been investigated. These are simu-
lated annealing and five variations of tabu search: Basic tabu search both as an
independent heuristic and augmented with two different criteria for performing
two different diversifications.

Synthetic periodic bandwidth graphs have been used for tuning the heuris-
tics’ parameters and comparing the heuristics to each other. For small periodic
bandwidth graphs with 16 IP cores, the heuristics are almost equal, but as the
graph size increases to 64 and 256 IP cores, the computational intensity of the
tabu searchs’ exhaustive search of the neighborhood severely limits the number
of iterations that may be carried out in the allocated time. Thus, with the given
constraints, simulated annealing must be said to be the best overall heuristic
from the ones investigated here for solving the topology synthesis problem in
context of MANGO.

68 6. Topology Synthesis in MANGO

Chapter 7

The ReNoC Configuration
Problem

This chapter presents methods for synthesizing topologies and mapping them
on ReNoC-based platforms, while producing application-specific, deadlock-free
routing algorithms. Collectively, these three problems are called the configu-
ration problem. The chapter is organized as follows: First, in section 7.1, the
overall ReNoC architecture and two specific instances of it are described. Then,
in section 7.2, a model of ReNoC is described, while section 7.3 presents the
heuristics for solving the aforementioned problems. In section 7.4, the experi-
ments conducted for evaluating the heuristics and the specific instances of the
ReNoC architecture are presented, and in section 7.5, the results of these exper-
iments are discussed. Finally, section 7.6 gives conclusions on the heuristics and
the ReNoC architecture. The ReNoC architecture has been developed by Mikkel
Stensgaard [71]. The contributions presented here relate to the identification
of the configuration problem and the development of heuristics to solve it, but
not to the architecture itself. This chapter is based on the work presented in
[75, 76].

7.1 The ReNoC Architecture

This section introduces the ReNoC architecture, first describing the generic
architecture and its motivation, and then the specific instances that are used
to evaluate the architecture and the algorithms for solving the configuration

69

70 7. The ReNoC Configuration Problem

problem.
As outlined in chapter 1, the increasing design effort, time-to-market, and

non-recurring engineering costs of integrated circuits are expected to cause a
shift from application-specific integrated circuits to more flexible platform sys-
tems for many applications.

The ReNoC architecture aims at providing a highly efficient interconnect in
such platforms: Instead of providing a static interconnect that is dimensioned
to be able to support all reasonably expectable traffic patterns at any time, pro-
vide a dynamic interconnect that can support any reasonably expectable traffic
pattern one at a time, i.e., instead of an interconnect that is oversized for the
task at hand and is thereby power inefficient, provide an interconnect that is
adaptable to match the task at hand making it power efficient. ReNoC is adapt-
able in exactly this manner, as it allows an application to configure the topology
of the NoC interconnect to best match its communication requirements.

Providing this flexibility is accomplished through the use of power efficient,
physically circuit-switched topology switches (TS) as illustrated in Figure 7.1.
Figure 7.1(a) shows a mesh of network nodes with one IP core attached to each
node and double, bidirectional links between neighboring nodes. The ReNoC
architectural extension (the topology switch) is shown in Figure 7.1(b) encir-
cling a conventional packet-switched router. A close-up view of a conceptual
ReNoC port is shown in Figure 7.1(c). In conventional NoCs, links are con-
nected straight to the packet-switched routers’ ports. The ReNoC topology
switches also allow links to be connected directly to each other, bypassing the
router. In this way, the packet-switched routers may be connected in a different
topology than the underlying topology of network nodes. This underlying topol-
ogy is denoted the physical architecture, while the topology of packet-switched
routers after configuring the topology switches is denoted the logical topology.

ReNoC’s flexibility makes it very well-suited for platform chips, which are
meant to support a wide range of applications on a single hardware design, as
each application can configure its own logical topology. This leads to a unique
combination of flexibility and power efficiency of the interconnect in such a
platform.

Figure 7.2(a) illustrates an application represented as a bandwidth graph,
while Figure 7.2(b) shows a logical topology that supports the communication
requirement of this application and that may be configured on the physical
architecture in Figure 7.1(a). This logical topology demonstrates some of the
possible connections that may be made using ReNoC: Pairs of IP cores are
connected directly to each other, effectively forming point-to-point links using
the physical circuit-switching provided by ReNoC. Other IP cores (e.g., ARM

7.1. The ReNoC Architecture 71

IP IP IP

IP IP IP

IP IP IP

IP IP IP

(a)

IP

Router

Topology
switch

(b)

To/from
other ports

..
.

..
.

..
.

..
.

(c)

Figure 7.1: From left to right: A 3 × 4 2D mesh with double links, a detailed
view of a network node with an IP core and a router encircled by a topology
switch, and a close-up view of a TS port.

in the lower left corner) are connected directly to routers that are multiple
hops away in the physical architecture, but only a single hop in the logical
topology, while yet other IP cores and routers are connected as they would be in
a conventional NoC. For this last case, the ReNoC topology switches constitute
a slight overhead in power consumption compared to a static, conventional NoC.
It is assumed that unused routers and IP cores are powered down.

It should be noted that although a specific packet-switched router is used in
both previously presented work [71, 75] and in this thesis, ReNoC is not tied to
this specific router. ReNoC is a generic architecture for NoCs that is orthogonal
to the router architecture. It can be used to add a layer of circuit-switching to
any packet-switched NoC such as MANGO [10] or ×pipes [21].

When configuring the logical topology, care must be taken that the latency
of the slowest, long, logical link does not exceed the clock period. Pessimistic
models of the links indicate a latency of 120 ps for a flit on a 1 mm link,
thus – with a 100 MHz clock – very long, logical links can be formed with
no need for pipelining [71]. If needed, state holding repeaters can be inserted
in all or a subset of the TSs to allow very long, logical links to be pipelined.
As NoCs typically employ flow-control at the flit level, synchronous latency
insensitive or elastic circuits [16, 17] may be used to arbitrarily add pipeline

72 7. The ReNoC Configuration Problem

70 362

362

362

49
27

357

353

16

300

500 313

94

313

vld rld iscan

iDCT iQ ac/dc

str
mem

us VOPR

VOP
MEM

ARM pad

(a)

vld rld iscan

iDCT iQ ac/dc

str
mem

us VOPR

VOP
MEM

ARM pad

R

R

RR

(b)

Figure 7.2: (a) The VOPD application from [71] and (b) a logical topology
configured on a 3× 4 physical architecture.

registers without changing the circuits’ functionality. If the NoC is implemented
using asynchronous techniques [67], such insensitivity to the addition of pipeline
registers is typically already present.

The detailed view of a port on a TS in Figure 7.1(c) shows a conceptual
implementation using multiplexers, but in actual implementations other possi-
bilities exist:

• If the links use low-swing signaling, it is also possible to implement the
topology switches using low-swing switches as presented in [22].

• If reconfiguration is expected to occur infrequently or only at initialization
of the SoC platform, implementation styles similar to those used in FPGA
switch-boxes can be used for the TSs, such as pass-gates, tri-state buffers
or multiplexers as shown in Figure 7.1(c).

As shown in the logical topology in Figure 7.2(b), the ReNoC architecture
does not impose any requirement on bidirectional connections through the NoC.
For example, considering R0 in Figure 7.3, a router’s north output port may be
connected to the neighboring router’s south input port, while its north input
port is connected to a long, logical link originating much further away on the
SoC platform. Well-known deadlock-free routing algorithms such as up-down

7.1. The ReNoC Architecture 73

routing or turn-prohibition [70] rely on bidirectional topologies and can thus
not be applied to ReNoC in general. The approach to avoiding deadlocks is
described together with the heuristics in section 7.3.

IP

R0 R1 R2

R3 R4 R5

IP IP

IP IP IP

Figure 7.3: A logical topology does not necessarily have bidirectional links.
Observe the north port of router R0, where the output goes to the south port
of router R3, but the input comes from the west port of router R2.

The previous paragraphs concerned the generic ReNoC architecture. In the
following, the specific implementation that is used in the evaluation is presented.
Mesh-based physical architectures are used, although the ReNoC architecture
is not limited to these. While allowing any circuit-switched connection to be
established in the TSs would provide the highest amount of flexibility, a few
restrictions are imposed on the possible connections in order to minimize the
overhead. The following circuit-switched connections are the ones allowed:

1. Any link input can be connected straight to any link output except back
in the direction of the link input – no U-turns are allowed. This effectively
bypasses the router.

2. A port on a router may be connected only to the link in the corresponding
direction, i.e., the router’s north port may only be connected to the links
on the TS’ north port. This goes for both in- and output ports.

The connection to the IP core’s network interface is considered a link similar
to those connecting neighboring network nodes for this purpose, i.e., the IP core

74 7. The ReNoC Configuration Problem

can only be connected to the local router on the router’s port in the direction
of the IP core. However, an IP core may use a long link to connect to any port
on a different router, except for the IP port, which can exclusively be used by
the local IP core, cf. item number two above. If an application does not use a
given TS port, an enable-bit prevents the port from forwarding flits.

7.2 Modelling ReNoC

This section describes the models used for representing applications, physical
architectures, etc. and formalizes the configuration problem. Applications are
characterized by bandwidth graphs that describe the bandwidth requirements
between sets of tasks, where all tasks in a set are mapped to the same IP core.
A fixed mapping of the application to IP cores is assumed. Using O for the set
of IP cores:

Def. 7.1. A bandwidth graph is a directed graph BG = (T,C), where each
vertex ti ∈ T represents a task set and each directed edge ci,j = (ti, tj) ∈ C rep-
resents a connection from ti to tj . Each edge ci,j has a weight bi,j that indicates
the connection’s bandwidth requirement. This is identical to definition 2.2.

Def. 7.2. A mapping M : T → O maps a task set t ∈ T on an IP core o ∈ O.
M is assumed to be fixed and given as input for each run of the algorithms.

A graph representation is also used for the physical architecture. Most graph
representations of networks use vertices to represent routers and edges to repre-
sent links between routers as in definition 2.3. Here, it is necessary to model at
a finer level of granularity due to the nature of ReNoC where the output ports
a packet can leave a network node on depends on what input port it arrived
on. Therefore, vertices are used to represent ports on both routers, TSs, and IP
cores. The sets of router, TS, and IP core ports are called U , S and O respec-
tively. These are also indicated in Figure 7.4. It is useful to distinguish between
these three sets as edges internal to TSs need to be handled differently from
other edges in the algorithms: An edge between two router ports indicates that
it is possible to come from one port to the other, while an edge between two TS
ports indicates that it is possible to come from one input port to the multiplexer
on the output port (see Figure 7.1), but the setting of the multiplexer control
signal determines which input port is actually connected to the output port.
These multiplexer control signals are what are actually set in order to configure
a logical topology.

7.2. Modelling ReNoC 75

IP

U

O

S

Figure 7.4: The vertices contributing to the sets O, S, and U from a single
network node. The complete sets are found by taking the union of these subsets
over all network nodes. Edges internal to the TS and the router are not shown.

Def. 7.3. A network graph is a directed graph NG = (P,L) where the set
of vertices P = U ∪ S ∪ O is the union of the sets of router, TS, and IP core
ports, and each directed edge li,j = (pi, pj) ∈ L represents a link from pi to
pj . Note that the term “link” is used to describe any edge in the NG – when a
reference is made to links between network nodes, the term “NoC links” is used.
For IP cores, input and output ports are differentiated from each other using
subscripts, e.g., oi,in. Two parameters are associated with each link l ∈ L:

1. An energy per packet, e, that denotes the amount of energy expended in
transmitting a packet along l. This not only covers the energy consump-
tion in NoC links but also the energy consumed internally in routers and
TSs, i.e., in the buffers and the switch in routers and in the multiplexers
in the TSs.

2. A capacity q that denotes the sustainable throughput of the link, which
is a fraction of the peak throughput, q = α × peak, 0 < α ≤ 1. In
practice, α represents the saturation load of the network. By setting the
available capacity on a link to q, it is ensured that the saturation point is
never reached. This approach is equivalent to the one used in [61], where
the bandwidth requirements of connections in the application model are

76 7. The ReNoC Configuration Problem

increased until simulations show that the synthesized NoC can support
the actually required bandwidth.

In general, for a graph G = (V,E), given two vertices u, v ∈ V and an edge
between them e = (u, v) ∈ E, u is defined as the source and v as the destination
of e, src(e) = u,dst(e) = v.

Routes are paths in the network between pairs of IP cores. In the context
of these graph representations, a route contains all ports that a packet passes
through, not only the ones where actual routing decisions are made. The routes
are trimmed down to the necessary parts as a post-processing step. Note that
the term “routing algorithm” is used in its most general sense of how to come
from A to B, rather than an actual algorithmic description of the route taken.

Def. 7.4. A route R(oi, oj) between the two IP cores oi, oj ∈ O is a path
〈p0p1 . . . pn−1〉 where p0 = oi,out and pn−1 = oj,in. The route servicing a con-
nection c is defined as R(c) = R(M(src(c))out,M(dst(c))in), c ∈ C, i.e., as the
route originating at the IP core the source of the connection is mapped to and
terminating at the IP core the destination of the connection is mapped to. The
notation Ri indicates the ith element in R. The set of all routes is denoted
R = {R(c)|c ∈ C}.

A routing deadlock is characterized by a cyclic dependency of flits in the
network. It is possible to determine if a deadlock is possible by analyzing if the
set of all routes form a cycle in a graph. To do so, a dependency graph similar
to the application-specific channel dependency graph in [63] is used.

Def. 7.5. A dependency graph is a directed graph DG = (P,D) where the
set of vertices P is identical to that in the NG , but each directed edge di,j =
(pi, pj) ∈ D represents a dependency by pi on pj . A dependency di,j signifies
that ∃R ∈ R∃i.Ri = pi ∧ Ri+1 = pj , i.e., there exists a route where pj is the
immediate successor of pi: If a flit arrives at pi, it may need to proceed to pj .

In order to describe a solution to the configuration problem, a configuration
graph is used that has the same vertices as the NG but whose edges are a
subset of those in the NG . Specifically, internally to TSs only those edges that
correspond to the connections between ports are included, i.e., an output port
has multiple incoming edges but in the configuration graph only the one from
the input port that is selected by the multiplexer shown in Figure 7.1(c) is
included. Partial configurations are allowed, meaning that the configuration
graph contains multiple edges for one TS port. This is useful when building
solutions iteratively.

7.2. Modelling ReNoC 77

Def. 7.6. A configuration graph is a directed graph CG = (P,A). The two
edge properties are copied from the NG for each link a ∈ A.

In

Out

0 1 2 3

0 1 2 3

In

Out

0 1 2 3

0 1 2 3

In

Out

0 1 2 3

0 1 2 3

(a) (b) (c)

Figure 7.5: Care must be taken when unconfiguring links. In (c), the dashed
link should not be added when unconfiguring (0, 1), as this would inadvertently
unconfigure (2, 0).

An edge a ∈ A in a TS is said to be configured by removing the other
edges incident on src(a) or dst(a) and internal to the TS (the links that are
not selected with the multiplexer control signal), and to be unconfigured by
adding (some of) these edges back. When unconfiguring, care must be taken
to not inadvertently unconfigure a different edge than the one actually being
unconfigured. Consider Figure 7.5, where a TS with four input and output ports
is shown. In Figure 7.5(a), the unconfigured TS is shown, in Figure 7.5(b),
the links (0, 1) and (2, 0) have been configured, while Figure 7.5(c) shows what
happens if (0, 1) is then unconfigured. Note the dashed line that, if added, would
cause (2, 0) to be unconfigured as well. Therefore, this dashed line should not
be added to A when unconfiguring (0, 1).

The energy per packet of a route is calculated by summing the energy per
packet of each edge, eRi,Ri+1 , in the route:

ER =
|R|−2∑
i=0

eRi,Ri+1

The power consumption of the connection serviced by the route is found by
multiplying the energy per packet with the bandwidth of the connection:

Pc = ER(c) × bc

78 7. The ReNoC Configuration Problem

Additionally, routers have an idle power, Pidle, and both routers and TSs
have a leakage power, Pleak. If a router is unused in a configuration (no routes
contain any of the router’s ports), it is assumed to be power gated, reducing
both its idle and leakage power to approximately zero.

The total power consumption in the interconnect of a platform SoC executing
an application is made up of leakage, idle, and communication power:

Ptotal =
∑

routers

(Pleak + Pidle) +
∑
TSs

Pleak +
∑
c∈C

Pc

The configuration problem can now be formalized: Given BG , NG , and M ,
synthesize CG with the objective of minimizing Ptotal, subject to

∀c ∈ C : R(c) ∈ R (7.1)
∀R ∈ R∀i < |R| − 1 : (Ri,Ri+1) ∈ A (7.2)

∀pi, pj
∑

{c∈C|(pi,pj)∈R(c)}

bc ≤ qpi,pj
(7.3)

∀〈. . . pi−1pipi+1 . . . 〉 ∈ DG : @i.pi = pj ∧ i 6= j (7.4)

The first requirement states that all connections in the BG have a route,
while the second requirement is that for all of these routes, the edges that
comprise the route exist in A, i.e., the routing and the configuration of the
network correspond to each other. Together, these two requirements state that
the configured network can service all requests the application makes. The third
requirement states that for each link, the sum of the bandwidth requirements
of the connections routed on that link does not exceed the link’s capacity. The
last requirements states that no cycles exist in the DG . As the edges in a DG
constitute the set of all edges used in all routes, the absence of cycles guarantees
freedom from routing deadlocks. A solution that fulfills all four requirements is
said to be valid.

7.3 Optimization Approaches

In this section, three algorithms for solving the configuration problem are pre-
sented. The algorithms all work at application design time (as opposed to SoC
platform design time) and take different approaches: The constructive algorithm
starts from an unconfigured CG and configures routes for one connection at a
time in a greedy manner, while the specializing algorithms start from an already

7.3. Optimization Approaches 79

configured CG with deadlock-free routes and make modifications – specializa-
tions – to these.

In general, these algorithms are based on the realization that the function
of routers is to split and merge traffic streams, while simply moving packets
along may be done much more efficiently in long, logical links. The objective
of the algorithms is to minimize the power consumption, which may lead to
some counter-intuitive situations where the algorithms prefer a long, logical
link with a non-minimal hop count to a minimal route that passes through a
router. Depending on the relative power consumption of links and routers, these
longer routes may have lower power consumption than the minimal ones. Due
to their greedy nature, the algorithms may find locally optimal solutions instead
of the globally optimal one. Finding the optimal solution with minimal energy
consumption would require an exhaustive search.

ConstructiveAlgorithm(BG , NG , M)
1: CG=DG=NG ; D=∅;
2: Sort C in decreasing order according to b
3: for all c ∈ C do
4: Find R(c) in CG
5: if (out-degree(src(c)) > 1 ∨ in-degree(dst(c)) > 1) ∧ {R(c)i|R(c)i ∈

R(c)} ∩ U = ∅ then
6: if out-degree(src(c)) = 1 then
7: Configure path to M(dst(c))in from closest router
8: else if in-degree(dst(c)) = 1 then
9: Configure path from M(src(c))out to closest router

10: else
11: Configure a path between o and closest router port, where o is the

result of M on the element from {src(c),dst(c)} with highest total
bandwidth over outgoing and incoming connections respectively;

12: Find R(c) in CG
13: In CG , configure all edges in R and add these edges to D; Add R to R
14: if DG is cyclic ∨ no route found then
15: Fail

Figure 7.6: Pseudo code for the constructive algorithm.

80 7. The ReNoC Configuration Problem

7.3.1 Constructive Algorithm

The constructive algorithm is a greedy algorithm that starts from an uncon-
figured CG . The pseudo-code is given in Figure 7.6. For each connection in
the BG , the route with the lowest ER and with sufficient (residual) capacity is
found. As this route may be a long link directly between IP cores, it is necessary
to consider if this is allowed for the given connection – if the source IP core is
not the source of any other connection, and the destination IP core is not the
destination of any other connection – and if not, to make sure the route passes
through a router. This is done in lines 5–12. Finally, the found route is con-
figured, the residual capacity of the links in the route is updated, and the DG
is tested for possible deadlocks. The constructive algorithm is unable to handle
these for now, but for future work either backtracking or rerouting can be im-
plemented to resolve deadlocks. For now, the algorithm fails to find a solution.
Another scenario in which the algorithm fails is, if no route is found between
the specified endpoints. This may happen from a combination of edges removed
from A by configurations in previous iterations and edges excluded because of
insufficient residual capacity.

When finding routes in the CG , Dijkstra’s algorithm is used with the energy
per packet as weights on the edges. Edges with insufficient residual capacity
are excluded from the search. Doing so finds the route with the lowest ER and
ensures that the capacity of individual links is not exceeded.

As mentioned above, the found route may be an end-to-end circuit-switched
link directly between the two IP cores, which may not be allowed. In case such
a disallowed, direct link is formed, a change in the route to include a router is
required. The if-statement in line 5 first tests if either endpoint of c is involved
in multiple connections, thus requiring merging or splitting of traffic streams,
and then if the route does not include any routers (the route is an end-to-end
circuit-switched link). If both are true, three cases can occur:

1. This is the only connection from src(c), but dst(c) is the destination of
multiple connections. M(dst(c))in is connected to the closest router such
that the traffic streams are merged as close to the destination IP core as
possible.

2. Multiple connections originate in src(c), but this is the only connection
to dst(c). M(src(c))out is connected to the closest router, such that the
traffic streams are split as close to the source IP core as possible.

3. src(c) is the source of multiple connections and dst(c) the destination
of multiple connections. The sums of the bandwidth requirement of the

7.3. Optimization Approaches 81

connections originating and terminating in src(c) and dst(c) respectively
are found. The task set with the greater sum has its traffic streams split or
merged as close to the IP core it is mapped to as possible. Alternatively,
the sources and destinations of these other connections could be taken
into consideration by finding a router closer to the middle of the route.
Exploring different methods to optimizing the splitting and merging points
in this case is left for future work.

After a router has been inserted in the route, a new route is found in line 12
that this time passes through a router. The final steps are to configure the route
in CG , add it to the set of routes R, and update the dependency graph, DG .
The algorithm actively fails if no route was found or a deadlock has become
possible.

Unless the algorithm fails, the generated solutions satisfy the requirement
that all connections have routes in equation (7.1) as the loop is over all c ∈ C.

The routability requirement in equation (7.2) is also satisfied. To realize
this, first assume that the requirement is violated, i.e., ∃Ri.(Ri,Ri+1) /∈ A. For
this to occur, either the edge (Ri,Ri+1) was not configured in the first place
or it was unconfigured at a later time in the algorithm. As the algorithm never
unconfigures an edge, the second case can be readily dismissed. The first case
does not occur either, as can be realized by tracing all paths through the body
of the for-loop: In all paths, a route is first found and then configured.

The requirement of not exceeding any link capacity in equation (7.3) is
satisfied as edges with insufficient residual capacity are excluded when searching
for a route. Therefore, it is impossible for an edge’s capacity to be exceeded.
Finally, the deadlock-free routing requirement in equation (7.4) is satisfied, as
the algorithm actively fails in case of a deadlock, i.e., no solution is generated
in case a deadlock may occur.

The complexity of the constructive algorithm is O(|C|2 + |C|(|P | log |P | +
|L|)), where |C||P | log |P | dominates. Quicksort is used for sorting the connec-
tions according to bandwidth requirements, which requires O(|C|2) in the worst
case, but only O(|C| log |C|) in the average case. Then, the loop is over all con-
nections, O(|C|), while Dijkstra’s algorithm, O(|P | log |P |), is run for each of
these. The found route then needs to be configured, O(|L|), thereby producing
the second term.

An example of the execution of the algorithm on a small problem is shown in
Figure 7.7. The BG is shown in (a). First, a route for the connection (t0, t3) is
found and configured in (b). As this is the only connection out of t0 and the only
one into t3, the route in this case is simply a long, logical link connecting the

82 7. The ReNoC Configuration Problem

t0 t1

t2 t3

1
0
0

80

7
5

7
0

5
0

2
0

(a)

IP2

R0 R1

R2 R3

IP3

IP0 IP1

(b)

IP2

R0 R1

R2 R3

IP3

IP0 IP1

(c)

IP2

R0 R1

R2 R3

IP3

IP0 IP1

(d)

Figure 7.7: An example of the constructive algorithm’s execution. The BG is
shown in (a), intermediate steps in (b) and (c), and the solution in (d).

7.3. Optimization Approaches 83

two network interfaces directly. In (c), the connection (t3, t2) is being routed.
In line 4, an end-to-end circuit-switched route is found, but both the out-degree
of t3 and the in-degree of t2 are greater than 1. In line 11, it is found that t2
has greater incoming bandwidth than t3 has outgoing. Therefore, IP2’s network
interface’s input terminal is connected to R2. Then a new route is found, this
time going through R2. The final configuration is shown in (d).

A small variation of the algorithm has also been implemented in which paths
are initially configured between those IP cores that are the source or destination
of multiple connections and their closest router, but no paths are configured
between routers. This preprocessing step makes the algorithm generate valid
solutions in some cases where it otherwise fails. The variation has no impact on
the validity of the generated solutions.

7.3.2 Specializing Algorithms

The specializing algorithms take a significantly different approach to solving
the configuration problem compared to the constructive algorithm. Instead of
constructing a solution from scratch, they make modifications – specializations –
to an existing solution. These specializations are designed to exploit the unique
combination of packet and circuit-switching in the ReNoC architecture.

Initial Configuration

The starting point of the specializations – the initial configuration – can be any
valid solution. The idea of the specializations is to make modifications that
maintain the validity of the solution. Here, two ways of acquiring the initial
configuration are used: (1) letting the greedy algorithm generate the initial
configuration and (2) generating an initial configuration in which the TSs are
configured such that the logical topology matches the physical architecture, in
this case a 2D mesh. In the second case, the TSs simply constitute an overhead
compared to a static mesh.

For the routing in such a mesh, two different routing functions are used:
Dimension ordered XY- and YX-routing and north-, south-, east-, and west-first
routing. These routing functions are implemented by removing the prohibited
edges from A and L. Note that the earlier comment about not being able to
use deadlock-free routing algorithms from literature does not apply here, as the
topology in this case in fact is a regular one with bidirectional links. A greedy
algorithm as shown in Figure 7.8 is used to select the routes for all connections.
In dimension ordered routing, only one route exists for each connection, whereas

84 7. The ReNoC Configuration Problem

in e.g., north-first routing, each connection can select from multiple routes. As
in the constructive algorithm, Dijkstra’s algorithm is used to find the route with
sufficient capacity and lowest energy consumption per packet.

RouteConnections(BG , NG , M)
1: CG =logical mesh
2: Remove prohibited edges from A to form the routing function
3: Sort C according to bandwidth requirement
4: for all c ∈ C do
5: Find R(c) in CG
6: if No route found then
7: Fail
8: Add R(c) to R

Figure 7.8: Pseudo code for generating an initial configuration that matches the
physical architecture, here a mesh.

The algorithm in Figure 7.8 is quite similar to the constructive algorithm
with the exception that it is not required to check if an IP core is connected
to a router, because of the initial configuration. The complexity analysis is
also similar to that of the constructive algorithm. Configuring a logical mesh
and removing the prohibited edges requires inspecting each edge in the CG
once, O(|L|). Sorting C is O(|C|2) in the worst case, while the loop is over all
elements in C and contains an O(|P | log |P |) search. The total complexity is
O(|L|+ |C|2 + |C||P | log |P |).

Solutions generated by this algorithm satisfy the requirements that all con-
nections have routes and the link capacities are not exceeded in equations (7.1)
and (7.3) respectively with identical arguments to those for the constructive al-
gorithm. As all modifications to the CG are done before routing commences, the
routability requirement in equation (7.2) is also satisfied, and the chosen rout-
ing functions are known from literature to be deadlock-free. With the initial
configuration now in place, the specializations can be considered.

Specialization A: Bypass Router

The pseudo code for the first specialization is given in Figure 7.9 with an example
shown in Figure 7.10. The specialization consists of detecting cases where all
traffic entering a router on one port, ui ∈ U , exits on one other port, uo ∈ U ,
and all traffic exiting through uo originates in ui. As DG describes which edges

7.3. Optimization Approaches 85

BypassRouter(CG , NG , R, DG)
1: for all {(ui, uo) ∈ D|out-degree(ui) = 1 ∧ in-degree(uo) = 1} do
2: Find si by going backwards from ui until input port on TS
3: Find so by going forwards from uo until output port on TS
4: Unconfigure the link going out of si
5: Unconfigure the link coming in to so
6: Configure the link (si, so)
7: Update all routes that contain (ui, uo)

Figure 7.9: Pseudo code for specialization A: Bypass Router.

in A are actually used, this can be formalized as (ui, uo) ∈ D∧out-degree(ui) =
1∧in-degree(uo) = 1. Whenever this situation occurs, ui and uo are not involved
in merging or splitting traffic streams and there is thus no reason for the traffic
stream to pass through the router. Therefore, a bypass is inserted using the TS.

IPsi

sri

sroso

ui

uo

(a)

IPsi

sri

sroso

ui

uo

(b)

Figure 7.10: An example of specialization A: (a) before and (b) after inserting
a bypass.

Referring to the example in Figure 7.10, consider a subpath, φ, in CG that
is used by at least one route {R ∈ R|φ = 〈sisriuiuosroso〉 ∈ R} as seen in
Figure 7.10(a). By unconfiguring the two edges (si, sri) and (sro, so), the edge
(si, so) is restored in A among others. By configuring (si, so) and modifying φ
such that φ′ = 〈siso〉 the router has been bypassed as shown in Figure 7.10(b).
Corresponding changes are made to D as well. No further bypasses can be
made in the example in Figure 7.10 because the traffic entering the router on
the IP core’s port exits the router on two different ports. By applying this

86 7. The ReNoC Configuration Problem

specialization across the entire CG , multiple bypasses may be inserted, taking
advantage of the TSs’ much lower power consumption compared to that of the
routers. This specialization’s complexity is O(|L||S′|2), where S′ is the set of
ports in a single TS. The exponent comes from the fact that all combinations of
ports need to be examined to unconfigure an edge safely as described previously.

When considering the validity of the generated solutions, first recall that a
valid solution is assumed before the specialization is applied. Thus, it is only
necessary to prove that the specialization does not violate any of the require-
ments. As no elements are removed from R, all connections have routes, and
the first requirement thus remains satisfied. The routability requirement is also
satisfied, because φ is replaced with φ′ in all routes where φ occurs and changes
corresponding to this replacement are made to A, i.e., all routes previously us-
ing φ use φ′ after the specialization has been applied and A has been updated
to include φ′ instead of φ.

For the capacity requirement, the fact that the capacity q of all links belong-
ing to TSs is identical is utilized: The number of flits per time unit that can be
moved through a TS is independent of the path taken through the TS. Thus,
as the capacity of (si, sri) is assumed to be sufficient before applying the spe-
cialization, the capacity of (si, so) is sufficient after applying the specialization.

Finally, the specialization does not introduce deadlocks (cycles in the DG).
Before the specialization is applied, it is known that the out-degree of all vertices
in φ is one (the very reason the bypass could be introduced). Thus, there existed
one and only one path from si to so, and this path did not form any cycles in
the DG . After the specialization has been applied, there is still only one path
from si to so – φ′ instead of φ – which also does not form any cycles in the DG .
No cycles can possibly be introduced in the DG by this specialization.

Specialization B: Insert Long Links

This specialization takes a route and modifies it by trying to insert the longest
link possible. The pseudo-code can be found in Figure 7.11.

Given S′ ⊆ S as the set of ports on one TS, two sets Xin and Xout of vertices
on the route are found, where:

Xin = {Ri|Ri,Ri+1 ∈ S′}
Xout = {Ri|Ri,Ri−1 ∈ S′}

i.e., Xin is the set of TS input ports inR, while Xout is the set of TS output ports
in R. By finding all the pairs with one element xin ∈ Xin and the other element

7.3. Optimization Approaches 87

InsertLongLinks(BG , CG , NG , M , R)
1: Sort C according to b
2: for all c ∈ C do
3: Find Xin, Xout and Y
4: for all y ∈ Y do
5: Unconfigure outgoing edge of xin, incoming edge to xout, and all edges

internal to TSs in between that are only used by R(c); Find Rupd
6: Find a path between xin and xout
7: if No path found then
8: Undo unconfigurations in line 5; Continue with next y ∈ Y
9: Configure path in CG ; Update DG ; Update R(c)

10: for all R ∈ Rupd do
11: Find new route for R
12: if No route found then
13: Undo changes to CG , DG and all R; Continue with next y ∈ Y
14: Configure path in CG ; Update DG ; Update R
15: if DG is cyclic then
16: Undo all changes in this iteration

Figure 7.11: Pseudo code for inserting long links using specialization B.

xout ∈ Xout where xin = Ri, xout = Rj , j > i and sorting them according to
their distance j − i, an exhaustive search can be made for the possible long
links to insert, terminating when the longest possible one is found. This sorted
set of pairs is called Y . Finding a long link requires unconfiguring the two
edges (Ri,Ri+1) and (Rj−1,Rj). This naturally impacts all routes utilizing
these two edges. The set of these routes is denoted Rupd. When considering
a pair y ∈ Y in a route R(c), if ∃R(ci) ∈ Rupd.bci > bc, then y is ignored,
i.e., if inserting a long link for a connection requires another connection with
a higher bandwidth requirement to be rerouted, the algorithm proceeds to the
next y. If all the routes in Rupd belong to connections with a lower bandwidth
requirement, these connections are rerouted at the end of each iteration.

This specialization has a higher complexity than the other algorithms con-
sidered so far. The for-loops in lines 2 and 4 contribute with O(|C||P |2). The
unconfiguring in line 5 potentially considers each edge in the CG and is O(|L|),
while the for-loop in line 10 is O(|C|). The body of this loop is O(|P | log |P |).
In total, the complexity is O(|C||P |2(|L|+ |C||P | log |P |)).

The requirement that all connections have routes is satisfied, because a route

88 7. The ReNoC Configuration Problem

is never removed from R. The routability requirement is also satisfied, as when-
ever changes are made to the CG , the affected routes are updated correspond-
ingly. As in the other algorithms, edges with too little residual capacity are
omitted from searches in the graph, thus the capacity requirement is also satis-
fied. Finally, the requirement of no deadlocks is satisfied by the final if-statement
that reverts the changes to the solution in case a deadlock is possible.

IP1

IP0

xin

xout

(a)

IP1

IP0

xin

xout

(b)

Figure 7.12: An example of specialization B. (a) shows two connections be-
fore the specialization is applied, while (b) shows the two connections after the
specialization has been applied.

An example of the execution of this algorithm is shown in Figure 7.12, where
the route between IP0 and IP1 shares two router ports with the dashed route in
(a), thus specialization A is unable to make any modifications in this situation.
By unconfiguring the edges out of xin and in to xout, searching for a new route
in line 6 yields a circuit-switched route directly between the two IP cores in (b).
No other routes are affected by this specialization.

7.4 Experiments

This section describes the physical architectures and the applications used along
with the conducted experiments.

7.4. Experiments 89

As the focus is on the power savings achieved by using ReNoC to move traffic
out of routers and on to long, logical links, it would be an unfair comparison to
use a large router with many features and high power consumption. Therefore
routers similar to those in [71] are used: Low-power, single-cycle, source routed,
wormhole routers at 100 MHz with two virtual channel buffers in each input
port, each buffer being four flits deep. A packet consists of four flits of which
one is a header flit and the remaining three are payload.

For comparison purposes, three different physical architectures are consid-
ered, all based on a 2D mesh topology. Again, the ReNoC architecture is in no
way limited to meshes.

• A conventional mesh of routers without TSs provides a baseline to evaluate
the overhead of the TSs. This physical architecture is referred to as a static
mesh. For routing in this mesh, both dimension ordered (XY and YX)
and north-, south-, east-, and west-first routing are used.

• The first ReNoC-based physical architecture is, as above, a standard mesh
of network nodes, where network nodes here consist of a router, a TS, and
an IP core. This physical architecture is referred to as the single-link
architecture (SL). An example can be seen in Figure 7.3.

• The second ReNoC-based physical architecture is also a mesh of network
nodes as above, but with the difference that the number of NoC links is
doubled while the routers’ sizes are as in the other two physical archi-
tectures. This means that there are twice as many links as router ports,
which e.g., allows a long, logical link to skip unaffected through an area
that is otherwise congested. This physical architecture is referred to as the
double-link architecture (DL). This is the architecture shown in Figure 7.1.

Table 7.1 presents the energy consumption per packet in the different com-
ponents of a ReNoC-based NoC. Routers and topology switches have been syn-
thesized and their power consumption determined using commercial synthesis
and power characterization tools using estimated wire-load models, while link
characterization is based on figures from SPICE simulations [71, 4]. All figures
in the table are pre-layout, based on low-leakage cells from a commercial 90 nm
standard cell library, using a 1 V supply voltage at nominal parameters. The
energy per packet is the average energy consumed when sending a packet based
on random data, leakage is the leakage power consumption, and idle power is
the dynamic power that is always consumed, independent of the use. Idle power
accounts for clocking of clock-gates and registers that are not clock-gated. The

90 7. The ReNoC Configuration Problem

Module Energy/packet Leakage Idle power
(pJ) (µW) (µW)

Link, 1mm 21 - -
5x5 Router 32 8.6 136

TS SL 0.48/1.05 0.55 1.44
TS DL 0.9/1.4 2.65 1.61

4x4 Router 31 6.7 109
TS SL 0.4/0.87 0.43 1.44
TS DL 0.71/1.2 1.64 1.44

3x3 Router 30 4.7 82
TS SL 0.41/0.43 0.22 1.44
TS DL 0.72/1.05 0.55 1.44

Table 7.1: Energy- and power-consumption of the components in a ReNoC-
based NoC. The two energy/packet values are to a router input and to a NoC
link output respectively.

TSs have previously been shown to add around 10% to the area of the intercon-
nect [71].

A mixture of real and synthetic applications is used to evaluate the algo-
rithms and physical architectures. The following applications can be found in
literature:

• VOPD: A multimedia application [71].

• MMS: A multimedia system [39].

• Rotate and complement: Well known traffic patterns from computer net-
works [23] that have also been suggested for use in NoC micro benchmarks
[66].

A larger synthetic application (S64) that incorporates some of the patterns
suggested in [66] is also used. Characteristics of the different applications can
be found in Table 7.2.

The mapping M has been manually generated for the VOPD, MMS and S64
applications. For the remaining applications, the mapping is determined from
the addresses of task sets (t ∈ T) that are an integral part of forming the traffic
patterns. The IP core with address zero has been put in the lower left corner of
the mesh, and addresses increment by one along the x-axis.

The conducted experiments are (for all applications on SL and DL):

7.5. Results 91

App. name |T | |C| Phys. arch.
VOPD 12 14 3× 4
R12 12 11 3× 4
C12 12 12 3× 4
MMS 16 30 4× 4
R16 16 14 4× 4
C16 16 16 4× 4
S64 64 83 8× 8
R64 64 62 8× 8
C64 64 64 8× 8

Table 7.2: Characteristics of the applications. |T | is the number of task sets (IP
cores), and |C| is the number of connections between these.

• Configure a logical mesh and route using the algorithm in Figure 7.8. This
allows us to evaluate the overhead of the TSs.

• Use the constructive algorithm (Figure 7.6) to configure each application
on each platform.

• Generate an initial configuration using the algorithm in Figure 7.8 and
apply each of specialization A, specialization B, specialization A on the
output of specialization B (BA), and vice versa (AB).

• Generate an initial configuration using the constructive algorithm and
apply both specializations and both combinations of specializations to
this solution.

In the static architecture, the power consumption is evaluated using both
the six mentioned routing functions and also using the constructive algorithm
to make an application-specific routing algorithm. For the results section, from
those experiments where multiple routing functions are used, the best of the
results are selected, as the evaluation is not intended to decide whether e.g.,
XY routing is better than YX routing.

7.5 Results

In this section, the results of the experiments described above are presented
and discussed. The power consumption in “links” shown in the graphs in this

92 7. The ReNoC Configuration Problem

section relates to “NoC links,” i.e., links between network nodes.
In Figure 7.13, the overhead of the ReNoC architecture when the logical

topology forms a mesh is shown. The power consumption of each application
has been normalized to that of the static architecture. As can be seen, the
TSs only add between two and five percent to the power consumption. This is
the worst-case scenario as the TSs’ ability to move traffic out of routers is not
utilized.

Idle
Leakage
TS
Router
Link

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

V
O

PD

M
M

S

S6
4

R
12

R
16

R
64

C
12

C
16

C
64

Po
w

er
 (

no
rm

al
iz

ed
)

Figure 7.13: ReNoC power overhead. The bars represent the power consumption
normalized to the static architecture. The order of the bars is: Static, SL, and
DL.

Figure 7.14 shows a comparison of the different physical architectures. For
each combination of physical architecture and application, the best solution from
all the experiments has been selected in order to show the potential of the ReNoC
architecture. The ReNoC architecture clearly leads to lower power consumption
with the decrease primarily found in routers and secondarily in reduced idle and
leakage power from clock- and power-gating. For SL, the reduction in power
consumption averages 36% with a minimum of 6% for C64 and a maximum
of 61% for R16. DL has lower power consumption than SL due to the greater
possibilities of moving traffic out of routers and on to long, logical links, which is
seen from the even lower power consumption in routers. On average, DL reduces
power consumption by 58% compared to the static architecture, varying between

7.5. Results 93

Idle
Leakage
TS
Router
Link

 0

 5

 10

 15

 20

 25

 30

 35

 40

V
O

PD

M
M

S

S6
4

R
12

R
16

R
64

C
12

C
16

C
64

Po
w

er
 [

m
W

]

Figure 7.14: Comparison of the physical architectures. The order of the bars is:
Static, SL, DL.

17% for C64 and 80% for R16. For some applications (R16, R64, C12, C16)
the traffic pattern can even be implemented fully using only circuit-switching
in DL. This clearly demonstrates the potential of reducing power consumption
using the ReNoC architecture.

Table 7.3 shows the number of routers that are powered on in the same
solutions whose power consumption is shown in Figure 7.14. The main trend
to notice is that more routers can be powered off when going from SL to DL
indicating that more traffic is moved out of routers and on to long links, thereby
reducing the overall power consumption. The exceptions to this trend are VOPD
and S64 where the same number of routers are powered on in SL and DL. For
VOPD it simply does not pay off to use less than four routers. Doing so would
require significant detours of the traffic streams to be split or merged, easily
outweighing the gains of powering off another router. The power consumption
of VOPD is slightly higher on DL because the configurations on SL and DL are
identical, but DL has larger, more power consuming TSs.

In S64 when going from the static architecture to SL in Figure 7.14, it
can be seen that both overall and router power consumption decrease while
link power increases. This is caused by the algorithms sending some traffic
streams out on minor circuit-switched detours in order to avoid going through

94 7. The ReNoC Configuration Problem

Routers on
App No. routers Static SL DL
VOPD 12 12 4 4
R12 12 12 4 1
C12 12 12 6 0
MMS 16 16 11 10
R16 16 16 4 0
C16 16 16 10 0
S64 64 64 19 19
R64 64 64 52 0
C64 64 64 56 51

Table 7.3: The number of powered-on routers in the best configuration of all
physical architectures and applications.

some routers where the streams in question are neither split, nor merged. In
Figure 7.14, the router power remains the same in DL, but the link power
decreases because shorter circuit-switched paths have replaced some longer ones.
This demonstrates the potential of DL to move traffic that simply passes through
a busy region of the network on to a long link that passes right by the busy
routers.

Figures 7.15(a) and 7.15(b) give a comparison of the algorithms on SL and
DL respectively. The bars are normalized to the first non-zero bar for each
application. For SL, the constructive algorithm only produces a valid solution
for two of the applications. However, for those two it produces the best solution
of all the algorithms. In general the algorithms’ performance is almost uniform
with most solutions within 12% of the reference. The outlier is specialization
B that produces the worst solutions by up to 30%, which is interesting since
BA often produces the best solutions. This can be explained by B maximally
inserting one long link per connection: When a change has been made for a
connection, the algorithm proceeds to the next connection. If instead, the al-
gorithm would continue trying to insert long links for the current connection,
specialization B is expected to perform at least as well as BA. Investigating this
is left for future work.

For DL, the constructive algorithm produces valid solutions for eight of the
applications. In all but one case, these solutions have the lowest power con-
sumption. This is explained by the greater freedom in generating solutions
when starting from an unconfigured CG compared to starting from an already

7.5. Results 95

Idle
Leakage
TS
Router
Link

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4
V

O
PD

M
M

S

S6
4

R
12

R
16

R
64

C
12

C
16

C
64

Po
w

er
 (

no
rm

al
iz

ed
)

(a)

Idle
Leakage
TS
Router
Link

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

V
O

PD

M
M

S

S6
4

R
12

R
16

R
64

C
12

C
16

C
64

Po
w

er
 (

no
rm

al
iz

ed
)

(b)

Figure 7.15: Comparison of the optimization algorithms for SL (a) and DL
(b). The order of columns is constructive algorithm, specialization A, special-
ization B, AB, and BA. Bars are normalized to the first non-zero bar for each
application.

96 7. The ReNoC Configuration Problem

valid solution and making modifications. Considering the specializations, A on
its own generally produces much worse solutions than the other specializations
by up to 200%. This is explained by A not being able to exploit the extra
links as it operates on subpaths that are internal in network nodes. As for SL,
BA produces the best solutions of the specializations, although the distribution
again is rather uniform.

Considering the execution time of the different algorithms AB and BA are
the slowest, but even for the large problems the solution is found in less than a
minute.

Using the specializations to optimize the solutions produced by the varia-
tion of the constructive algorithm where IP cores are connected to the closest
router in a preprocessing step gives some improvement in a few cases. How-
ever, in no case are these solutions better than the best one produced either by
the constructive algorithm without the preprocessing step and without subse-
quent specialization or by the specializations applied to the initial configuration
where a logical mesh is formed. Furthermore, the specializations are unable to
improve on the solutions generated by the constructive algorithm without the
preprocessing step.

For VOPD on both SL and DL, specialization B improves the solutions gen-
erated by the constructive algorithm with the preprocessing step by 14% and
19% respectively. For S64, improvements of around 4% are also seen on both
SL and DL using specialization B. In both benchmarks, the improvements come
from traffic being moved out of routers and on to long links leading to lower
power consumption in the routers and in some cases also unused routers that
are powered down. For the remaining benchmarks, no improvements are made
by the specializations on the solutions from the constructive algorithm. As men-
tioned above, for the applications considered here, applying the specializations
to the output of the constructive algorithm never produces a better solution
than that produced by the constructive algorithm itself without the preprocess-
ing step or by applying the specializations to the initial configuration where the
logical topology matches the physical architecture. However, it cannot be ruled
out that some applications exist for which applying the specializations to the
output of the constructive algorithm produces the best results.

The constructive algorithm has also been used to create application-specific,
deadlock-free routing algorithms in the static mesh. However, for the considered
benchmark applications, only insignificant differences (less than 0.2%) are seen
between the well-known routing algorithms and application-specific routing. In
order for application-specific routing to be beneficial, the other routing algo-
rithms need to break down from insufficient capacity along their restricted sets

7.6. Summary 97

of allowed routes.
The results presented in this section have focused on ReNoC’s advantage in

power consumption over a conventional NoC, and on the relative performance
of the algorithms for automatically solving the configuration problem. However,
one of ReNoC’s key features is difficult to put into numbers, namely its flexibility.
By providing a reconfigurable interconnect, it is possible on a single chip to
switch between the best found configurations for the different applications. This
is one of ReNoC’s strengths: The interconnect in a single SoC platform chip can
be used to provide energy efficient, intra-chip communication for a wide range
of applications.

7.6 Summary

In this chapter, optimization algorithms in context of the ReNoC architecture
have been presented. Two example architectures – both based on a 2D mesh
topology – have been used for evaluating both the algorithms and the ReNoC
architecture itself. In the first architecture, the number of links matches the
number of router ports, while in the second architecture, the number of links
has been doubled. These platforms are called SL (single link) and DL (double
link) respectively, and their performance is compared to a conventional 2D mesh
topology without topology switches (denoted ”static”).

The ReNoC configuration problem has been identified and formalized in
section 7.2. It consists of three sub-problems: Topology synthesis, topology
mapping, and routing. The optimization algorithms solve these three problems
in a single pass with the objective of minimizing the power consumption in the
interconnect.

No algorithm can be said to be the best in general, because their relative
performance depends on both the application and the physical architecture. In
general, the constructive algorithm produces the best results, when it does not
encounter a deadlock. In case of deadlocks, the specializations can be used to
find a guaranteed non-deadlocking solution. The combination of specializations
B and A consistently produces good results, but not always the best ones, across
the applications and physical architectures.

The SL architecture produces solutions with 36% lower power consumption
than what is possible in the conventional, static architecture, while the DL
architecture reduces the power consumption by 58% compared to the static
architecture.

98 7. The ReNoC Configuration Problem

Chapter 8

Conclusions and Future
Directions

This thesis has presented three contributions in two different areas of network-
on-chip and system-on-chip research: Application modelling and optimizations
of the network. The following provides conclusions about the research presented
in this thesis and puts it into perspective and discusses future directions

8.1 Conclusions and Perspective

The presented research on application modelling takes an analytical approach to
determining the traffic pattern caused by an application that is modelled with
a task graph and executing on a cache-coherent shared-memory system using a
directory to ensure memory consistency. The analysis produces a worse-than-
worst case bandwidth graph of the communication caused by memory accesses
and the cache-coherence protocol. The analytical method has been evaluated us-
ing worst-case, best-case, and synthetic task graphs. Determining the method’s
usefulness for real applications requires evaluation using such applications.

The ability to analytically determine a worst-case bandwidth graph is highly
useful in system interconnect design flows. Most interconnect synthesis tools
in literature require the application’s traffic pattern to be described using a
bandwidth graph. This is also true for the algorithms for solving the synthesis
and configuration problems in MANGO and ReNoC presented in this thesis.
Such an analytical method may also be used to extend existing design flows to

99

100 8. Conclusions and Future Directions

include the mapping of task graphs to IP cores. Using an analytical method
allows the traffic pattern resulting from each mapping to be quickly evaluated,
which in turn leads to faster iterations of the design-space exploration compared
to determining the traffic pattern through simulation.

Previous approaches to analytically determine a bandwidth graph from a
task graph have assumed communication between IP cores to be implemented by
passing messages directly between communicating pairs of IP cores. However,
many – if not most – multiprocessors systems are based on communication
occurring through variables located in shared memory. Developing an analytical
method for determining a bandwidth graph for an application executing on a
shared-memory system is therefore highly important.

The bandwidth graphs produced by the analytical method can be used as
input to many of the design flows presented in literature for synthesizing or
otherwise optimizing interconnects. This includes the algorithms presented in
this thesis for optimizing in the MANGO and ReNoC networks-on-chips.

The research concerning MANGO presented in this thesis developed and
evaluated six heuristics for synthesizing an application-specific topology. One
heuristic is based on simulated annealing, while the other five are based on tabu
search with different implementations of long-term memory and diversifications
of the search. The evaluation shows that for smaller sized problems – systems
with fewer network nodes – several of the heuristics produce good results. How-
ever, when the problem sized is increased, the slow iteration time of tabu search
severely limits the number of iterations carried out and thereby also the number
of points in the search space that are evaluated.

Multiple tools for synthesizing application-specific network topologies have
been presented in literature. However, these tools are often made with a spe-
cific network-on-chip architecture in mind and may be easily adapted to other
architectures with similar characteristics. When a network-on-chip architecture
differs sufficiently in these characteristics – for example architectural details
or provided features such as guaranteed service – the heuristics used to solve
the optimization problems need to be adapted to take these characteristics into
consideration.

The advantage to adapting the heuristics or even developing new heuristics
is the fact that doing so allows designers to make use of the network-on-chip
architecture’s features without needing to be experts on the architecture, similar
to how most hardware designers today need not worry about layout, placement,
routing (of wires), or synthesis: Tools exist for solving all of these problems. At
the time of writing this, commercialization of network-on-chip design tools is
not widespread, but with continuing increase in the number of devices that may

8.2. Future Directions 101

be integrated in a given unit of area, the need for network-on-chip interconnects
is sure to arrive together with the need for tools to design and optimize these
interconnects.

The continuing development in integration density however also leads to in-
creasing cost of designing and manufacturing chips to such a high degree that
doing so is set to become infeasible for most applications. This necessarily leads
to the use of generic platform chips for these applications. These two ways
– ASICs and platforms – of implementing an application represent different
trade-offs of efficiency on one hand and cost on the other. The ReNoC architec-
ture is designed to bridge the gap between these trade-offs by allowing efficient
implementations at low cost.

The final contribution of this thesis is research into tools that ease the use
of the ReNoC architecture. This constitutes both identifying and formalizing
the optimization problems that need to be solved and developing heuristics for
solving these problems. In this thesis, the ReNoC configuration problem has
been identified and formalized, and three heuristics for solving it have been
developed and evaluated.

To summarize, the three contributions of this thesis are (1) an analytical
method of determining the traffic pattern caused by an application that is mod-
elled as a task graph and executing on a shared-memory system, (2) development
and evaluation of six heuristics for synthesizing application-specific topologies
using the MANGO network-on-chip, and (3) identification and formalization
of the ReNoC configuration problem and development and evaluation of three
heuristics for solving it.

These individual research contributions may be combined such that a de-
signer can start with an application modelled as a task graph and synthesize an
application-specific shared-memory system-on-chip using MANGO as the inter-
connect or to configure a reconfigurable platform with a ReNoC-based intercon-
nect such that the interconnect best matches the application’s communication
requirements.

8.2 Future Directions

The research areas addressed in this thesis may be explored further in the future.
This section presents a discussion on the directions this future research may take.

The analytical derivation of bandwidth graphs from task graphs as described
here makes a number of assumptions on the application’s behavior. One direc-
tion for expanding on this research is to refine the analysis in order to reduce

102 8. Conclusions and Future Directions

the number of assumptions. One interesting approach for doing so is to asso-
ciate a memory trace with each task, rather than associating an address range
with each edge, and making a simulation of the local cache in the analysis. This
simulation should not include the coherence protocol, but only be used to deter-
mine which memory accesses result in cache hits, and which ones result in cache
misses. Evaluating the method with real applications will allow conclusions to
be made about the feasibility of using an analytical approach to determining
traffic patterns in shared-memory systems from task graphs.

The research on synthesizing application-specific topologies in MANGO is
based on the assumption that applications are greedy in their communication
patterns: Every IP core attempts to send a new flit as often as possible. De-
veloping heuristics that take advantage of the latency guarantees provided by
MANGO is one future direction for this research area.

Considering ReNoC, the configuration problem has been identified and for-
malized. Additional heuristics or improvements to the existing ones may be
developed in the future to produce even better results. Another direction would
be to develop heuristics that optimize the mapping of vertices in the bandwidth
graph to IP cores in the system.

A third direction for research into the optimization problems surrounding
ReNoC is to consider the problem of synthesizing a heterogeneous, ReNoC-based
platform. Solving this problem would require a certain amount of knowledge
about the application domain and common characteristics of applications’ com-
munication patterns in order to synthesize a reconfigurable platform that on
one hand is not over dimensioned and on the other hand is sufficiently flexible.

Bibliography

[1] Federico Angiolini, Shankar Mahadevan, Jan Madsen, Luca Benini, and
Jens Sparsø. Realistically rendering SoC traffic patterns with interrupt
awareness. In IFIP International Conference on Very Large Scale Integra-
tion (VLSI-SoC), sep 2005.

[2] Giuseppe Ascia, Vincenzo Catania, and Maurizio Palesi. Multi-objective
mapping for mesh-based NoC architectures. In CODES+ISSS ’04: Pro-
ceedings of the 2nd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pages 182–187, New York,
NY, USA, 2004. ACM.

[3] Giuseppe Ascia, Vincenzo Catania, and Maurizio Palesi. An evolutionary
approach to network-on-chip mapping problem. In Evolutionary Computa-
tion, 2005. The 2005 IEEE Congress on, pages 112–119, sept. 2005.

[4] Arnab Banerjee, Robert Mullins, and Simon Moore. A power and energy
exploration of network-on-chip architectures. In NOCS ’07: Proceedings of
the First International Symposium on Networks-on-Chip, pages 163–172,
Washington, DC, USA, 2007. IEEE Computer Society.

[5] Luca Benini and Giovanni De Micheli. Networks on chips: A new SoC
paradigm. Computer, 35(1):70–78, 2002.

[6] Davide Bertozzi and Luca Benini. Xpipes: A network-on-chip architecture
for gigascale systems-on-chip. IEEE Circuits and Systems Magazine, 4,
2004.

[7] Tobias Bjerregaard. The MANGO clockless network-on-chip: Concepts
and implementation. PhD thesis, Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, Richard Petersens Plads, Building

103

104 BIBLIOGRAPHY

321, DK-2800 Kgs. Lyngby, 2005. Supervised by Assoc. Prof. Jens Sparsø,
IMM.

[8] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and
practices of network-on-chip. ACM Computing Surveys, 38(1):1, 2006.

[9] Tobias Bjerregaard, Shankar Mahadevan, Rasmus G. Olsen, and Jens
Sparsø. An OCP compliant network adapter for GALS-based SoC design
using the MANGO network-on-chip. In System-on-Chip, 2005. Proceedings.
2005 International Symposium on, pages 171–174, nov 2005.

[10] Tobias Bjerregaard and Jens Sparsø. A router architecture for connection-
oriented service guarantees in the MANGO clockless network-on-chip. In
DATE ’05: Proceedings of the conference on Design, Automation and Test
in Europe, pages 1226–1231, Washington, DC, USA, 2005. IEEE Computer
Society.

[11] Tobias Bjerregaard and Jens Sparsø. A scheduling discipline for latency and
bandwidth guarantees in asynchronous network-on-chip. In ASYNC ’05:
Proceedings of the 11th IEEE International Symposium on Asynchronous
Circuits and Systems, pages 34–43, Washington, DC, USA, 2005. IEEE
Computer Society.

[12] Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. QNoC:
QoS architecture and design process for network on chip. Journal of Sys-
tems Architecture, special issue on Network on Chip, 50:105–128, February
2004.

[13] Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. Rout-
ing table minimization for irregular mesh NoCs. In DATE ’07: Proceedings
of the conference on Design, automation and test in Europe, pages 942–947,
San Jose, CA, USA, 2007. EDA Consortium.

[14] Evgeny Bolotin, Arkadiy Morgenshtein, Israel Cidon, Ran Ginosar, and
Avinoam Kolodny. Automatic hardware-efficient soc integration by QoS
network on chip. In 11th IEEE International Conference on Electronics,
Circuits and Systems, ICECS 2004, pages 479–482. Institute of Electrical
and Electronics Engineers Computer Society, 2004.

[15] Edmund K. Burke and Graham Kendall. Search Methodologies: Introduc-
tory Tutorials in Optimization and Decision Support Techniques. Springer,
2005.

BIBLIOGRAPHY 105

[16] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli. Coping with la-
tency in SOC design. IEEE Micro, 22(5):24–35, 2002.

[17] Josep Carmona, Jordi Cortadella, Mike Kishinevsky, and Alexander
Taubin. Elastic circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 28(10):1437–1455, 2009.

[18] Jeremy Chan and Sri Parameswaran. NoCOUT: NoC topology generation
with mixed packet-switched and point-to-point networks. In ASP-DAC
’08: Proceedings of the 2008 Asia and South Pacific Design Automation
Conference, pages 265–270, Los Alamitos, CA, USA, 2008. IEEE Computer
Society Press.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, USA, 2001.

[20] David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Parallel Com-
puter Architecture: A Hardware/Software Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

[21] Matteo Dall’Osso, Gianluca Biccari, Luca Giovannini, Davide Bertozzi, and
Luca Benini. xpipes: A latency insensitive parameterized network-on-chip
architecture for multi-processor SoCs. In ICCD ’03: Proceedings of the 21st
International Conference on Computer Design, page 536, Washington, DC,
USA, 2003. IEEE Computer Society.

[22] William Dally. Enabling technology for on-chip interconnection net-
works. In NOCS ’07: Proceedings of the First International Symposium
on Networks-on-Chip, page 3, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[23] William Dally and Brian Towles. Principles and Practices of Intercon-
nection Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2003.

[24] William J. Dally. Network simulator from [23]. http://cva.stanford.edu.

[25] William J. Dally and Brian Towles. Route packets, not wires: On-chip
interconnection networks. In DAC ’01: Proceedings of the 38th annual
Design Automation Conference, pages 684–689, New York, NY, USA, 2001.
ACM.

106 BIBLIOGRAPHY

[26] Robert P. Dick, David L. Rhodes, and Wayne Wolf. TGFF: Task graphs for
free. In CODES/CASHE ’98: Proceedings of the 6th international work-
shop on Hardware/software codesign, pages 97–101, Washington, DC, USA,
1998. IEEE Computer Society.

[27] José Duato. A new theory of deadlock-free adaptive routing in worm-
hole networks. IEEE Transactions on Parallel and Distributed Systems,
4(12):1320–1331, 1993.

[28] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Net-
works: An Engineering Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

[29] Thomas A. Feo and Mauricio G. C. Resende. Greedy randomized adaptive
search procedures. Journal of Global Optimization, 6(2):109–133, 1995.

[30] Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago Gonza-
lez Pestana, Andrei Radulescu, and Edwin Rijpkema. A design flow for
application-specific networks on chip with guaranteed performance to ac-
celerate SOC design and verification. In DATE ’05: Proceedings of the
conference on Design, Automation and Test in Europe, pages 1182–1187,
Washington, DC, USA, 2005. IEEE Computer Society.

[31] Andreas Hansson, Martijn Coenen, and Kees Goossens. Undisrupted
quality-of-service during reconfiguration of multiple applications in net-
works on chip. In DATE ’07: Proceedings of the conference on Design,
automation and test in Europe, pages 954–959, San Jose, CA, USA, 2007.
EDA Consortium.

[32] Andreas Hansson and Kees Goossens. Trade-offs in the configuration of
a network on chip for multiple use-cases. In NOCS ’07: Proceedings of
the First International Symposium on Networks-on-Chip, pages 233–242,
Washington, DC, USA, 2007. IEEE Computer Society.

[33] Andreas Hansson, Kees Goossens, and Andrei Rădulescu. A unified ap-
proach to mapping and routing on a network-on-chip for both best-effort
and guaranteed service traffic. VLSI Design, 2007, 2007.

[34] Andreas Hansson, Kees Goossens, and Andrei Rădulescu. Avoiding
message-dependent deadlock in network-based systems on chip. VLSI De-
sign, 2007:Article ID 95859, 10 pages, May 2007. Hindawi Publishing Cor-
poration.

BIBLIOGRAPHY 107

[35] Andreas Hansson, Kees Goossens, and Andrei Rǎdulescu. A unified ap-
proach to constrained mapping and routing on network-on-chip architec-
tures. In CODES+ISSS ’05: Proceedings of the 3rd IEEE/ACM/IFIP
international conference on Hardware/software codesign and system syn-
thesis, pages 75–80, New York, NY, USA, 2005. ACM.

[36] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 4th edition, 2007.

[37] Jingcao Hu and Radu Marculescu. Energy-aware mapping for tile-based
NoC architectures under performance constraints. In ASP-DAC ’03: Pro-
ceedings of the 2003 Asia and South Pacific Design Automation Conference,
pages 233–239, New York, NY, USA, 2003. ACM.

[38] Jingcao Hu and Radu Marculescu. Exploiting the routing flexibility for en-
ergy/performance aware mapping of regular NoC architectures. In DATE
’03: Proceedings of the conference on Design, Automation and Test in Eu-
rope, page 10688, Washington, DC, USA, 2003. IEEE Computer Society.

[39] Jingcao Hu and Radu Marculescu. Energy- and performance-aware map-
ping for regular NoC architectures. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(4):551–562, April 2005.

[40] Open SystemC Initiative. http://www.systemc.org.

[41] Tang Lei and Shashi Kumar. A two-step genetic algorithm for mapping task
graphs to a network on chip architecture. In DSD ’03: Proceedings of the
Euromicro Symposium on Digital Systems Design, page 180, Washington,
DC, USA, 2003. IEEE Computer Society.

[42] Ai-Hsin Liu and Robert P. Dick. Automatic run-time extraction of com-
munication graphs from multithreaded applications. In CODES+ISSS ’06:
Proceedings of the 4th international conference on Hardware/software code-
sign and system synthesis, pages 46–51, New York, NY, USA, 2006. ACM.

[43] Zhonghai Lu, Lei Xia, and Axel Jantsch. Cluster-based simulated annealing
for mapping cores onto 2D mesh networks on chip. In DDECS ’08: Pro-
ceedings of the 2008 11th IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems, pages 1–6, Washington, DC, USA, 2008.
IEEE Computer Society.

108 BIBLIOGRAPHY

[44] Jan Madsen, Thomas K. Stidsen, Peter Kjærulf, and Shankar Mahadevan.
Multi-objective design space exploration of embedded system platfoms. In
IFIP Working Conference on Distributed and Parallel Embedded Systems.
IFIP, oct 2006. Invited paper.

[45] Philippe Magarshack and Pierre G. Paulin. System-on-chip beyond the
nanometer wall. In DAC ’03: Proceedings of the 40th annual Design Au-
tomation Conference, pages 419–424, New York, NY, USA, 2003. ACM.

[46] Shankar Mahadevan. Simulation-based Modeling Frameworks for Net-
worked Multi-processor System-on-Chip. PhD thesis, Technical University
of Denmark, Informatics and Mathematical Modelling, Computer Science
and Engineering, 2006.

[47] Shankar Mahadevan, Federico Angiolini, Jens Sparsø, Luca Benini, and Jan
Madsen. A reactive and cycle-true IP emulator for MPSoC exploration.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 27(1):109–122, 2008.

[48] Shankar Mahadevan, Federico Angiolini, Michael Storgaard, Ras-
mus Grøndahl Olsen, Jens Sparsø, and Jan Madsen. A network traffic
generator model for fast network-on-chip simulation. In DATE ’05: Pro-
ceedings of the conference on Design, Automation and Test in Europe, pages
780–785, Washington, DC, USA, 2005. IEEE Computer Society.

[49] Sorin Manolache, Petru Eles, and Zebo Peng. Fault-aware communica-
tion mapping for NoCs with guaranteed latency. International Journal of
Parallel Programming, 35(2):125–156, 2007.

[50] Radu Marculescu, Umit Y. Ogras, Li-Shiuan Peh, Natalie Enright Jerger,
and Yatin Hoskote. Outstanding research problems in NoC design: Sys-
tem, microarchitecture, and circuit perspectives. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 28(1):3–21,
2009.

[51] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch. Guar-
anteed bandwidth using looped containers in temporally disjoint networks
within the Nostrum network on chip. In DATE ’04: Proceedings of the
conference on Design, automation and test in Europe, page 20890, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

BIBLIOGRAPHY 109

[52] Mikael Millberg, Erland Nilsson, Rikard Thid, Shashi Kumar, and Axel
Jantsch. The Nostrum backbone - a communication protocol stack for
networks on chip. In VLSID ’04: Proceedings of the 17th International
Conference on VLSI Design, page 693, Washington, DC, USA, 2004. IEEE
Computer Society.

[53] Mehdi Modarressi, Hamid Sarbazi-Azad, and Arash Tavakkol. Virtual
point-to-point links in packet-switched NoCs. In ISVLSI ’08: Proceedings
of the 2008 IEEE Computer Society Annual Symposium on VLSI, pages
433–436, Washington, DC, USA, 2008. IEEE Computer Society.

[54] Mehdi Modarressi, Hamid Sarbazi-Azad, and Arash Tavakkol. Performance
and power efficient on-chip communication using adaptive virtual point-to-
point connections. In NOCS ’09: Proceedings of the 2009 3rd ACM/IEEE
International Symposium on Networks-on-Chip, pages 203–212, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

[55] Srinivasan Murali. Methodologies for Reliable and Efficient Design of Net-
works on Chips. PhD thesis, Stanford University, March 2007.

[56] Srinivasan Murali, Luca Benini, and Giovanni De Micheli. Mapping and
physical planning of networks-on-chip architectures with quality-of-service
guarantees. In ASP-DAC ’05: Proceedings of the 2005 Asia and South
Pacific Design Automation Conference, pages 27–32, New York, NY, USA,
2005. ACM.

[57] Srinivasan Murali, Martijn Coenen, Andrei Radulescu, Kees Goossens, and
Giovanni De Micheli. Mapping and configuration methods for multi-use-
case networks on chips. In ASP-DAC ’06: Proceedings of the 2006 Asia and
South Pacific Design Automation Conference, pages 146–151, Piscataway,
NJ, USA, 2006. IEEE Press.

[58] Srinivasan Murali, Martijn Coenen, Andrei Radulescu, Kees Goossens, and
Giovanni De Micheli. A methodology for mapping multiple use-cases onto
networks on chips. In DATE ’06: Proceedings of the conference on Design,
automation and test in Europe, pages 118–123, 3001 Leuven, Belgium, Bel-
gium, 2006. European Design and Automation Association.

[59] Srinivasan Murali and Giovanni De Micheli. Bandwidth-constrained map-
ping of cores onto NoC architectures. In DATE ’04: Proceedings of the
conference on Design, automation and test in Europe, page 20896, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

110 BIBLIOGRAPHY

[60] Srinivasan Murali and Giovanni De Micheli. Sunmap: A tool for automatic
topology selection and generation for NoCs. In DAC ’04: Proceedings of
the 41st annual Design Automation Conference, pages 914–919, New York,
NY, USA, 2004. ACM.

[61] Srinivasan Murali, Paolo Meloni, Federico Angiolini, David Atienza, Salva-
tore Carta, Luca Benini, Giovanni De Micheli, and Luigi Raffo. Designing
application-specific networks on chips with floorplan information. In IC-
CAD ’06: Proceedings of the 2006 IEEE/ACM international conference on
Computer-aided design, pages 355–362, New York, NY, USA, 2006. ACM.

[62] Umit Y. Ogras and Radu Marculescu. ”It’s a small world after all”: NoC
performance optimization via long-range link insertion. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 14(7):693–706, july 2006.

[63] Maurizio Palesi, Rickard Holsmark, Shashi Kumar, and Vincenzo Catania.
A methodology for design of application specific deadlock-free routing al-
gorithms for NoC systems. In CODES+ISSS ’06: Proceedings of the 4th
international conference on Hardware/software codesign and system syn-
thesis, pages 142–147, New York, NY, USA, 2006. ACM.

[64] Open Core Protocol International Partnership. http://www.ocpip.org.

[65] E. Rijpkema, K. Goossens, J. Dielissen, A. Rădulescu, J. van Meerber-
gen, P. Wielage, and E. Waterlander. Trade offs in the design of a router
with both guaranteed and best-effort services for networks on chip. IEE
Proceedings: Computers and Digital Technique, 150(5):294–302, sep 2003.

[66] Erno Salminen, Christian Grecu, Timo Hämäläinen, and André Ivanov.
Network-on-chip benchmark specification part 1: Application mod-
elling and hardware description version 1.0. Technical report, OCP
(http://www.ocpip.org), 2008.

[67] J. Sparsø and S. Furber, editors. Principles of Asynchronous Circuit Design
– A Systems Perspective. Kluwer Academic Publishers, 2001.

[68] Krishnan Srinivasan and Karam S. Chatha. A methodology for layout
aware design and optimization of custom network-on-chip architectures.
In ISQED ’06: Proceedings of the 7th International Symposium on Qual-
ity Electronic Design, pages 352–357, Washington, DC, USA, 2006. IEEE
Computer Society.

BIBLIOGRAPHY 111

[69] Krishnan Srinivasan, Karam S. Chatha, and Goran Konjevod. Linear-
programming-based techniques for synthesis of network-on-chip archi-
tectures. IEEE Transactions on Very Large Scale Integrated Systems,
14(4):407–420, 2006.

[70] David Starobinski, Mark Karpovsky, and Lev A. Zakrevski. Application of
network calculus to general topologies using turn-prohibition. IEEE/ACM
Transactions on Networking, 11(3):411–421, 2003.

[71] Mikkel Bystrup Stensgaard and Jens Sparsø. ReNoC: A network-on-chip
architecture with reconfigurable topology. In NOCS ’08: Proceedings of the
Second ACM/IEEE International Symposium on Networks-on-Chip, pages
55–64, Washington, DC, USA, 2008. IEEE Computer Society.

[72] Matthias Bo Stuart. High-level modeling of network-on-chip. Master’s
thesis, Technical University of Denmark, Informatics and Mathematical
Modelling, Computer Science and Engineering, 2006.

[73] Matthias Bo Stuart and Jens Sparsø. Custom topology generation for
network-on-chip. In 25th Norchip Conference, pages 81–84. IEEE, 2007.

[74] Matthias Bo Stuart and Jens Sparsø. Analytical derivation of traffic pat-
terns in shared memory architectures from task graphs. In 27th Norchip
Conference, 2009.

[75] Matthias Bo Stuart, Mikkel Bystrup Stensgaard, and Jens Sparsø. Syn-
thesis of topology configurations and deadlock free routing algorithms for
ReNoC-based systems-on-chip. In CODES+ISSS ’09: Proceedings of the
7th IEEE/ACM international conference on Hardware/software codesign
and system synthesis, pages 481–490, New York, NY, USA, 2009. ACM.

[76] Matthias Bo Stuart, Mikkel Bystrup Stensgaard, and Jens Sparsø. The
ReNoC reconfigurable network-on-chip: Architecture, configuration algo-
rithms, and evaluation. ACM Transactions in Embedded Computing Sys-
tems, 2010. Accepted.

[77] Keith S. Vallerio and Niraj K. Jha. Task graph extraction for embedded
system synthesis. In VLSID ’03: Proceedings of the 16th International
Conference on VLSI Design, page 480, Washington, DC, USA, 2003. IEEE
Computer Society.

112 BIBLIOGRAPHY

[78] Chia-Ming Wu, Hsin-Chou Chi, and Ming-Chao Lee. Mapping of IP cores
to network-on-chip architectures based on communication task graphs. In
2005 6th International Conference on ASIC, pages 953–956, 2005.

