5 research outputs found

    Intelligent Modelling of the Environmental Behaviour of Chemicals

    Get PDF
    In view of the new European Union chemical policy REACH (Registration, Evaluation, and Authorization of Chemicals), interest in "non-animal" methods for assessing the risk potentials of chemicals towards human health and environment has increased. The incapability of classical modelling approaches in the complex and ill-defined modelling problems of chemicals' environmental behavior, together with an availability of large computing power in modern times raise an interest in applying computational models inspired by the approaches coming from the area of artificial intelligence. This thesis is devoted to promote the applications of neuro/fuzzy techniques in assessing the environmental behavior of chemicals. Some of the bottlenecks lying in the neuro/fuzzy modelling of chemicals' behavior towards environment have been identified and the solutions have been provided based on the techniques of computational intelligence.Diese Dissertation beinhaltet die Anwendung von neuronalen bzw. fuzzy Netzen, um das Umweltverhalten von Chemikalien beurteilen zu können. In dieser Arbeit werden die Probleme der Modellierung von Chemikalien gegenüber der Umwelt aufgezeigt und Lösungen angeboten. Die Lösungen basieren auf künstlichen Intelligenztechniken. Die Qualität der Modellierungstechniken hängt von mehreren Faktoren ab, z.B. der Eingabe, der Struktur und so weiter. In vielen Fällen werden keine geeigneten Resultate erhalten. So läuft es auf die Entwicklung eines Modells mit einer niedrigen Generalisierungsfähigkeit (Verallgemeinerungsfähigkeit)hinaus

    Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling

    Get PDF
    This paper aims at providing an in-depth overview of designing interpretable fuzzy inference models from data within a unified framework. The objective of complex system modelling is to develop reliable and understandable models for human being to get insights into complex real-world systems whose first-principle models are unknown. Because system behaviour can be described naturally as a series of linguistic rules, data-driven fuzzy modelling becomes an attractive and widely used paradigm for this purpose. However, fuzzy models constructed from data by adaptive learning algorithms usually suffer from the loss of model interpretability. Model accuracy and interpretability are two conflicting objectives, so interpretation preservation during adaptation in data-driven fuzzy system modelling is a challenging task, which has received much attention in fuzzy system modelling community. In order to clearly discriminate the different roles of fuzzy sets, input variables, and other components in achieving an interpretable fuzzy model, a taxonomy of fuzzy model interpretability is first proposed in terms of low-level interpretability and high-level interpretability in this paper. The low-level interpretability of fuzzy models refers to fuzzy model interpretability achieved by optimizing the membership functions in terms of semantic criteria on fuzzy set level, while the high-level interpretability refers to fuzzy model interpretability obtained by dealing with the coverage, completeness, and consistency of the rules in terms of the criteria on fuzzy rule level. Some criteria for low-level interpretability and high-level interpretability are identified, respectively. Different data-driven fuzzy modelling techniques in the literature focusing on the interpretability issues are reviewed and discussed from the perspective of low-level interpretability and high-level interpretability. Furthermore, some open problems about interpretable fuzzy models are identified and some potential new research directions on fuzzy model interpretability are also suggested. Crown Copyright © 2008
    corecore