20,720 research outputs found

    Study of Fingerprint Enhancement and Matching

    Get PDF
    Fingerprint is the oldest and popular form of bio-metric identification. Extract Minutiae is most used method for automatic fingerprint matching, every person fingerprint has some unique characteristics called minutiae. But studying the extract minutiae from the fingerprint images and matching it with database is depend on the image quality of finger impression. To make sure the performance of finger impression identification we have to robust the quality of fingerprint image by a suitable fingerprint enhancement algorithm. Here we work with a quick finger impression enhancement algorithm that improve the lucidity of valley and ridge structure based on estimated local orientation and frequency. After enhancement of sample fingerprint, sample fingerprint is matched with the database fingerprints, for that we had done feature extraction, minutiae representation and registration. But due to Spurious and missing minutiae the accuracy of fingerprint matching affected. We had done a detail relevant finger impression matching method build on the Shape Context descriptor, where the hybrid shape and orientation descriptor solve the problem. Hybrid shape descriptor filter out the unnatural minutia paring and ridge orientation descriptor improve the matching score. Matching score is generated and utilized for measuring the accuracy of execution of the proposed algorithm. Results demonstrated that the algorithm is exceptionally satisfactory for recognizing fingerprints acquired from diverse sources. Experimental results demonstrate enhancement algorithm also improves the matching accuracy

    Robust Minutiae Extractor: Integrating Deep Networks and Fingerprint Domain Knowledge

    Full text link
    We propose a fully automatic minutiae extractor, called MinutiaeNet, based on deep neural networks with compact feature representation for fast comparison of minutiae sets. Specifically, first a network, called CoarseNet, estimates the minutiae score map and minutiae orientation based on convolutional neural network and fingerprint domain knowledge (enhanced image, orientation field, and segmentation map). Subsequently, another network, called FineNet, refines the candidate minutiae locations based on score map. We demonstrate the effectiveness of using the fingerprint domain knowledge together with the deep networks. Experimental results on both latent (NIST SD27) and plain (FVC 2004) public domain fingerprint datasets provide comprehensive empirical support for the merits of our method. Further, our method finds minutiae sets that are better in terms of precision and recall in comparison with state-of-the-art on these two datasets. Given the lack of annotated fingerprint datasets with minutiae ground truth, the proposed approach to robust minutiae detection will be useful to train network-based fingerprint matching algorithms as well as for evaluating fingerprint individuality at scale. MinutiaeNet is implemented in Tensorflow: https://github.com/luannd/MinutiaeNetComment: Accepted to International Conference on Biometrics (ICB 2018

    Fingerprint-Matching Algorithm Using Polar Shapelets

    Get PDF
    An image, such as a fingerprint, can be decomposed into a linear combination of polar shapelet-base functions. This publication describes a fingerprint-matching algorithm that uses polar shapelet-base functions. Using polar shapelet-base functions, a fingerprint image block can be separated into components with explicit rotational symmetries. Polar shapelet-base functions can represent the fingerprint image through compact parameterization or encoder representation due to their interpretation in terms of the rotational angle , and due to their separability by a distance r. Therefore, the use of polar shapelets enables a convenient and robust method to perform fingerprint image manipulation, analysis, and matching. Polar shapelet-base functions are special types of steerable filters that have rotational symmetry. When the fingerprint image is convolved with a polar shapelet-base function, the magnitude of the convolution output is rotationally invariant, and the relative rotation between two fingerprint images is the phase shift in the convolution output, which enables calculating the rotation angle between two matching image blocks with relative ease. Polar shapelet-base functions can be utilized to create a machine-learned (ML) model that is composed of harmonic and rotationally symmetric convolution filters. The fingerprint-matching algorithm pre-specifies the rotation order of each filter, but the size and shape of the convolution filter is optimized using the ML model. Also, the fingerprint-matching algorithm optimizes a TensorFlow implementation for each convolution filter in the radial direction r. The ML model determines an optimized set of filters that can increase the matching between two rotated images. The described fingerprint-matching algorithm offers high-resolution fingerprint images, low computation latency, low image energy residuals, and high matching rates

    Panako: a scalable acoustic fingerprinting system handling time-scale and pitch modification

    Get PDF
    In this paper a scalable granular acoustic fingerprinting system robust against time and pitch scale modification is presented. The aim of acoustic fingerprinting is to identify identical, or recognize similar, audio fragments in a large set using condensed representations of audio signals, i.e. fingerprints. A robust fingerprinting system generates similar fingerprints for perceptually similar audio signals. The new system, presented here, handles a variety of distortions well. It is designed to be robust against pitch shifting, time stretching and tempo changes, while remaining scalable. After a query, the system returns the start time in the reference audio, and the amount of pitch shift and tempo change that has been applied. The design of the system that offers this unique combination of features is the main contribution of this research. The fingerprint itself consists of a combination of key points in a Constant-Q spectrogram. The system is evaluated on commodity hardware using a freely available reference database with fingerprints of over 30.000 songs. The results show that the system responds quickly and reliably on queries, while handling time and pitch scale modifications of up to ten percent

    Fingerprint Verification Using Spectral Minutiae Representations

    Get PDF
    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and orientations suffering from various deformations such as translation, rotation, and scaling. The spectral minutiae representation introduced in this paper is a novel method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with template protection schemes that require a fixed-length feature vector. This paper introduces the concept of algorithms for two representation methods: the location-based spectral minutiae representation and the orientation-based spectral minutiae representation. Both algorithms are evaluated using two correlation-based spectral minutiae matching algorithms. We present the performance of our algorithms on three fingerprint databases. We also show how the performance can be improved by using a fusion scheme and singular points
    corecore