152 research outputs found

    A novel backup protection scheme for hybrid AC/DC power systems

    Get PDF
    This thesis presents and demonstrates (both via simulation and hardware-based tests) a new protection scheme designed to safeguard hybrid AC/DC distribution networks against DC faults that are not cleared by the main MVDC (Medium Voltage DC) link protection. The protection scheme relies on the apparent impedance measured at the AC "side" of the MVDC link to detect faults on the DC system. It can be readily implemented on existing distance protection relays with no changes to existing measuring equipment. An overview of the literature in this area is presented and it is shown that the protection of MVDC links is only considered at a converter station level. There appears to be no consideration of protecting the MVDC system from the wider AC power system via backup - as would be the case for standard AC distribution network assets, where the failure of main protection would require a (usually remote) backup protection system to operate to clear the fault. Very little literature considers remote backup protection of MVDC links.;To address this issue, the research presented in this thesis characterises the apparent impedance as measured in the neighbouring AC system under various DC fault conditions on an adjacent MVDC link. Initial studies, based on simulations, show that a highly inductive characteristic, in terms of the calculations from the measured AC voltages and currents, is apparent on all three phases in the neighbouring AC system during DC-side pole-to-pole and pole-poleground faults. This response is confirmed via a series of experiments conducted at low voltage in a laboratory environment using scaled down electrical components. From this classification, a fast-acting backup protection methodology, which can detect pole-to-pole and pole-poleground faults within 40 ms, is proposed and trialled through simulation. The solution can be deployed on distance protection relays using a typically unused zone (e.g. zone 4).;New relays could, of course, incorporate this functionality as standard in the future. To maximise confidence and demonstrate the compatibility of the solution, the protection scheme is deployed under a real-time hardware-in-the-loop environment using a commercially available distance protection relay. Suggestions to improve the stability of the proposed solution are discussed and demonstrated. Future areas of work are identified and described. As an appendix, early stage work pertaining to the potential application and benefits of MVDC is presented for two Scottish distribution networks. The findings from this are presented as supplementary material at the end of the thesis.This thesis presents and demonstrates (both via simulation and hardware-based tests) a new protection scheme designed to safeguard hybrid AC/DC distribution networks against DC faults that are not cleared by the main MVDC (Medium Voltage DC) link protection. The protection scheme relies on the apparent impedance measured at the AC "side" of the MVDC link to detect faults on the DC system. It can be readily implemented on existing distance protection relays with no changes to existing measuring equipment. An overview of the literature in this area is presented and it is shown that the protection of MVDC links is only considered at a converter station level. There appears to be no consideration of protecting the MVDC system from the wider AC power system via backup - as would be the case for standard AC distribution network assets, where the failure of main protection would require a (usually remote) backup protection system to operate to clear the fault. Very little literature considers remote backup protection of MVDC links.;To address this issue, the research presented in this thesis characterises the apparent impedance as measured in the neighbouring AC system under various DC fault conditions on an adjacent MVDC link. Initial studies, based on simulations, show that a highly inductive characteristic, in terms of the calculations from the measured AC voltages and currents, is apparent on all three phases in the neighbouring AC system during DC-side pole-to-pole and pole-poleground faults. This response is confirmed via a series of experiments conducted at low voltage in a laboratory environment using scaled down electrical components. From this classification, a fast-acting backup protection methodology, which can detect pole-to-pole and pole-poleground faults within 40 ms, is proposed and trialled through simulation. The solution can be deployed on distance protection relays using a typically unused zone (e.g. zone 4).;New relays could, of course, incorporate this functionality as standard in the future. To maximise confidence and demonstrate the compatibility of the solution, the protection scheme is deployed under a real-time hardware-in-the-loop environment using a commercially available distance protection relay. Suggestions to improve the stability of the proposed solution are discussed and demonstrated. Future areas of work are identified and described. As an appendix, early stage work pertaining to the potential application and benefits of MVDC is presented for two Scottish distribution networks. The findings from this are presented as supplementary material at the end of the thesis

    High Penetration of Power Electronic Interfaced Power Sources and the Potential Contribution of Grid Forming Converters

    Get PDF
    The traditional electrical power system and electricity markets have been designed to work with SGs, and so these have traditionally provided various 'inherent' capabilities to the system critical to ensure the stable operation of the power systems during severe faults and even basic system survival during rare system splits. Due to the potential total absence of SGs approaches during periods of high penetration (HP) of PEIPS infeed, the wider industry has engaged in a closer examination of the lack of these system capabilities [4], [17], [31], [32]. Traditionally, the focus in the context of PEIPS has been on steady state and a limited number of dynamic (faster) aspects recently expanded to include PEIPS contributing fast fault current during system faults and extended contribution to frequency management (although this latter capability has been required from RES for more than 10 years in some countries). Demand side contributions in these contexts are emerging and have significant potential

    Protection challenges in future converter-dominated power systems : investigation and quantification using a novel flexible modelling and hardware testing platform

    Get PDF
    Error on title page – year of award is 2023.The research work presented in this thesis addresses anticipated (and documented) protection challenges that will be introduced by the domination of power electronics interfaces in future power systems. A flexible and programmable voltage source converter (VSC) model with controllable fault response has been developed and this is tested using realistic network data (including transmission lines and the corresponding power flow/fault level data) from the GB transmission network, provided by National Grid ESO (the research project sponsor). The results of tests, where a range of variations to the converter controllers’ fault-responses have been implemented (e.g. to reflect different detection and initial converter response delays, output current ramp rates and magnitudes), are presented and analysed. The simulated voltage and current waveforms are injected into actual protection relays using secondary injection amplifiers. The responses of the relays are recorded and a number of issues are highlighted, particularly with respect to the response of distance protection. It is shown that, when the system is dominated by converter-interfaced sources (especially where the sources are modelled as being unable to provide “fast” and “high” fault currents, which is typically the case for actual converter systems), the responses of traditional distance protection systems (and other systems relying on measurement of current magnitude) could be delayed, lose discrimination, e.g. by tripping with a zone 2 delay for a zone 1 fault, or may be completely unable to detect faults at certain locations within the system. Based on the test results, potential solutions are then presented relating to changes to relay algorithms and/or the requirements for converters in terms of behaviour during faults. The outcomes of the work will be of interest to grid code developers (publications arising from this work have already been referred to by ENTSO-E guidance document for national implementation for network codes on grid connection [1]), transmission network operators, other researchers and protection/converter manufacturers. An overview of future work, relating to comprehensive studies (using injection and the developed system/converter models) of a range of faults/ infeeds/ converter mixes with a wide range of protection relays including distance and unit-type, and development of a standard commissioning testing method of protection relays under future power system scenarios that are dominated by converters, is included in the concluding section. This will assist in the investigation and resolution of issues associated with protection performance in future converter-dominated power systems.The research work presented in this thesis addresses anticipated (and documented) protection challenges that will be introduced by the domination of power electronics interfaces in future power systems. A flexible and programmable voltage source converter (VSC) model with controllable fault response has been developed and this is tested using realistic network data (including transmission lines and the corresponding power flow/fault level data) from the GB transmission network, provided by National Grid ESO (the research project sponsor). The results of tests, where a range of variations to the converter controllers’ fault-responses have been implemented (e.g. to reflect different detection and initial converter response delays, output current ramp rates and magnitudes), are presented and analysed. The simulated voltage and current waveforms are injected into actual protection relays using secondary injection amplifiers. The responses of the relays are recorded and a number of issues are highlighted, particularly with respect to the response of distance protection. It is shown that, when the system is dominated by converter-interfaced sources (especially where the sources are modelled as being unable to provide “fast” and “high” fault currents, which is typically the case for actual converter systems), the responses of traditional distance protection systems (and other systems relying on measurement of current magnitude) could be delayed, lose discrimination, e.g. by tripping with a zone 2 delay for a zone 1 fault, or may be completely unable to detect faults at certain locations within the system. Based on the test results, potential solutions are then presented relating to changes to relay algorithms and/or the requirements for converters in terms of behaviour during faults. The outcomes of the work will be of interest to grid code developers (publications arising from this work have already been referred to by ENTSO-E guidance document for national implementation for network codes on grid connection [1]), transmission network operators, other researchers and protection/converter manufacturers. An overview of future work, relating to comprehensive studies (using injection and the developed system/converter models) of a range of faults/ infeeds/ converter mixes with a wide range of protection relays including distance and unit-type, and development of a standard commissioning testing method of protection relays under future power system scenarios that are dominated by converters, is included in the concluding section. This will assist in the investigation and resolution of issues associated with protection performance in future converter-dominated power systems

    Ofshore Wind Park Control Assessment Methodologies to Assure Robustness

    Get PDF

    Power system planning methods and experiences in the energy transition framework

    Get PDF
    In recent years, the unbundling of the electricity market together with the profound “energy landscape” transformation have made the transmission network development planning a very complex multi-objective problem. The climate and energy objectives defined at the European level aim for a deepening integration of the European power markets and the electricity sector is recognized as one of the main contributors to the energy transition from a thermal-based power system to a renewable-based one. In the deregulated framework, network planners have to satisfy multiple different objectives, including: facilitating competition between market participants, providing non-discriminatory access to all generation resources for all customers, including green resources, mitigating transmission congestions, efficiently allocating the network development actions, minimizing risks associated with investments, enhancing power system security and reliability and minimizing the transmission infrastructure environmental impact. Further complexities are related to the significant uncertainty about future energy scenarios and policy rules. In particular, the increasing distributed renewable energy source integration dictated by the European energy targets, raises several issues in terms of future power flow patterns, power system flexibility and inertia requirements, and cost-effective development strategies identification. The thesis aims to investigate various aspects concerning the transmission network planning, with particular reference to the Italian power system and the experience gained working in the “Grid Planning and Interconnections Department” of Terna, the Italian Transmission System Operator. One of the main topics of this work is the use of the series compensation to exploit operating limits of underused portions of the HV – EHV transmission network in parallel to critically loaded ones, in order to control and provide alternative paths for power flows. The purpose is to extend the allowable transmission capacity across internal market sections. To this aim, a specific application of series compensation (together with reconductoring) to exploit the transfer capacity of a 250 km long, 230 kV-50 Hz transmission backbone spanning the critical section Centre South – Centre North is illustrated. The results are validated by means of static assessment and similar applications could be hypothesized for grid portions in the South of Italy where the primary network is mainly unloaded whereas the sub-transmission network reaches high levels of loading because of the huge renewable generation capacity situated there. A further characteristic of modern power systems is the need to integrate high levels of renewable energies while fulfilling reliability and security requirements. The offshore wind farms perspectives in the Italian transmission system are evaluated, considering policies, environmental and technical aspects. Furthermore, the adoption of the HVDC technology in parallel to the AC traditional system topic is addressed: planning static and dynamic studies involving a real HVDC Italian project are proposed. In particular, the impact of the planned HVDC link on the loadability and the dynamic performance of the system is investigated in medium and in long-term future planning scenarios. The evaluation of the thermal performance of a specific grid portion in the South of Italy affected by significant increase of power generation by variable energy sources is proposed both in the current situation and in the future scenarios in order to highlight the benefits related to the presence of the planned network reinforcements. Finally, some issues of the prospective reduced inertia systems are illustrated and a possible methodology to evaluate the economic impact of inertia constraints in long-term market studies is proposed. In the light of the emerging concept of power system flexibility, traditional planning evolved to assess the ability of the system to employ its resources when dealing with the changes in load demand and variable generation. Flexibility analyses of the Italian power system, carried out in terms of some market studies-based metrics and grid infrastructure-based indexes, are provided. The flexibility requirements assessment in planning scenarios are of interest to evaluate the impact of network development actions and have been included in the yearly National Development Plan. The last research topic involves the cost-effective target capacity assessment methodology developed by Terna in compliance with the Regulator directives presented together with the results yielded by its application to each significant market section of the Italian power system. The methodology has been positively evaluated from academic independent expert reviewers, and its outputs are relevant for the policy makers, regulatory authority and market participant to assess and co-design the energy transition plan of a future European interconnected power system

    Operation of HVDC converters for transformer inrush current reduction

    Get PDF
    The present PhD thesis deals with transformer inrush current in offshore grids including offshore wind farms and High Voltage Direct Current (HVDC) transmission systems. The inrush phenomenon during transformers energization or recovery after the fault clearance is one of important concerns in offshore systems which can threaten the security and reliability of the HVDC grid operation as well as the wind farms function. Hence, the behaviour of wind turbines,Voltage Source Converters (VSC) and transformer under the normal operation and the inrush transient mode is analyzed. For inrush current reduction in the procedure of the offshore wind farms start-up and integration into the onshore AC grid, a technique based on Voltage Ramping Strategy (VRS) is proposed and its performance is compared with the operation of system without consideration of this approach. The new methodology which is simple, cost-effective ensures minimization of transformer inrush current in the offshore systems and the enhancement of power quality and the reliability of grid under the transformer energizing condition. The mentioned method can develop much lower inrush currents according to the slower voltage ramp slopes. Concerning the recovery inrush current, the operation of the offshore grid especially transformers is analyzed under the fault and the system restoration modes.The recovery inrush transient of transformers can cause tripping the HVDC and wind farms converters as well as disturbing the HVDC power transmission. A voltage control design based on VRS is proposed in HVDC converter to recover ali the transformers in offshore grid with lower inrush currents.The control system proposed can assure the correct performance of the converters in HVDC system and in wind farm and also the robust stability of the offshore grid.Esta tesis doctoral estudia las corrientes de energización de transformadores de parques eólicos marinos con aerogeneradores con convertidores en fuente de tensión (VSC) de plena potencia conectados a través de una conexión de Alta Tensión en Corriente Continua (HVDC). Las corrientes de energización pueden disminuir la fiabilidad de la transmisión eléctrica debido a disparos intempestivos de las protecciones durante la puesta en marcha o recuperación de una falta. Para la mitigación de las corrientes de energización durante la puesta en marcha del parque esta tesis propone una nueva estrategia basada en incrementar la tensión aplicada por el convertidor del parque eólico en forma de rampa (VRS). Este método persigue energizar el parque eólico con el menor coste y máxima fiabilidad. La tesis analiza diferentes escenarios y diferentes rampas. Otro momento en que las corrientes de energización pueden dar lugar a un disparo intempestivo de las protecciones es durante la recuperación de una falta en la red de alterna del parque eólico marino. Esta tesis extiende la estrategia VRS, utilizada durante la puesta en marcha del convertidor del parque, para los escenarios de recuperación de una falta

    Operation of HVDC converters for transformer inrush current reduction

    Get PDF
    The present PhD thesis deals with transformer inrush current in offshore grids including offshore wind farms and High Voltage Direct Current (HVDC) transmission systems. The inrush phenomenon during transformers energization or recovery after the fault clearance is one of important concerns in offshore systems which can threaten the security and reliability of the HVDC grid operation as well as the wind farms function. Hence, the behaviour of wind turbines,Voltage Source Converters (VSC) and transformer under the normal operation and the inrush transient mode is analyzed. For inrush current reduction in the procedure of the offshore wind farms start-up and integration into the onshore AC grid, a technique based on Voltage Ramping Strategy (VRS) is proposed and its performance is compared with the operation of system without consideration of this approach. The new methodology which is simple, cost-effective ensures minimization of transformer inrush current in the offshore systems and the enhancement of power quality and the reliability of grid under the transformer energizing condition. The mentioned method can develop much lower inrush currents according to the slower voltage ramp slopes. Concerning the recovery inrush current, the operation of the offshore grid especially transformers is analyzed under the fault and the system restoration modes.The recovery inrush transient of transformers can cause tripping the HVDC and wind farms converters as well as disturbing the HVDC power transmission. A voltage control design based on VRS is proposed in HVDC converter to recover ali the transformers in offshore grid with lower inrush currents.The control system proposed can assure the correct performance of the converters in HVDC system and in wind farm and also the robust stability of the offshore grid.Esta tesis doctoral estudia las corrientes de energización de transformadores de parques eólicos marinos con aerogeneradores con convertidores en fuente de tensión (VSC) de plena potencia conectados a través de una conexión de Alta Tensión en Corriente Continua (HVDC). Las corrientes de energización pueden disminuir la fiabilidad de la transmisión eléctrica debido a disparos intempestivos de las protecciones durante la puesta en marcha o recuperación de una falta. Para la mitigación de las corrientes de energización durante la puesta en marcha del parque esta tesis propone una nueva estrategia basada en incrementar la tensión aplicada por el convertidor del parque eólico en forma de rampa (VRS). Este método persigue energizar el parque eólico con el menor coste y máxima fiabilidad. La tesis analiza diferentes escenarios y diferentes rampas. Otro momento en que las corrientes de energización pueden dar lugar a un disparo intempestivo de las protecciones es durante la recuperación de una falta en la red de alterna del parque eólico marino. Esta tesis extiende la estrategia VRS, utilizada durante la puesta en marcha del convertidor del parque, para los escenarios de recuperación de una falta.Postprint (published version

    An enhanced Series-Connected Offshore Wind Farm (SC-OWF) system considering fault resiliency

    Get PDF
    The series-connected offshore wind farm (SC-OWF) is a promising offshore wind generation solution to mitigate the need of centralized offshore high-voltage/power converter stations. Predominantly, researchers have focused on the steady-state operation and control of SC-OWFs, without considering the system-level characteristics and ability to ride-through dc side and ac network faults. This paper proposes an enhanced system for SC-OWF applications with fault-resilient capability, where comprehensive circuit configuration and protection strategies are articulated to minimize the negative effects caused by various types of dc and ac faults. For the offshore wind farm architecture, a grouping scheme is adopted where a substation based on disconnectors and diodes is proposed to realize prompt fault bypass/isolation and protection functions in the event of offshore system faults. Additionally, an onshore fault-tolerant modular multilevel converter (MMC) with modified dc-system-oriented control is employed to enable smooth and secure operation under steady-state and fault conditions. The proposed SC-OWF system is quantitatively substantiated by time-domain simulations where four ac/dc fault cases are considered, and the results consolidate the feasibility of the proposed configuration and control, indicating fault resilience of the SC-OWF system. Additionally, size, weight and cost estimations of the proposed offshore substation are presented and compared to a conventional MMC offshore station, to further highlight the merits of the proposed solutio

    Transmission line protection challenges infuenced by inverter-based resources: a review

    Get PDF
    High penetration of renewable energy sources (RES) leads to new challenges for protection devices. Protection schemes are typically designed according to the dynamic behavior of rotating machines as generation sources, while the RES dynamic response, mainly governed by inverters, is not considered. Consequently, some relevant algorithms of transmission line protection are experiencing challenges because of the fact that magnitude and phase angle comparison, amount of negative-sequence, and short-circuit current level are afected by the RES. Therefore, an in-depth study of this issue is necessary, one which considers the main causes and new methodological criteria solutions. This work presents an extensive literature review of the evaluation of electrical protection performance and the efects of RES connected to a power grid through inverters. Bibliographic data on many representative publications related to this topic are obtained to show the current research lines and their proposed solutions. In addition, this work identifes the main protection functions afected and describes the new protection schemes that consider RES. Finally, an analysis and discussion of the selected bibliography are presented.Campus At
    corecore