176 research outputs found

    Channel Estimation And Multiuser Detection In Asynchronous Satellite Communications

    Full text link
    In this paper, we propose a new method of channel estimation for asynchronous additive white Gaussian noise channels in satellite communications. This method is based on signals correlation and multiuser interference cancellation which adopts a successive structure. Propagation delays and signals amplitudes are jointly estimated in order to be used for data detection at the receiver. As, a multiuser detector, a single stage successive interference cancellation (SIC) architecture is analyzed and integrated to the channel estimation technique and the whole system is evaluated. The satellite access method adopted is the direct sequence code division multiple access (DS CDMA) one. To evaluate the channel estimation and the detection technique, we have simulated a satellite uplink with an asynchronous multiuser access.Comment: 14 pages, 9 figure

    Cyclic Prefix-Free MC-CDMA Arrayed MIMO Communication Systems

    No full text
    The objective of this thesis is to investigate MC-CDMA MIMO systems where the antenna array geometry is taken into consideration. In most MC-CDMA systems, cyclic pre xes, which reduce the spectral e¢ ciency, are used. In order to improve the spectral efficiency, this research study is focused on cyclic pre x- free MC-CDMA MIMO architectures. Initially, space-time wireless channel models are developed by considering the spatio-temporal mechanisms of the radio channel, such as multipath propaga- tion. The spatio-temporal channel models are based on the concept of the array manifold vector, which enables the parametric modelling of the channel. The array manifold vector is extended to the multi-carrier space-time array (MC-STAR) manifold matrix which enables the use of spatio-temporal signal processing techniques. Based on the modelling, a new cyclic pre x-free MC- CDMA arrayed MIMO communication system is proposed and its performance is compared with a representative existing system. Furthermore, a MUSIC-type algorithm is then developed for the estimation of the channel parameters of the received signal. This proposed cyclic pre x-free MC-CDMA arrayed MIMO system is then extended to consider the effects of spatial diffusion in the wireless channel. Spatial diffusion is an important channel impairment which is often ignored and the failure to consider such effects leads to less than satisfactory performance. A subspace-based approach is proposed for the estimation of the channel parameters and spatial spread and reception of the desired signal. Finally, the problem of joint optimization of the transmit and receive beam- forming weights in the downlink of a cyclic pre x-free MC-CDMA arrayed MIMO communication system is investigated. A subcarrier-cooperative approach is used for the transmit beamforming so that there is greater flexibility in the allocation of channel symbols. The resulting optimization problem, with a per-antenna transmit power constraint, is solved by the Lagrange multiplier method and an iterative algorithm is proposed

    Multilane traffic density estimation with KDE and nonlinear LS and tracking with Scalar Kalman filtering

    Get PDF
    Tezin basılısı, İstanbul Şehir Üniversitesi Kütüphanesi'ndedir.With increasing population, the determination of traffic density becomes very critical in managing the urban city roads for safer driving and low carbon emission. In this study, Kernel Density Estimation is utilized in order to estimate the traffic density more accurately when the speeds of the vehicles are available for a given region. For the proposed approach, as a first step, the probability density function of the speed data is modeled by Kernel Density Estimation. Then, the speed centers from the density function are modeled as clusters. The cumulative distribution function of the speed data is then determined by Kolmogorov-Smirnov Test, whose complexity is less when compared to the other techniques and whose robustness is high when outliers exist. Then, the mean values of clusters are estimated from the smoothed density function of the distribution function, followed by a peak detection algorithm. The estimation of variance values and kernel weights, on the other hand, are found by a nonlinear Least Square approach. As the estimation problem has linear and non-linear components, the nonlinear Least Square with separation of parameters approach is adopted, instead of dealing with a high complexity nonlinear equation. Finally, the tracking of former and latter estimations of a road is calculated by using Scalar Kalman Filtering with scalar state - scalar observation generality level. Simulations are carried out in order to assess theperformanceoftheproposedapproach. Forallexampledatasets, theminimummean square error of kernel weights is found to be less than 0.002 while error of mean values is found to be less than 0.261. The proposed approach was also applied to real data from sample road traffic, and the speed center and the variance was accurately estimated. By using the proposed approach, accurate traffic density estimation is realized, providing extra information to the municipalities for better planning of their cities.Declaration of Authorship ii Abstract iii Öz iv Acknowledgments vi List of Figures ix List of Tables x Abbreviations xi 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Methods to Find Probability Density Function and Cumulative Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.3 Traffic Density Estimation with Kernel Density Estimation . . . . . . . . 4 1.4 The Approaches for Determination of Key Parameters of Traffic Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1.5 Tracking between Estimated Data and New Data . . . . . . . . . . . . . . 6 1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Literature Review 7 2.1 Methodologies Used for Estimation of Traffic Density . . . . . . . . . . . . 7 2.2 An Example Study of Traffic Density Estimation with KDE and CvM . . 9 2.3 Three Complementary Studies for Traffic Density Estimation and Tracking 9 2.4 Comparison of Three Different Nonlinear Estimation Techniques on the Same Problem . . . . . . . . . . . . . . . . . . . . . . . . .10 2.4.1 A Maximum Likelihood Approach for Estimating DS-CDMA Multipath Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.2 Channel Estimation for the Uplink of a DS-CDMA System . . . . 12 2.4.3 A Robust Method for Estimating Multipath Channel Parameters in the Uplink of a DS-CDMA System. . . . . . . . . . . . . . .13 3 The Model 16 3.1 Finding Density Distribution with KDE . . . . . . . . . . . . . . . . . . . 16 3.2 Finding Empirical CDF with KS Test . . . . . . . . . . . . . . . . . . . . 18 3.3 Determination of Speed Centers via PDA . . . . . . . . . . . . . . . . . . 20 3.4 Estimation of Variance and Kernel Weights with Nonlinear LS Method . . 21 3.5 Tracking of Traffic Density Estimation with Scalar Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Numerical Calculations for Traffic Density Estimation 26 4.1 An Example Traffic Scenario with Five Speed Centers . . . . . . . . . . . 26 4.2 The Estimation of A Real Time Data . . . . . . . . . . . . . . . . . . . . . 29 4.3 Traffic Density Estimation with Different Kernel Numbers . . . . . . . . . 29 5 Examples to Test Tracking Part of the Model 31 5.1 Tracking with the Change only in Mean Values . . . . . . . . . . . . . . . 32 5.2 Tracking with the Change only in Kernel Weights . . . . . . . . . . . . . . 35 5.3 Tracking with the Change in All Three Parameters . . . . . . . . . . . . . 36 6 Assesment 38 7 Conclusion 41 A Derivation of Newton-Raphson Method for the Estimation of Variance Values and Kernel Weights 43 Bibliography 4

    Signal Processing in Arrayed MIMO Systems

    No full text
    Multiple-Input Multiple-Output (MIMO) systems, using antenna arrays at both receiver and transmitter, have shown great potential to provide high bandwidth utilization efficiency. Unlike other reported research on MIMO systems which often assumes independent antennas, in this thesis an arrayed MIMO system framework is proposed, which provides a richer description of the channel charac- teristics and additional degrees of freedom in designing communication systems. Firstly, the spatial correlated MIMO system is studied as an array-to-array system with each array (Tx or Rx) having predefined constrained aperture. The MIMO system is completely characterized by its transmit and receive array man- ifolds and a new spatial correlation model other than Kronecker-based model is proposed. As this model is based on array manifolds, it enables the study of the effect of array geometry on the capacity of correlated MIMO channels. Secondly, to generalize the proposed arrayed MIMO model to a frequency selective fading scenario, the framework of uplink MIMO DS-CDMA (Direct- Sequence Code Division Multiple Access) systems is developed. DOD estimation is developed based on transmit beamrotation. A subspace-based joint DOA/TOA estimation scheme as well as various spatial temporal reception algorithms is also proposed. Finally, the downlink MIMO-CDMA systems in multiple-access multipath fading channels are investigated. Linear precoder and decoder optimization problems are studied under different criterions. Optimization approaches with different power allocation schemes are investigated. Sub-optimization approaches with close-form solution and thus less computation complexity are also proposed

    Turbo multiuser detection with integrated channel estimation for differentially coded CDMA systems.

    Get PDF

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam
    corecore