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Preface

In view of the new European Union chemical policy REACH (Registration, Eval-

uation, and Authorization of Chemicals), an interest in “non-animal” methods for

assessing the risk potentials of chemicals towards human health and environment has

increased. The incapability of classical modelling approaches in the complex and ill-

defined modelling problems of chemicals’ environmental behavior, together with an

availability of large computing power in modern times raise an interest in applying

computational models inspired by the approaches coming from the area of artificial

intelligence. This thesis is devoted to promote the applications of neuro/fuzzy tech-

niques in assessing the environmental behavior of chemicals. Some of the bottlenecks

lying in the neuro/fuzzy modelling of chemicals’ behavior towards environment have

been identified and the solutions have been provided based on the techniques of com-

putational intelligence.

The performance of modelling techniques is influenced by a number of factors re-

garding the choices of model inputs, model structure, model development criterion,

and so on. These choices in many cases may not be suitable resulting into the de-

velopment of a model with a low generalization capability (i.e. it doesn’t cover the

whole range of considered chemicals to be assessed). We introduce a methodology to

improve the generalization capability of a given modelling technique. This is done via

incorporating an “intelligence” in the modelling technique. The effectiveness of the

proposed methodology is demonstrated by studying the toxicity and bioconcentration

factor modelling problems. As an application of the work to the field of Green Chem-

istry, a computer model was developed for predicting the toxicity of ionic liquids to

Vibrio fischeri.
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Chapter 1

Introduction

The chemicals are known to have both beneficial as well as harmful effects on hu-

man and environment to which they are exposed. With the development of human

civilization over the period of time, rapid industrialization took place. The modern

industrial growth has led to the increase in the production of chemicals thereby an

increase in their exposure to the human beings and environment. There is about 400

million tons global production of the chemicals. Due to their risk potentials toward

human health and environment, there is a need of an assessment of the effects of these

chemicals. Assessing chemical compound’s risk to environment and health has be-

come a part of the legislations and regulations world wide. European Commission has

introduced the REACH (Registration, Evaluation, and Authorization of Chemicals)

system [4].

1.1 REACH (Registration, Evaluation, and Au-

thorization of Chemicals)

The aim of REACH is to provide an improvement in the protection of human health

and environment while maintaining the competitiveness and innovation of the Euro-

pean Union chemicals industry. REACH came into force in June 2007 and requires all

1



CHAPTER 1. INTRODUCTION 2

chemicals (which are manufactured in or imported into the European Union in quan-

tities more than one tonne or more in volume each year) to be tested for health and

safety and registered to a central European Chemicals Agency located in Helsinki,

Finland. A free briefing which explains the key components of the REACH regulation

has been provided by the “Lowell Center for Sustainable Production” [3]. The basic

idea behind REACH is that the main responsibility for chemical safety is placed on

the chemical producer or importer and not on public authorities or downstream users.

The elements of REACH are [5]:

1. REACH is concerned with the all substances unless they are radioactive, subject

to customs supervision, or are non-isolated intermediates. Waste is specifically

exempted. Further details can be found out in [3].

2. Registration is the process that requires substance manufacturers and importers

to send a registration dossier containing relevant information on the substance to

a central European Chemicals Agency. This applies to substances manufactured

or imported in quantities of one tonne per year or more as stated in [3]:

“Save where this Regulation provides otherwise, any manufacturer of

a substance in quantities of 1 tonne or more per year shall submit a

registration to the Agency.”

“Save where this Regulation provides otherwise, any importer of a

substance, either on its own or in a preparation, in quantities of 1

tonne or more per year shall submit a registration to the Agency.”

3. Data sharing is required for studies on vertebrate animals to reduce testing on

vertebrate animals.

4. The communication requirement of REACH ensures that the information on

hazards and risks and how to manage them will be passed down and up the

supply chain.

5. Downstream users are required to consider the safety of their uses of substances.

The downstream users will have to check that they use a substance within the
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conditions described in the exposure scenarios in the Annex to the safety data

sheet and apply these conditions.

6. The European Chemicals Agency will evaluate Registration dossiers and in-

dividual substances. This assessment may be used to prepare proposals for

restrictions or authorisation.

7. The substance of very high concern will be subject to authorisation. Such high

concern candidate substances will be listed and published by the agency. These

substances are those that are

(a) category 1 or 2 carcinogens, mutagens, and reproductive toxins

(b) persistent, bio-accumulative and toxic

(c) very persistent and very bio-accumulative

(d) identified from scientific evidence as causing serious effects to humans or

the environment giving rise to a concern equivalent to those mentioned

above (e.g. endocrine disruptors) which will be identified on a case-by-

case basis.

The applicants have to demonstrate that the risk associated to the use of such

substances is adequately controlled. If not, then socio-economic benefits of

substance’s uses must outweigh the risks.

8. The Restrictions procedure is designed to legally restrict the production or

specific uses of certain dangerous chemicals whose use poses unacceptable risks

to human health or the environment and need to be managed on an EU-wide

basis.

9. A new European Chemicals Agency will be created in Helsinki, Finland to man-

age the technical, scientific, and administrative aspects of the REACH system.

10. A classification and labeling inventory of dangerous substances will help to pro-

mote an agreement within industry on the classification of a substance. Under
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REACH this classification and labeling information will be entered into an in-

ventory which will be published on the Agency’s web site [3].

11. Some of the information generated by REACH will be publicly available via the

internet. However, commercially sensitive information will be kept confidential.

1.2 Prediction of Environmental Behavior of Chem-

icals

1.2.1 The Motivation

The diseases caused by chemicals are assumed to account for some 1% of the overall

burden of all types of disease in the European Union [39]. REACH is expected to

reduce pollution of air, water, and soil. A study at the University of Leicester, UK

has revealed that the implementation of REACH would need additional 12 million

animals for testing of chemicals [39]. The ethical issues are involved in the animals

testing. There is a public pressure to reduce animal testing [82]. Moreover, running of

traditional bioassays for the testing are costly and time consuming. The alternative

non animal test methods are required due to the cost and the very long time it would

take to run animal tests for all chemicals to be assessed. It is expected that alternative

methods would save the lives of at least 2 million animals [58]. A detailed explanation

of the factors deriving the motivation for predicting toxicity and fate has been given

in [82].

Quantitative Structure-Activity Relationship (QSAR) models have emerged as

the promising “non-animal” alternative to predict the environmental behavior of the

chemicals. The QSAR models describe and predict the effect of a given concentration

or dose of a chemical on the health of population of certain biological species by the

structure of the chemical. There is a co-relation between the chemical structure and

biological activity, this has been recognized as structure activity relationship (SAR).

The QSAR approach is based on the assumption that the activity of a chemical

compound is determined by its molecular structure and the structure is represented
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by numerical descriptors which encapsulate the molecules properties relevant to the

activity. In simple words by the term QSAR, we understand the process by which

chemical structure is quantitatively correlated with a biological activity or chemical

reactivity.

1.2.2 Some Historical Remarks

The modern science of predictive toxicology has grown and developed with the chain

of historical events. A brief summary of the key historical events has been provided

in [82]: It is since 5000 BC the knowledge of poisonous plants and animals venoms was

known to human beings. Around 3000 BC the Egyptian had identified the toxic effects

of some substances. Ebres Papyrus had described more than 800 recipes of poison

around 1550 BC. During early 1500 AD Paracelsus had discovered that the toxicity

of plant or animal poison are due to specific chemicals. It is in the modern era, that is

early 1800’s, Orfila had been credited as founder of toxicology. Cros, in 1863 had made

an observation that the toxicity of the alcohol decreases with their water solubility.

It was between 1860-1940 when several researchers had proposed the theories related

to toxicology. In 1893 Richet had observed that toxicity was inversely related to

the solubility. Meyer and Overton both had independently proposed in 1899-1901

that narcosis is related to partitioning between oil and water phases. Ferguson had

proposed the solubility cutoff for the acute toxicity in 1939. In 1964, Hansch and

Fujita developed the QSAR methods [50] which have been widely studied during last

years in the light of new computational approaches coming from the area of artificial

intelligence.

1.2.3 Intelligent Modelling Techniques

The modelling techniques could be roughly divided into following four approaches:

“white-box”, “black-box”, “gray-box”, and “intelligent” modelling.

The term “white-box” modelling refers to the mathematical treatment of process’s

nature and behavior with non-linear differential equations, based on the thorough un-

derstanding of the physical laws governing the behavior of the process. White-box
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models are fully derived by first principles. All equations and parameters can be de-

termined by theoretical modelling. However, the environmental behavior modelling

problem is characterized by complexity and uncertainty, and a complete understand-

ing of the underlying mechanisms is virtually impossible. Therefore difficulties are en-

countered in conventional white-box modelling approaches, when complex and poorly

understood systems are considered.

The black-box modelling approach consists of approximating the process by us-

ing some “black-box” structure. The modelling problem is simply the estimation of

parameters describing the black-box structure using process data. Black-box models

are based solely on measurement process data. The well known examples of this

approach include regression and neural networks. The most severe limitation of this

approach is the physical insignificance of structure and parameters of black-box model

and therefore can not be used to analyze the process behavior.

A mixed approach combines the advantages of white-box and black-box approaches

by modelling the known part of the process using physical laws and unknown part by

black-box approximation using process data. This approach is termed as “gray-box”

modelling or hybrid modelling. Typically, the determination of the model structure

relies strongly on prior knowledge while the model parameters are mainly determined

by process data.

The “intelligent” (also referred as artificial intelligent, computational intelligent,

expert system) modelling employs techniques motivated by biological systems and

human intelligence to model the process behavior. The motivation behind these

methodologies is the human capability of handling complex tasks and making deci-

sions under uncertainty. These techniques are based on the representation of process

knowledge, using, for example, natural language, rules, etc. Fuzzy modelling and

artificial neural networks are typical examples of intelligent modelling techniques.

Artificial neural networks have the learning and adaptation capability by imitating

the functioning of biological neurons on a simplified level. Fuzzy systems, on the

other hand, are designed to handle uncertainty and vagueness by using fuzzy sets

and if-then rules. Fuzzy systems model the complex input-output mappings based on
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statements that closely model the way people think, and these statements can be con-

structed in a heuristic fashion using application-specific knowledge. Therefore, fuzzy

modelling, offer the beneficial feature of a way to incorporate heuristic information

and to interpret the process behavior with linguistic terms.

The environmental behavior of chemicals is complex and ill-defined in nature and

thus motivating the researchers to apply more powerful computational approaches

(i.e. intelligent techniques) in modelling the toxicity, bioconcentration factor, etc.

of chemicals. A large literature is available studying the applications of neural net-

works [36,46,59,79,112,118], expert systems [10,44], and hybrid systems e.g. neuro-

fuzzy models [88].

1.3 The Methodological Problems in Building Pre-

dictive Models

The environmental behavior cann’t be modelled using classical differential equations

due to the complexity and lack of the complete knowledge of the system. The avail-

ability of large computing power in modern time raises an interest in applying com-

putational models, inspired by the approaches coming from the area of artificial in-

telligence, in predicting the environmental behavior of chemicals. These methods are

typically “data driven modelling” techniques. Mathematically, it is assumed that

the activity of a chemical y (e.g. quantifiable toxicity end point for the fathead min-

now) and the chosen molecular descriptors (d1, d2, · · · , dn) of the structure are related

through a functional relation:

y = f(d1, d2, · · · , dn). (1.1)

Here, f is an unknown function that is identified using nonlinear models (e.g. neural

networks, fuzzy models) called QSAR models. The existing experimentally measured

activity data of chemicals and their molecular descriptor values are used to build a

QSAR model. The fundamental concern is that the identified QSAR model achieves

a good generalization of the model over the whole range of chemicals to be assessed.
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Aiming at the good generalization capability of the QSAR model, following factors

must be considered during the data-driven construction of the model:

P1: A few thousands of molecular descriptors can be calculated for a chemical struc-

ture. Which of the descriptors are most appropriate to serve as the inputs of

the QSAR model?

P2: What model type and model structure should be chosen? For example, if a

neural network is considered, then the modeling performance may be sensitive

towards the choice of number of layers and neurons.

P3: The experimentally measured activity data may be noisy and thus the model

identification method must be robust to the noise present in the data.

P4: The literature is flooded with the different neuro/fuzzy modelling techniques.

The researchers, only interested in the applications, may find tough to under-

stand the mathematics of the modelling techniques. How could a user keep

track of the new proposed techniques based on advanced mathematics in his

existing modelling software?

These problems (P1-P4) are though basic in nature but not solved till-now completely.

The addressing of these problems is must for a wide acceptance of the QSAR approach

in the research community.

1.4 The Central Problem of the Thesis

In view of the problems P1-P3, (1.1) should be modified as

y = f(d1, d2, · · · , dn) + n

where n is an uncertainty associated with the QSAR model, which takes into account

any data noise and modeling errors (arising due to the non-optimal choice of chosen

descriptors, model type, and model structure). In modelling literature, n is usually

termed as disturbance or noise, however, we referred n to as uncertainty to emphasize
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Figure 1.1: Developing a QSAR model using experimental data

that there is an uncertainty regarding the activity data, optimal choice of descriptors,

model type, and model structure. Fig. 1.1 shows the identification of a QSAR model

using experimentally measured activity data and descriptors values. The identifica-

tion algorithm consists of tuning the adjustable parameters of the model so that the

model output matches activity data in some “optimal manner”. The optimal crite-

rion is defined differently by the researchers resulting into the differences among the

identification methods. The uncertainty value n, that affects the model identification

procedure, is unknown.

The uncertainty n is the root cause of the poor generalization performance of the

identified QSAR model. The central problem of this thesis is to propose a methodol-

ogy for the development of QSAR models with an improved generalization via taking

into account the underlying uncertainty in the modelling problem in a sensible way.

The problem is stated formally as

Given the choice of molecular descriptors, model type, model structure,

and model identification algorithm; How can the computational intelli-

gence techniques be utilized in handling the underlying uncertainties? By

handling of uncertainties it is meant that modelling performance of the

given model identification algorithm is not affected adversely by the uncer-

tainties. How can intelligence (i.e. capability of taking care of uncertain-

ties) be incorporated in a given modelling problem (i.e. given molecular
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descriptors, model type, model structure, and model identification algo-

rithm) to achieve robustness against uncertainties?

1.5 Outline of the Work

The main aim of the thesis is to solve the central problem 1.4 with applications to

the modelling of environmental behavior of chemicals. The work is organized into

chapters as follows:

Neuro/fuzzy modelling of chemicals’ behavior: The second chapter of the

thesis reviews the effectiveness of the existing neural/fuzzy techniques in modelling

the environmental behavior of chemicals. This is done by studying different tech-

niques in modelling the toxicity and bioconcentration factor of chemicals. It will

be demonstrated that due to the presence of uncertainties the existing neural/fuzzy

techniques lead to the development of models with a low generalization performance.

Thus, some research efforts are required to deal with the issue of uncertainties so that

the QSAR models are general enough to cover the whole range of chemicals to be

assessed.

Handling uncertainties using a fuzzy filter: The third chapter introduces a

fuzzy filter based approach to handle the uncertainties. A fuzzy filter, designed on

the basis of a mathematical criterion, is used to filter out the uncertainties from the

modelling problem. The toxicity modelling problem is revisited and an improvement

in the generalization performance of the models due to the handling of uncertainties

is shown.

Incorporating intelligence in modelling: In the fourth chapter, a methodol-

ogy that incorporates an intelligence (a capability of taking account of uncertain-

ties in a sensible way during the development of the model) in a given modelling

technique is introduced. The method improves the generalization capabilities of a
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given neuro/fuzzy modelling technique based on the information about uncertain-

ties provided by the fuzzy filter. The approach is demonstrated by re-visiting the

bioconcentration factor modelling problem.

A study on ionic liquids: Ionic liquids belong to a new class of chemicals which

are not only of great industrial importance but also environmental friendly termed

as “Green Chemicals”. To facilitate their wide industrial acceptance in accordance

to the new European chemical policy REACH, it is important to investigate their

impact on the health and environment. Since the ionic liquids are known as “designer

solvents” therefore the study of their environmental behavior will help in designing

eco-friendly ionic liquids. Since there are theoretically over 106 ionic liquids, therefore

it is necessary to develop a computer models for a fast and accurate prediction of

their toxicity. In fifth chapter, some remarks about environmental behavior of ionic

liquids have been provided and a neural network based model was constructed for the

prediction of their toxicity (Vibrio fischeri EC50).

Concluding remarks: Finally, thesis is concluded with an identification of main

research findings and their contribution to the state of art. The limitations of the

study and some details of future work are also provided.

1.6 Main Contributions

The overall aim of this study was to boost the QSAR modelling as promising non-

animal alternative to predict the environmental behavior of the chemicals. The work

contributes towards achieving the overall goal as follows:

• The identified bottlenecks of the QSAR approach to environmental behavior

modelling, i.e. problems P1-P4 listed in section 1.3, have been reformulated

to problem 1.4. Problems P1-P3 have been partially addressed by introduc-

ing an uncertainty n (which will be handled using computational intelligent

techniques). And problem P4 will be completely addressed since the solution
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of the central-thesis-problem improves the generalization capability of a given

modelling technique.

• A robustness of the modelling performance against uncertainties will be achieved.

• Unlike many studies, instead of proposing a new modelling techniques we incor-

porate intelligence in a given modelling technique. This is done via penalizing

the data (used for identifying the QSAR model) on the basis of amount of

uncertainties associated to the data. The generalization performance of even

non-robust modelling techniques improves when penalized data instead of orig-

inal data are used.

• The toxicity modelling problem has been studied with a data set built up by

U.S. Environmental Protection Agency concerned with the acute toxicity 96-h

LC50 to the fathead minnow fish (Pimephales promelas) [45, 88, 101, 105].

• The methodology has been demonstrated by considering a bioconcentration

factor modelling problem for a data set of 511 chemicals taken from [31].

• A model to predict the Vibrio fischeri toxicity of ionic liquids has been devel-

oped.



Chapter 2

Neuro/Fuzzy Modelling of

Chemicals’ Behavior

This chapter evaluates the commonly used neuro/fuzzy techniques in modelling the

environmental behavior of chemicals. In particular, toxicity modelling and bioconcen-

tration factor (BCF) modelling problems are studied. It is shown that poor general-

ization performance is a typical characteristic of the modelling techniques in presence

of uncertainties. The uncertainties associated to the toxicity modelling problem are

visualized using self-organizing maps [64].

2.1 A Toxicity Modelling Problem

2.1.1 The data set

As a case study, we consider a data set built up by U.S. Environmental Protection

Agency referring to acute toxicity 96-h LC50 to the fathead minnow fish (Pimephales

promelas) [45, 88, 101, 105]. Fish are aquatic vertebrates which are most commonly

used animal in toxicity testing for the environmental risk assessment. The fathead

minnow (Fig. 2.1) is one of the different fish species used as model organism in eco-

toxicology. The feathed minnow is a demersel cyprinid species which originate from

the temperate water of North America and inhabits in small river, muddy pools of

13
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Figure 2.1: The fathead minnow (Pimephales promelas)

headwaters. Our toxicological data set contains 568 compounds representing several

chemical classes and modes of action. This data set was used in the European Com-

munity project IMAGETOX (Intelligent Modeling Algorithms for General Evaluation

of TOXicities). It was stated by authors in [88] that the heterogeneity of data set

makes it difficult to model, and thus the QSAR models trained with this data set

should be quite general.

A large number of descriptors are available in the literature for QSAR studies. Our

concern here is not to make a comparison among them but to handle uncertainties for

the given descriptors. We calculate for our analysis several constitutional, 2D auto-

correlations, Burden eigenvalue, geometrical, 3D-MoRSE, WHIM, GETAWAY, and

molecular properties based descriptors using E-DRAGON [114]. Further, topologi-

cal structure descriptors (including molecular connectivity chi indices, kappa shape

indices, E-State indices, molecular connectivity difference chi indices, atom-type E-

State indices, group-type E-State indices, topological polarity, and counts of molecular

features) have been obtained for the 568 organic compounds.

A pool of 20 descriptors, which showed highest absolute correlation with the target

variable − log(LC50(mmol/l)), was created for consideration for possible QSAR model

inputs. This was done simply by calculating the values of correlation coefficients

among the variables. We use the method of “Principal Feature Analysis” [21] to

choose 4 descriptors out of the 20, which retain most of the information, both in the

sense of maximum variability of the descriptors in the lower dimensional space and in

the sense of minimizing the reconstruction error. The various steps followed were [21]:
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1. The data covariance matrix Σ were decomposed as

Σ = AΛAT

where Λ is a diagonal matrix whose diagonal entries are the eigenvalues of Σ,

and columns of matrix A are eigenvectors of Σ.

2. Let A4 be a matrix containing first 4 columns of A and denote the rows of A4

as V1, V2, · · · ∈ R4.

3. The vectors |V1|, |V2|, · · · were clustered into 4 clusters using K−means algo-

rithm. For each cluster, the vector nearest to the mean of the cluster (say Vi)

and the corresponding variable (i.e., ith variable) was selected. This resulted in

the choice of 4 descriptors.

The 4 descriptors are

• H3v (GETAWAY descriptor [23, 24]): H autocorrelation of lag 3 / weighted by

atomic van der Waals volumes.

• ATS2p (2D autocorrelation descriptor [115]): Broto-Moreau autocorrelation of

a topological structure - lag 2 / weighted by atomic polarizabilities.

• MLOGP (molecular property [115]): Moriguchi octanol-water partition coeffi-

cient.

• xv0 (topological structure descriptor [61]):- Valence chi 0 index.

2.1.2 Uncertainties associated to the data set

We are concerned with the mining of a 5-dimensional data set (4 descriptors and one

target variable). Self-organizing maps (SOM) [64] provide a possibility of visualization

of multi dimensional data onto a two dimensional map while preserving the topology

of the data in the original space, i.e., the data points located near each other in the

original space remains neighbors on the map. The map constitutes of neurons located
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on a regular 2-dimensional grid with hexagonal or rectangular lattices. Each neuron

has an associated prototype vector of same dimension as the data. The map training

procedure consists in adjusting the prototype vectors of the best matching neuron (i.e.

the neuron most similar to the data vector in terms of Euclidean distance) and its

neighbors so that the prototype vectors of the best matching neuron and its neighbors

are more similar to the data vector. The common method to visualize a SOM is the

U-matrix which shows the distances between prototype vectors of neighboring units.

The location of a specific data sample on the map is determined by locating the best

matching neuron of the data sample.

Figure 2.2: Distribution of 568 compounds on the map

In our study, molecular descriptors values and toxicity data were analyzed using

a SOM that constitutes of 2-dimensional 17× 7 grid with hexagonal lattices. Fig. 2.2

shows the distribution of 568 compounds on the map. Fig. 2.2 shows the visual-

ization of U-matrix values and four hit histograms (red, yellow, green, and blue)

corresponding to the four classes of compounds. A hit histogram corresponding to

a specific compound class is calculated by aggregating the best matching neurons of

all the data points of that class. Here, the data set of 568 compounds is divided
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into four classes according to the toxicity ranges: − log(LC50(mmol/l)) > 2.5 for

red, − log(LC50(mmol/l)) ∈ [1, 2.5] for yellow, − log(LC50(mmol/l)) ∈ [−0.5, 1] for

green, and − log(LC50(mmol/l)) < −0.5 for blue. As seen from Fig. 2.2, there are

some compounds belonging to a specific class which are located on the map quite away

from the other compounds belonging to the same class. This irregularity in the loca-

tions of the compounds of same class on the map may be a result of the uncertainties

associated with the selected descriptors and toxicity data mapping problem.

2.1.3 Generation of training and testing data sets

The aim is to develop a QSAR model with H3v, ATS2p, MLOGP, xv0 as inputs and

− log(LC50) as the output. The model will be trained with the data of 379 compounds

and remaining 189 compounds will be used for the testing of model. The training

and testing sets have been created as follows:

1. The point in the 5-dimensional space, whose coordinates correspond to the

minimum values of H3v, ATS2p, MLOGP, xv0, − log(LC50), has been taken as

the reference point.

2. The distance of each compound from the reference point is calculated and all

the 568 compounds are arranged in the ascending order of their distances from

the reference point.

3. Every third compound in the series of ascending order arranged compounds is

taken as the testing compound and the remaining compounds as the training

compounds.

This division of compounds into training and testing is meant for a sandwiching of

testing compounds between training ones in the sense of Euclidean distance.

Fig. 2.3 shows the distribution of training and testing compounds by visualizing

their hit histograms on the U-matrix. It can be seen from Fig. 2.3 that the training

compounds (red in color) reflect the diversity of the data and the testing compounds

(blue in color) are “sandwiched” between the training compounds.
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Figure 2.3: Distribution of training and testing compounds on the map

2.1.4 Performance of several neural network training algo-

rithms

For the modelling of the toxicity data, the training of a 3-layer feed-forward neural

network is considered. The first layer has 6 “tansig” (i.e. with hyperbolic tangent

sigmoid transfer function) neurons, the second layer has 4 “tansig” neurons and the

third layer one “purelin” (i.e. with linear transfer function) neuron. The network was

initialized with random values of weights and biases. A number of standard training

algorithms, available in MATLAB Neural Network Toolbox, have been used to train

the network. The training stops if the number of epochs exceeds 5000 or the mean

squared error drops below 0.01. For a comparison of the performance, coefficient

of determination (R2) and maximum absolute error (MAE) are calculated for each

QSAR model.

Table 2.1 shows the performance of 8 different models (N1, · · · , N8) which have

been trained using different neural network training algorithms. We see that models

N3, N4, N5, N6, and N7 undergo overtraining resulting in the loss of generalization
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Table 2.1: Performances of different training algorithms

Model Training algorithm
R2

training

R2

testing

MAE

training

MAE

testing

N1

Batch Gradient Descent

learning rate = 0.05
0.6876 0.6334 2.7567 2.5362

N2

Batch Gradient Descent

with Momentum

learning rate = 0.05

momentum constant = 0.9

0.6615 0.6024 3.9133 4.1319

N3 Resilient Backpropagation 0.7146 0.5121 2.5095 4.6666

N4

Conjugate Gradient

(Fletcher-Reeves)

Charalambous search

0.7368 0.5097 2.6395 5.2900

N5 Scaled Conjugate Gradient 0.7556 0.3884 2.3588 7.9039

N6

One Step Secant algorithm

Backtracking search
0.7624 0.5346 2.5777 4.8835

N7 Levenberg-Marquardt 0.7548 0.2359 2.3186 17.8524

N8 Bayesian regularization 0.7058 0.6250 2.7280 2.9219

performance as indicated by low R2 and high MAE values on the testing data. How-

ever, the models N1, N2, N8 showed a robustness towards uncertainties and have not

been overtrained as indicated by their performance on the testing data. The poor

performance of models N3, N4, N5, N6, and N7 was a result of the fact that their train-

ing algorithms were not robust towards the underlying uncertainties in the modelling

problem.

2.2 Bioconcentration Factor Modelling

Bioconcentration refers to the process of accumulation of chemicals in an aquatic

organism as a result of exposure of the organism to a chemical concentration in the

water via non-dietary routes. The extent of chemical bioconcentration is expressed in

terms of bioconcentration factor (BCF) defined as the ratio of the chemical concentra-

tion in the organism to that in water [84]. The BCF is a measure of the tendency of

a substance to bioconcentrate in aquatic organisms. For an assessment of the bioac-

cumulation potential of chemicals, BCF in marine or freshwater organisms is tradi-

tionally used as an indicator. A flow through method [38] is used for an experimental
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determination of BCF. The guidelines for characterizing potential bioconcentration

in fish under flow-through conditions are provided in [97]. A method suitable for very

hydrophobic chemicals has been outlined in [47]. There is a correlation found between

BCF and log KOW values. A good correlation has been established for a number of

chemicals along with some limitations. An example of such limitations is that these

correlations don’t address the metabolic degradation of chemical compound within

the organism and thus tends to over-predict.

The motivation for developing the computer models for predicting the BCF of

chemicals is derived from the fact that the experimental measurements are time-

consuming, expensive, and not feasible for many thousands of chemicals that are of

potential regulatory interest. Another motivation of BCF modelling is due to the ethi-

cal issues involving animal testing. Many studies aiming at the prediction of BCF val-

ues, based on Quantitative Structure-Activity Relationship (QSAR) approach, have

appeared in the literature [29]. Typically, the models that map the hydrophobicity

(log KOW ) of the chemicals to their (log BCF ) values are developed. Several mod-

elling approaches including linear BCF models [83,116,117], bilinear BCF model [14],

polynomial BCF model [22], fragment based additive BCF model [92], nonlinear

empirical model [32] can be found in the literature. The researchers, in addition

to the log Kow based modelling, also examined the BCF models based on solubility

in octanol [8], models based on aqueous solubility [28, 53, 60], models based on lin-

ear solvation energy relationships [54, 99], models based on connectivity indices [80],

models based on fragment constants [113], models based on quantum chemical de-

scriptors [121], models based on diverse theoretical descriptors [30, 48, 49].

2.2.1 The data set

We consider the modelling of a BCF data set of 511 chemicals taken from [31].

The data set includes following chemical classes: alkanes, alkenes, mono and di-

aromatic hydrocarbons, polycyclic aromatic hydrocarbons (PAH), polychlorinated

dibenzofuranes (PCDF), polychlorinated dibenzodioxines (PCDDO), polychlorinated
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biphenyles (PCB), cycloalkanes and cycloalkenes, chloraromatic chemicals, perfluo-

rinated acids (PFA) with 6 to 13 difluoromethylene functions in the chain, chlori-

nated biphenyl esters, aliphatic esters, chlororganic chemicals, aliphatic and aromatic

N-containing compounds, polycyclic aromatic N-containing compounds, organotin

compounds, sulphur-containing heterocyclic compounds.

E-DRAGON [114] was used to calculate several molecular descriptors of the com-

pounds. Out of the large number (several hundreds) of descriptors, a few descriptors,

that serve as the inputs of the models for predicting the log BCF values, were chosen

as follows:

1. descriptors with a standard deviation less than 10−6 were rejected.

2. a pool of 20 descriptors, which showed highest absolute correlation with the

log BCF values, was created for consideration for possible QSAR model inputs.

This was done simply by calculating the values of correlation coefficients among

the variables.

3. the method of “Principal Feature Analysis” [21] was used to choose 5 descrip-

tors out of the 20, which retain most of the information, both in the sense of

maximum variability of the descriptors in the lower dimensional space and in

the sense of minimizing the reconstruction error.

4. these 5 descriptors are

• H1v (GETAWAY descriptor [23,24]): H autocorrelation of lag 1/weighted

by atomic van der Waals volumes

• MATS4v (2D autocorrelation descriptor [94]): Moran autocorrelation -

lag 4/weighted by atomic van der Waals volumes

• BLTD48 (molecular property): Verhaar model of Daphnia base-line tox-

icity for Daphnia (48h) from MLOGP (mmol/l)

• R5p (GETAWAY descriptor [23,24]): R autocorrelation of lag 5/weighted

by atomic polarizabilities
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• TPSA(NO) (molecular property [37]): topological polar surface area us-

ing N, O polar contributions

The aim is to develop a QSAR model with these 5 descriptors as inputs and log BCF

value as the output. The model will be trained with the data of around 2/3 of the

total compounds and the remaining 1/3 compounds will be used for the testing of

the model. The training and testing sets, as in toxicity modelling problem, have been

created as follows:

1. All descriptors and log BCF values are normalized to have zero mean and unit

variance.

2. The point in the 6-dimensional space, whose coordinates correspond to the

minimum values of 5 descriptors and log BCF value has been taken as the

reference point.

3. The Euclidean distance of each compound from the reference point is calculated

and all the compounds are arranged in the ascending order of their distances

from the reference point.

4. Every third compound in the series of ascending order arranged compounds is

taken as the testing compound and the remaining compounds as the training

compounds.

2.2.2 The issue of uncertainties

The BCF modelling problem is studied using a neural network and a fuzzy model. Let

us first consider the training of a 3-layer feed-forward neural network. The first layer

has 6 “tansig” (i.e. with hyperbolic tangent sigmoid transfer function) neurons, the

second layer has 4 “tansig” neurons and the third layer one “purelin” (i.e. with linear

transfer function) neuron. The network was initialized with random values of weights

and biases. The network was trained using two different training algorithms: “scaled

conjugate gradient backpropagation” (MATLAB Neural Network Toolbox command

“trainscg”) and “Levenberg-Marquardt backpropagation” (MATLAB Neural Network
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Toolbox command “trainlm”). The training of the network stops if the number of

epochs exceeds 10000.

Also, a Sugeno type fuzzy model was trained using an in-built training algorithm

in MATLAB Fuzzy Logic Toolbox (“anfis” command). The “anfis” algorithm com-

bines the least-squares and backpropagation gradient descent method to identify the

parameters of the fuzzy model. The structure of the fuzzy model was generated

from the training data using subtractive clustering (MATLAB Fuzzy Logic Toolbox

command “genfis2”). The fuzzy model was trained till 1000 epochs.

Table 2.2: The performance of some neural/fuzzy modelling methods

method R2-training RMSE-training R2-testing RMSE-testing

“trainscg” 0.8924 0.4297 0.5596 0.9975

“trainlm” 0.9144 0.3831 0.5859 0.9298

“anfis” 0.8691 0.4739 0.4721 1.1631

The modelling performance is assessed by computing the coefficient of determina-

tion (R2) and root mean squared error (RMSE) on training and testing data. Table 2.2

shows the performance of some of the standard neural/fuzzy modelling methods. We

observe from table 2.2 that the modelling techniques show good performance on the

training data, however, poor performance on the testing data. This indicates in the

modelling problem the presence of uncertainties for the chosen molecular descriptors,

chosen model type and structure, training algorithms related chosen parameters, and

so on. These uncertainties resulted in the overtraining of the model and thus a poor

generalization performance (as shown by a poor performance on the testing data).

2.3 Summary

We have seen that several neuro/fuzzy modelling techniques resulted in the over-

training and thus a poor generalization performance. To increase the generalization

performance, one could argue for

1. a more appropriate selection of inputs based on some mathematical criterion,

2. a decrease in the number of training compounds,
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3. a reduction in the number of adjustable parameters of the model,

4. the use of a robust training algorithm e.g. Bayesian regularized learning as did

for model N8 in table 2.1.

However, our aim here is to highlight the issue of overtraining (that results from the

uncertainties regarding the optimal choices of aforementioned factors) and a method

for dealing with the overtraining issue.



Chapter 3

Handling Uncertainties Using a

Fuzzy Filter∗

It was included in previous chapter that the development of a chemicals’ behavior

predicting model without considering uncertainties may produce a model with a low

generalization performance. At the same time, the fundamental concern in QSAR

approach is the good generalization capability of the model. To improve the gener-

alization performance, Bayesian regularized neural networks have been suggested as

robust QSAR models by authors in [16–18,125]. The identification of a QSAR model

using input-output data is an “ill-posed” problem. Regularization converts the iden-

tification problem into a “well-posed” problem. However, the choice of regularization

parameters is usually not obvious. Bayesian regularization, under some stochastic as-

sumptions on the nature of uncertainties, provides an optimal value of regularization

parameters by applying Bayes’ theorem [85].

Fuzzy inference systems based on fuzzy theory of Zadeh [127] are considered suit-

able for dealing with uncertainties. Fuzzy modeling framework provides a possibility

of representing the knowledge in the environment of uncertainty and imprecision. The

∗The method presented here will appear in
S. Kumar, M. Kumar, R. Stoll, and U. Kragl. Handling Uncertainties in Toxicity Modeling using a
Fuzzy Filter. SAR and QSAR in Environmental Research, 18 (in press), 2007.
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concern of this chapter is to handle the involved uncertainties in QSAR modeling us-

ing a fuzzy system. Our approach of handling uncertainties is based on following

ideas:

1. Developing a fuzzy filter using experimental data that would filter out the un-

certainty from experimentally measured activity data.

2. Developing QSAR models using filtered activity data. Since the uncertainties

in data have been filtered out, therefore the training algorithm should result in

the identification of a model with good generalization performance even if the

training algorithm is non robust.

It is easy to realize that the development of the fuzzy filter is the bottleneck of the

approach. The initial enthusiasm about fuzzy models was due to the fact that fuzzy

models could be constructed from the knowledge of human experts. However, for the

problems such as toxicity modeling, the human knowledge is not sufficient to establish

the underlying relationships due to the complexity of the problem. Thus, different

methods have been developed during the years for an automatic identification of fuzzy

models with example input-output data [6, 7, 55]. Robustness against uncertainties

becomes the main concern of any fuzzy model identification method in the modeling

of complex real-world processes. The gradient-descent method is widely used for the

recursive estimation of nonlinear fuzzy model parameters using input-output data.

The non-robust nature of gradient-descent has motivated many researchers to develop

the robust methods of fuzzy identification [19, 20, 51, 57, 62, 68–75,119,126].

Our aim is to identify a fuzzy model using example data that will filter out the

uncertainties in toxicity modeling problem. We consider an “energy-gain bounding

approach” [68] for the identification of such a fuzzy filter. The design criterion is to

minimize the maximum possible value of energy-gain from uncertainties to the filter-

ing errors. The maximum value of energy-gain (that will be minimized) is calculated

over all possible finite uncertainties without making any statistical assumptions about

the nature of uncertainties. It is easy to realize that any practical method of devel-

oping a fuzzy filter could not guarantee the 100% filtering of uncertainties. That is,
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some filtering errors are always involved. Thus, a robustness against filtering errors

is rendered by defining fuzzy membership functions.

3.1 A Clustering based Fuzzy Filter and its Iden-

tification

This section outlines the mathematical theory of fuzzy filtering directly taken from [77]:

3.1.1 A clustering based fuzzy filter

Fuzzy filter, in our modeling approach, is essentially a mapping between descriptors

values and corresponding filtered activity value. We want to create different clusters

in descriptor input space and associate to each cluster the output activity value,

i.e., filtered − log(LC50) or log BCF value. The mappings between input descriptors

values (denoted by a vector x = [d1 d2 · · ·dn]T ∈ Rn) and output activity value

(denoted by a scalar y) can be defined using different fuzzy rules:

R1 : If x belongs to a cluster having centre c1 then y = α1,
...

RK : If x belongs to a cluster having centre cK then y = αK ,

where ci ∈ Rn is the centre of ith cluster, and the values α1, . . . , αK are real numbers.

Such clustering based fuzzy mappings have been introduced by authors in [73].

The degree, by which a n−dimensional vector x belongs to the ith cluster, can be

defined by a fuzzy set, say Ai. Given a universe of discourse X, a fuzzy subset Ai of

X is characterized by a mapping:

Ai : X → [0, 1]

where for x ∈ X, Ai(x) is a value in the closed interval [0,1] that represents the degree

to which x belongs to Ai (i.e. ith cluster). This mapping is called as membership

function of the fuzzy set. For a given input vector x (i.e. for a given descriptor values
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d1, · · · , dn), the output of the filter (i.e. the corresponding filtered activity value) is

calculated by aggregating the rules as

F (x) =

∑K
i=1 αiAi(x)

∑K
i=1 Ai(x)

. (3.1)

The membership function Ai(x) should be chosen according to some fuzzy clustering

criterion. By the method of fuzzy c−means (FCM), the membership function Ai(x)

must satisfy [13]:

∑

x∈X

K∑

i=1

Am̃
i (x)‖x − ci‖2 → Minimum,

∑K
i=1 Ai(x) = 1

where m̃ > 1, is the fuzzifier and ‖ · ‖ denotes the Euclidean norm. The membership

function that minimizes above objective function for a given choice of cluster centres

{ci}K
i=1 follows as

FCMi(x, c1, · · · , cK) =






1

∑K
j=1

(
‖x−ci‖2

‖x−cj‖2

) 1

m̃−1

for x ∈ X \ {cj}j=1,··· ,K ,

1 for x = ci,

0 for x ∈ {cj}j=1,··· ,K \ {ci}.

(3.2)

However, a possibilistic approach for c-means clustering relaxes the unit sum con-

straint on the membership values so that Ai(x) better reflects the typicality of x to

the ith cluster [67]. Another approach, called the noise clustering method has been

introduced by Davé in [27] to deal with the noisy data. This approach considers

noise a separate cluster such that membership of x to the noise cluster is defined as

1 −
∑K

i=1 Ai(x) and the noise prototype is always at the same distance from every

point in the data-set. Another possible clustering criterion, assuming a noise cluster

outside each data cluster, minimizes

Jc(Ai(x), c1, · · · , cK) =
∑

x∈X

K∑

i=1

[Ai(x)‖x − ci‖2 + {1 + Ai(x) log Ai(x) − Ai(x)}δi]
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where the second term in the objective function is intended to be a noise cluster. The

term {1 + Ai(x) log Ai(x)−Ai(x)} may be interpreted as the degree to which x does

not belong to the ith cluster and thus the membership of x to the noise cluster. If the

distance of x to the cluster centre ci is greater than
√

δi, then the minimization of Jc(·)
forces a small value of Ai(x) and a large value of membership of xi to the noise cluster.

Therefore, one of the strategies may be to set δi equal to the distance of nearest cluster

centre from ci, i.e., δi = min
j

‖cj − ci‖2. Minimizing Jc(Ai(x), c1, · · · , cK) with respect

to Ai(x), leads to the following expression for the membership function:

RCi(x, c1, · · · , cK) = exp(−‖x − ci‖2

δi
). (3.3)

The membership functions of (3.2) and (3.3) can be combined by adopting a mixed

clustering criterion [98, 128]. One way to do this is to assume that the membership

function Ai has two components A1i and A2i such that

Ai =
Am̃

1i

2
+

A2i

2

where A1i, A2i minimizes following constrained objective function:

∑

xǫX

K∑

i=1

[
(
Am̃

1i(x) + A2i(x)
)
‖x−ci‖2+{1+A2i(x) log A2i(x)−A2i(x)}δi],

K∑

i=1

A1i(x) = 1.

Now, A1i will be given by (3.2) and A2i by (3.3). Thus,

Ai(x, c1, · · · , cK) =
|FCMi(x, c1, · · · , cK)|m̃

2
+

RCi(x, c1, · · · , cK)

2
. (3.4)

For any membership function Ai(x), defined by (3.2), (3.3), or (3.4), if we define

Gi(x, c1, · · · , cK) =
Ai(x, c1, · · · , cK)

∑K
i=1 Ai(x, c1, · · · , cK)

,



CHAPTER 3. HANDLING UNCERTAINTIES USING A FUZZY FILTER 30

then the output of the fuzzy filter follows from (3.1) as

F (x) =

K∑

i=1

αiGi(x, c1, · · · , cK).

Introduce the notations: α = [αi]i=1,...,K ∈ RK , θ = [cT
1 · · · cT

K ]T ∈ RKn, and

G(x, θ) = [Gi(x, θ)]i=1,...,K ∈ RK , so that output of the fuzzy filter for an input x

can be expressed as

F (x) = GT (x, θ)α.

Thus, a fuzzy filter is characterized by linear parameters α and non linear cluster

centre parameters θ.

3.1.2 Robust identification of the fuzzy filter

The identification of the fuzzy filter using input-output data {x(j), y(j)}k
j=0 involves

the estimation of fuzzy filter parameters (α, θ). Here, x(j) is the jth-indexed input

data (i.e. descriptor values) and y(j) is the corresponding experimentally measured

activity value. Assume that there exist some true fuzzy filter, characterized by pa-

Figure 3.1: Identification of a fuzzy filter

rameters (α∗, {θ∗j}k
j=0), such that true fuzzy filter is functionally equivalent to the
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unknown function f(·) of Fig. 1.1 in chapter 1, as illustrated in Fig. 3.1. That is,

y(j) = GT (x(j), θ∗j )α
∗ + nj

where nj is the uncertainty in jth-indexed data. Let (αj, θj) denote an estimate of

(α∗, θ∗j ) using data {x(i), y(i)}j
i=0 based on some recursive estimation strategy. The

filtering error for jth-indexed data is given as

ej = GT (x(j), θ∗j )α
∗ − GT (x(j), θj)αj.

Any estimation strategy will be considered performing good if it results in a small

energy of filtering errors, being measured as
∑k

j=0 |ej |2. The performance of any

estimation strategy will be affected by three kind of unknown disturbances:

• the energy of uncertainties,
∑k

j=0 |nj|2,

• deviation of initial guess α−1 from true parameter α∗, assessed as ‖α∗ − α−1‖2,

• deviation of {θ∗j}k
j=0 from their initial guess {θj−1}k

j=0, assessed as
∑k

j=0 ‖θ∗j −
θj−1‖2. Here, we follow the approach of [68], where the initial guess about θ∗j is

taken equal to the estimate of θ∗j−1.

We are concerned with a robust identification method that is least sensitive to the

disturbances. Our approach to the robust identification of fuzzy filter is based on

energy-gain bounding criterion [68]:

min
{αj ,θj}

k
j=0

max
α∗,{θ∗j }

k
j=0

,{nj}k
j=0

∑k
j=0 |GT (x(j), θ∗j )α

∗ − GT (x(j), θj)αj|2

µ−1‖α∗‖2 + µ−1
θ

∑k
j=0 ‖θ∗j − θj−1‖2 +

∑k
j=0 |nj|2

where µ and µθ are positive constants. The identification method minimizes the max-

imum possible value of energy-gain from disturbances to the filtering errors. Such an

identification method will guarantee that small disturbances can not lead to large

filtering errors. The maximum value of energy-gain (that will be minimized) is calcu-

lated over all possible finite disturbances without making any statistical assumptions
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about the nature of signals. It follows from [68] that fuzzy filter parameters, based

on energy-gain approach, are identified by performing for j = 0, · · · , k, the recursions

θj = arg min
θ

[ |y(j)− GT (x(j), θ)αj−1|2
1 + µ‖G(x(j), θ)‖2

+ µ−1
θ ‖θ − θj−1‖2

]
,

αj = αj−1 +
µG(x(j), θj)

[
y(j) − GT (x(j), θj)αj−1

]

1 + µ‖G(x(j), θj)‖2
, α−1 = 0.

The optimal values of parameters (µ, µθ) in these recursions which result in the fast

convergence and low steady-state error are given as

µ(j) =
‖p̂j‖2

C‖G(x(j), θj)‖2
, µθ(j) = sθ

‖p̂j‖2

C‖G(x(j), θj)‖2
, (3.5)

p̂j = ωp̂j−1 + (1 − ω)
y(j)− GT (x(j), θj)αj−1

‖G(x(j), θj)‖2
G(x(j), θj), (3.6)

where sθ is a predefined positive constant, ω (0 < ω < 1) is a smoothing factor,

and C is a positive constant that should be chosen proportional to the magnitude of

uncertainties.

3.2 Improving Modelling Performance via Fuzzy

Filtering

The fuzzy filtering based approach to the chemicals’ behavior modeling and prediction

will be described in two parts. The first part involves the development of QSAR

models and the second one deals with the implementation of developed QSAR models

for prediction.

3.2.1 Development

The development procedure involves following three steps:
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Identification of a fuzzy filter

Given the data of N training compounds i.e. descriptor values and experimentally

measured activity data {x(j), y(j)}N−1
j=0 , identify a fuzzy filter using the method de-

scribed in earlier section. The identification method can be implemented using a

Gauss-Newton based algorithm suggested in Appendix A.

Filtering out the uncertainties from activity data

The output of the identified fuzzy filter represents the filtered activity value. If we

denote the parameters of identified fuzzy filter by (αI , θI), then the filtered activity

value of jth−indexed compound is given as

yf(j) = GT (x(j), θI)αI . (3.7)

Due to the filtering errors, it may be the case that uncertainties are not filtered
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Figure 3.2: Defining membership functions for filtered activity yf

by 100% i.e. yf(j) 6= f(x(j)). Thus, for any further analysis of values {yf(j)}N−1
j=0 ,

different fuzzy sets (such as low, medium, high) are defined for filtered activity data.

The membership functions (i.e. fuzzy sets) would provide some tolerance, against
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the uncertainty lying in yf(j) due to the filtering errors, in any further analysis. As

an illustration, P different fuzzy sets, represented as B1, B2, · · · , BP , are shown in

Fig. 3.2.

Developing QSAR models using filtered activity data

To each of the fuzzy sets B1, B2, · · · , BP , some training data could be associated.

This leads to the creation of P different data sets, D1, D2, · · · , DP , out of total data

{x(j), yf(j)}N−1
j=0 . Mathematically,

Di = {x(j), yf(j) : 0 ≤ j ≤ N − 1, Bi (yf(j)) ≥ ǫ} , where 0 ≤ ǫ << 1.

Here, Bi (yf(j)) represents degree or grade to which yf(j) belongs to fuzzy set Bi. In

other words, the data set Di contains all those training compounds whose filtered ac-

tivity value belongs to fuzzy set Bi at least by a degree of ǫ. Now, P different QSAR

models M1, M2, · · · , MP , could be trained using data sets D1, D2, · · · , DP , respec-

tively. The main point here is that the models are trained using filtered activity data,

i.e., there are no disturbances (due to uncertainties) affecting aversely the training

algorithm performance. Therefore, using even a non-robust training algorithm should

not cause a loss in the generalization performance of the models.

Remark: If models M1, · · · , MP are trained with a robust training algorithm

(whose performance is not aversely affected by uncertainties), then data sets

(D1, · · · , DP ) are defined as

Di = {x(j), y(j) : 0 ≤ j ≤ N − 1, Bi (yf(j)) ≥ ǫ} , where 0 ≤ ǫ << 1.

3.2.2 Implementation

Once the fuzzy filter, fuzzy sets B1, · · · , BP , and QSAR models M1, · · · , MP are ready,

the prediction of activity of any new compound follows by combining in a suitable

manner the contributions of models M1, · · · , MP , as shown in Fig. 3.3. Given a new

compound’s descriptors x = [d1, d2, · · · , dn]
T , the activity value can be predicted as
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Figure 3.3: Fuzzy filtering based approach to activity prediction

follows:

1. Compute the output of the fuzzy filter, yf = GT (x, θI)αI .

2. Compute the output of models i.e. the values y1, · · · , yP , where yi = Mi(x).

3. Combine the values y1, · · · , yP according to following fuzzy rule base:

Ri : If yf is Bi then output = yi, i = 1, 2, · · · , P

The predicted output value, ŷ, could be computed by taking the weighted av-

erage of the outputs provided by P rule:

ŷ =

K∑

i=1

yiBi(x)

K∑

i=1

Bi(x)

.
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3.3 Toxicity Modelling Problem

The toxicity modelling problem of section 2.1 of chapter 2 is re-visited based on

the ideas developed in this chapter. Now, it will be shown that the performance

of the algorithms listed in table 2.1 of chapter 2 improves by the fuzzy handling of

uncertainties. A fuzzy filter of 30 rules, with membership functions defined by (3.4)

for m̃ = 2, is identified based on the energy-gain bounding approach described in

section 3.1. The identification method is implemented in MATLAB 6.5 using a Gauss-

Newton based algorithm proposed in Appendix A. The identification parameters

involved in (3.5-3.6) are chosen as sθ = 0.05, ω = 0.99, and C = 10. The initial guess

about cluster centres is taken by performing fuzzy c-means clustering on the training

data. The identification algorithm was run till 100 epochs. The identified fuzzy filter

is used to filter out the uncertainties and finding out the filtered toxicity data of the

compounds, i.e., {yf(j)}567
j=0 values using (3.7).
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Figure 3.4: The membership functions for filtered toxicity data

We define three membership functions for the filtered toxicity values as shown

in Fig. 3.4. Associated to the fuzzy sets of Fig. 3.4, three data sets (D1, D2, D3)

are created taking ǫ = 0.06. Each of the training algorithms listed in table 2.1 of

chapter 2 is used to train three different models M1, M2, M3 using data sets D1, D2, D3
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respectively. Here, M1, M2, M3 are neural networks with the same structure and initial

conditions as of models of table 2.1. Finally, the three trained models are combined,

as illustrated in Fig. 3.3.

Again, SOM is applied to the descriptors values and filtered toxicity data of 568

compounds. The distribution of the compounds on a map (with 17 × 7 grid with

hexagonal lattices) is shown in Fig. 3.5. Unlike Fig. 2.2 of chapter 2, there are no

uncertainties involved in Fig. 3.5. This is obviously due to the filtering action of the

fuzzy system.

Figure 3.5: Distribution of 568 compounds on the map with uncertainties being
filtered out

Our approach to toxicity modeling, illustrated in Fig. 3.3, is meant for rendering

robustness to any algorithm used for training M1, M2, M3 with data sets D1, D2, D3

respectively. Table 3.1 shows the performance of different training algorithms in the

proposed fuzzy filtering based method. A comparison of R2 values for testing data

between table 2.1 and 3.1 clearly shows an improvement in the generalization per-

formance of all the algorithms. For example, “scaled conjugate gradient” algorithm

shows a poor generalization performance in table 2.1 as indicated by a low R2 and
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high MAE on the testing data. However, the generalization performance of the cor-

responding model in table 3.1 (i.e. Nf
5 ) is far better than N5. As seen from table 3.1,

Bayesian regularized learning of networks produced a model, Nf
8 , that has best gen-

eralization performance (i.e. highest R2 and lowest MAE value on testing data).

Table 3.1: Performances of different training algorithms in fuzzy filtering based toxicity
modeling approach

Model
Training algorithm

for M1, M2, M3

R2

training

R2

testing

MAE

training

MAE

testing

Nf
1

Batch Gradient Descent

learning rate = 0.05
0.7163 0.6743 2.4737 2.7327

Nf
2

Batch Gradient Descent

with Momentum

learning rate = 0.05

momentum constant = 0.9

0.7150 0.6437 2.6055 2.8382

Nf
3

Resilient Backpropagation 0.6425 0.6212 3.5268 2.9807

Nf
4

Conjugate Gradient

(Fletcher-Reeves)

Charalambous search method

0.6407 0.6036 3.5599 2.6762

Nf
5

Scaled Conjugate Gradient 0.6430 0.6275 3.4192 2.5194

Nf
6

One Step Secant algorithm

Backtracking search method
0.6424 0.6001 3.6632 3.5620

Nf
7

Levenberg-Marquardt 0.6407 0.6098 3.7299 3.6575

Nf
8

Bayesian regularization 0.7324 0.6831 2.7526 2.4699

Fig. 3.6 shows the plots of predicted toxicity values using model Nf
8 . Table 3.2

illustrates the performance of Nf
8 on the first 30 testing compounds for which the

prediction accuracy is highest. The maximum absolute prediction error (i.e. MAE)

of Nf
8 on testing data was 2.4699.
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Figure 3.6: Toxicity prediction using model Nf
8

3.4 Summary

Achieving good generalization capability is the key concern in QSAR studies. Un-

certainties are involved while establishing the model mappings between molecular

descriptors values and activity data. These uncertainties arise due to noisy data and

non-optimal (or sub-optimal) choice of descriptors, model type, and model struc-

ture. The non-robust training algorithms, due to the involved uncertainties, produce

models with a low generalization performance, as seen the performance of models

N3, N4, N5, N6, N7 in table 2.1 of chapter 2. Thus, the robustness of the training al-

gorithm against uncertainties is desired. The authors in [16–18,125] suggest Bayesian

regularized neural networks as robust QSAR models. The robustness property of

Bayesian regularized neural networks could be also observed in table 2.1.

This study handles the uncertainties using a fuzzy filter and thus the uncertainties

are not allowed to affect the training algorithm performance. This improves the

generalization performance of the training algorithms. The effectiveness of the fuzzy

filtering approach in the toxicity modeling example can be seen by noting that
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Table 3.2: The performance of model Nf
8 on some of the testing compounds

Compound CAS − log(LC50(mmol/l)) predicted value
1 2,4,6-Triiodophenol 609-23-4 2.59 2.59
2 4-Chloroaniline 106-47-8 0.62 0.62
3 Bis(p-fluorophenyl) ether 330-93-8 2.24 2.24
4 Permethrin 52645-53-1 4.39 4.40
5 6-Chloro-2-pyridinol 16879-02-0 -0.22 -0.21
6 Dibutyl terephthalate 1962-75-0 2.67 2.69
7 2,4-Dinitrotoluene 121-14-2 0.87 0.89
8 2-Ethoxyethyl methacrylate 2370-63-0 0.76 0.74
9 γ-Decanolactone 706-14-9 0.98 1.00
10 1-Chloro-3-nitrobenzene 121-73-3 0.92 0.90
11 2-Bromo-3-pyridinol 6602-32-0 -0.43 -0.46
12 Pentachloroethane 76-01-7 1.43 1.46
13 1,1,1,3,3,3-Hexafluoro-2-propanol 920-66-1 -0.16 -0.19
14 n-Octylcyanide 2243-27-8 1.45 1.48
15 Salicylanilide 87-17-2 1.73 1.77
16 2,3,4,5-Tetrachlorophenol 4901-51-3 2.75 2.71
17 1-Bromooctane 111-83-1 2.36 2.31
18 4-Nitrobenzamide 619-80-7 0.10 0.14
19 2,4,5-Trimethyloxazole 20662-84-4 -0.61 -0.65
20 4-Butylaniline 104-13-2 1.17 1.22
21 Pentyl ether 693-65-2 1.70 1.65
22 4-n-Nonyl phenol 104-40-5 3.2 3.26
23 (1S)-(-)-Camphor 464-48-2 0.95 1.02
24 2-Undecanone 112-12-9 2.06 1.98
25 p-tert -Butylphenol 98-54-4 1.46 1.38
26 3,5-Diiodo-4-hydroxybenzonitrile 1689-83-4 1.74 1.82
27 1-(2-Hydroxyethyl)piperazine 103-76-4 -1.69 -1.78
28 2-Allylphenol 1745-81-9 0.95 0.86
29 1-Bromohexane 111-25-1 1.68 1.58
30 Diphenylamine 122-39-4 1.65 1.77

• All models of table 3.1 (i.e. Nf
1 , · · · , Nf

8 ) have better generalization performance

than their counterparts in table 2.1 (i.e. N1, · · · , N8).

• The generalization performance of a QSAR model in table 3.1, unlike table 2.1,

is not so sensitive towards the choice of training algorithm. For example, models

N7 and N1 have a remarkable difference in their performances on the testing

data, while this is not the case with Nf
7 and Nf

1 .

The difficulties in modeling the considered toxicity data have been already illustrated

in [88], where different neural and fuzzy-neural networks were trained with the data
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set. Even the model with the best performance on testing data was found to have

R2 = 0.5019 (see table 5 in [88]). Thus, the chosen data set is a good example of

illustrating the robustness of our approach. The QSAR models trained with this data

set, because of the heterogeneity of data, should be quite general.



Chapter 4

Incorporating Intelligence in

Modelling∗

The previous chapter introduced a fuzzy filter for separating the uncertainties from

the modelling problem. In this chapter, our goal is to incorporate an intelligence

in a given modelling technique based on the fuzzy filter provided information about

uncertainties. By intelligence we mean a capability of taking account of uncertainties

in a sensible way during the development of the models for an improvement in the

generalization performance of the modelling technique.

Given the descriptors-activity data of N training compounds {x(k), y(k)}N
k=1, our

approach to incorporate intelligence in a given modelling techniques is based on the

following ideas:

1. A fuzzy filter is constructed using data {x(k), y(k)}N
k=1 that would filter out

any uncertainties arising due to the compounds behaving differently from the

input-output data trend. For a compound, described by descriptors values x(k),

the fuzzy filter is used to obtain a filtered y(k) value, denoted as yf(k). That

is, N data-pairs {x(k), yf(k)}N
k=1 follow, without an exception, a trend of input-

output mappings. The uncertainty associated to the compound is assessed as

∗This work has been submitted as
S. Kumar, M. Kumar, K. Thurow, R. Stoll, and U. Kragl. Fuzzy Filtering for Robust Bioconcen-
tration Factor Modelling. Environmental Modelling and Software, submitted for publication.

42



CHAPTER 4. INCORPORATING INTELLIGENCE IN MODELLING 43

n̂k = y(k) − yf(k).

2. The uncertainties {n̂k}N
k=1 and filtered output values {yf(k)}N

k=1 are assumed to

have been produced by a set of random sources. We estimate the parameters of

these random sources via modelling the N number of 2-dimensional data points

{zk = [ yf(k) n̂k ]T ∈ R2}N
k=1 using finite mixture models [89,91]. That is, we

estimate the parameters of a set of probability density functions such that each

data point zk is modelled as having been generated by one of the probabilistic

models in the set.

3. The finite mixture modelling leads to the clustering of the data via identifying

which source (i.e. probabilistic model) produced each data point. Assume that

C different sources, with the known probability density functions, have been

identified producing the data {zk}N
k=1.

4. The data points associated to a source could be used to train (i.e. develop) a

local model. A local model Mi (associated to the ith source), if trained using a

non-robust algorithm conventionally with data {x(k), y(k)}, may lead to a poor

generalization performance. The reason being that in the training of model Mi,

the data points associated to a higher magnitude of uncertainties might act as

outliers and adversely affect the training of the model. Therefore, we want to

train the models with some penalized data {x(k), yi
p(k)}.

5. For any kth data point used in the training of model Mi, the output value y(k)

is penalized (in a context of the ith source) for the magnitude of the uncer-

tainty associated to the kth data point. This is done via defining a penalized

output value yi
p(k) such that yi

p(k) is closer to y(k) for the data points being

treated as “regular” (typically characterized by a lower magnitude of estimated

uncertainties), while yi
p(k) is closer to yf(k) for the data points being treated

as outliers (typically characterized by a higher magnitude of estimated uncer-

tainties). To define the penalized value yi
p, we make use of the ith probabilistic

model provided information about the uncertainties.
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6. A model Mi (associated to the ith source) is not trained conventionally using

data {x(k), y(k)}, however, trained using penalized data {x(k), yi
p(k)}. Now,

for the data points (might being acting as outliers), yi
p is closer to yf (i.e. closer

to a point free from uncertainties) and thus training the model using yi
p values

should not adversely affect the training method.

7. Finally, the C different local models M1, · · · , MC are combined to estimate the

final output.

Roughly speaking, our approach renders robustness in the identification of local mod-

els M1, · · · , MC via penalizing the data. The local models operate in the predefined

regions. To penalize the data, as will be explained, we make use of the information

about uncertainties provided by a fuzzy filter. The design of the fuzzy filter is based

on the “energy-gain bounding approach” [68]. This approach improves the method

of previous chapter in the followings:

1. In previous chapter, the local models are developed in the partitions of 1-

dimensional real line of filtered values. In this study we partition the 2-dimensional

space of filtered values and uncertainties, since the information about uncertain-

ties will be used to penalize the data.

2. The method of previous chapter trains the models with the filtered data {x(k), yf(k)}
and thus there are no uncertainties (in the training data) that could adversely af-

fect the training procedure. However, here we use the penalized data {x(k), yi
p(k)}

for the training of the models, offering the flexibility of “smooth switching” be-

tween {x(k), y(k)} (for regular data points) and {x(k), yf(k)} (for outliers).

3. The previous method, unlike this one, penalizes all the data points (regular as

well as outliers) and thus is over conservative.

4.1 The Methodology

The methodology for incorporating intelligence in a given modelling problem (i.e.

given molecular descriptors, model type, model structure, and model identification
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Figure 4.1: An intelligence is incorporated in a given modelling technique by using
penalized data sets Dp

1, · · · , Dp
C . The penalized data sets and a fuzzy rule base for

combining the local models are carefully designed based on Gaussian mixture mod-
elling of filtered data and uncertainties
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algorithm) consists of following steps:

4.1.1 Identification of the parameters of a fuzzy filter

A fuzzy filter is identified based on the ideas outlined in section 3.1 using a Gauss-

Newton based algorithm of Appendix A. For a choice of the number of rules in the

fuzzy filter (i.e. number of clusters K) and initial guess about cluster centres θ−1, a

clustering on input data (e.g. using finite mixture models [40]) could be performed.

The output of the identified fuzzy filter represents the filtered output value. If we

denote the parameters of identified fuzzy filter by (αI , θI), then the filtered output

value of kth−indexed compound is given as

yf(k) = GT (x(k), θI)αI . (4.1)

The uncertainty associated to the kth−indexed compound will be assessed as

n̂k = y(k) − yf(k). (4.2)

4.1.2 Gaussian mixture modelling of filtered data and uncer-

tainties

Assume that the vector zk = [ yf(k) n̂k ]T represents one particular outcome of a

2-dimensional random variable Z ∈ R2 whose probability density function can be

written as a mixture of the Gaussian distributions:

p(z) =
C∑

i=1

aip(z | mi, Σi), such that (4.3)

• the mixing probabilities a1, · · · , aC satisfy ai ≥ 0 and
∑C

i=1 ai = 1,

• the parameters mi ∈ R2, Σi (a 2× 2 positive definite matrix) characterize fully
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the ith Gaussian component:

p(z | mi, Σi) =
1√

(2π)2|Σi|
exp{−1

2
(z − mi)

T Σ−1
i (z − mi)}. (4.4)

An approach to the clustering of data {zk}N
k=1 is to fit finite mixture models (4.3) to

the data, where a component distribution is used to model a specific cluster. That is,

ith cluster (with mean mi and covariance Σi) is mathematically represented by Gaus-

sian distribution p(z | mi, Σi). “Expectation-maximization” (EM) is the standard

algorithm [90, 91] used to fit finite mixture models to data. In this study, however,

we use the algorithm of [40] for estimating the parameters of the mixture (4.3). This

algorithm is capable of automatically selecting the number of components C. The

algorithm, unlike EM, is less sensitive to initialization and avoids the possibility of

algorithm convergence to the boundary of the parameter space. As an illustration,
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Figure 4.2: Gaussian mixture modelling of data: data points and level-curves (solid
line) for the different components

Fig. 4.2 shows the Gaussian mixture modelling of an example data where the drawn

ellipses are the level-curves of component distributions. The data points in Fig. 4.2
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could be clustered via associating each point to one of the 5 components. The matrix

Σi in (4.4) could be chosen to be a diagonal matrix (i.e. the two random variables

are independent). If mi =

[
m1

i

m2
i

]
and Σi =

[
Σ1

i 0

0 Σ2
i

]
, then

p(z | mi, Σi) = p(yf | m1
i , Σ

1
i )p(n̂ | m2

i , Σ
2
i ), where (4.5)

p(yf | m1
i , Σ

1
i ) =

exp{−(yf − m1
i )

2

2Σ1
i

}
√

2πΣ1
i

, p(n̂ | m2
i , Σ

2
i ) =

exp{−(n̂ − m2
i )

2

2Σ2
i

}
√

2πΣ2
i

. (4.6)

The data points in Fig. 4.2 are taken from a case study to be discussed in the latter

part of the chapter.

4.1.3 A combination of local models

Given the knowledge of component distributions p(z | mi, Σi), i = 1, · · · , C, we want

to utilize this information in the development of neural, fuzzy, or of any other type

local models (M1, · · · , MC) valid in the predefined operating regions. The operating

regions can be represented by fuzzy sets and the local models can be combined using

a fuzzy rule base:

R1 :
For input x, if the fltered value yf = GT (x, θI)αI is A1(yf),

then output = M1(x)
, [w1]

...

RC :
For input x, if the fltered value yf = GT (x, θI)αI is AC(yf),

then output = MC(x)
, [wC ]

Here, (A1(yf), · · · , AC(yf)) are the membership functions, Mi(x) denotes the ith

model output for the input x, and wi ∈ [0, 1] is the weight of the rule that rep-

resents the belief in the accuracy of the ith rule Ri. The degree of fulfillment of the

ith rule is given by βi(yf) = wiAi(yf). The overall output y, for input x, is estimated
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by taking the weighted average of the output provided by each rule:

y =

C∑

i=1

wiAi(yf)Mi(x)

C∑

i=1

wiAi(yf)

.

We want to define the membership function Ai(yf) in such a way that the data points,

belonging to the region covered by Ai(yf), are most likely to be generated by the ith

probabilistic model p(yf | m1
i , Σ

1
i ). This is done by defining Ai(yf) as follows

Ai(yf) = knp(yf | m1
i , Σ

1
i ), i = 1, · · · , C (4.7)

where kn is a normalizing constant that ensures that Ai(yf) ∈ [0, 1]. In view of this

choice of the membership functions, the natural choice of the rule weight wi is the

prior probability of observing a data point from ith source i.e. wi = ai. Thus, the

overall output by combining the local models is given as

y =

C∑

i=1

aip(yf | m1
i , Σ

1
i )Mi(x)

C∑

i=1

aip(yf | m1
i , Σ

1
i )

. (4.8)

4.1.4 The development of local models

One would normally expect to train a local model Mi (associated to fuzzy set Ai(yf(k)))

with input-output data set Di defined as

Di = {x(k), y(k), 1 ≤ k ≤ N, Ai(yf(k)) ≥ ǫ}, 0 ≤ ǫ << 1. (4.9)

The data set Di contains all those training compounds whose filtered output value

belongs to fuzzy set Ai at least by a degree of ǫ. As an illustration, the output values

of set Di have been displayed (marked as “·”) in Fig. 4.3. However, as stated earlier,



CHAPTER 4. INCORPORATING INTELLIGENCE IN MODELLING 50

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

real line

es
tim

at
ed

 u
nc

er
ta

in
ty

 v
al

ue

 filtered output y
f

level curve of a component
output data y
penalized output y

p
i

outliers 

outliers 

Figure 4.3: Display of data output y, filtered output yf , and penalized output yi
p

the training of Mi with data set Di using a non robust algorithm may lead to a poor

generalization performance of the model. The reason being that in the training of

model Mi, the data points lying far away from ith cluster centre along the estimated-

uncertainty-axis might act as outliers and adversely affect the training of the model.

Therefore, we want to train the models with some penalized data {x(k), yi
p(k)}. A

penalized value yi
p(k) is defined such that yi

p(k) is closer to y(k) for the data points

being treated as “regular” (lying closer to the ith cluster centre), while yi
p(k) is closer

to yf(k) for the data points being treated as outliers (far away from ith cluster centre

along the estimated-uncertainty-axis). Now, for the data points (might being acting

as outliers), yi
p is closer to yf (i.e. closer to a point free from uncertainties) and

thus training the model Mi using {x(k), yi
p(k)} values should not adversely affect the

training method.

Fig. 4.3 displays an example of the penalized values (marked as “o”), shifting from
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{y(k)} (marked as “·”) to the {yf(k)} (marked as “+”), as we move away from the

cluster centre along the estimated-uncertainty-axis. To define the penalized values,

we make use of the information (provided by ith probabilistic model) on uncertainties.

One of the possible methods for defining the penalized values is as follows:

yi
p(k) = ω̄i

kyf(k) + (1 − ω̄i
k)y(k), where (4.10)

ω̄i
k =

(
1 − p(n̂k | m2

i , Σ
2
i )

pi
max

)sp

, pi
max = max

k
p(n̂k | m2

i , Σ
2
i ), sp > 0. (4.11)

Here, sp is a “switching parameter” that controls the rate at which the switching of

yi
p from y to yf , with a decrease in p(n̂k | m2

i , Σ
2
i ) (i.e. while moving away from ith

cluster centre along the estimated-uncertainty-axis), takes place. A lower value of sp

results in a faster switching and vice-versa. Let Dp
i denotes the penalized training

data set for Mi:

Dp
i = {x(k), yi

p(k), 1 ≤ k ≤ N, Ai(yf(k)) ≥ ǫ}, 0 ≤ ǫ << 1. (4.12)

Finally, the data sets Dp
1, · · · , Dp

C could be used to train the local models M1 · · · , MC

respectively. Fig. 4.1 summarizes our methodology for incorporating intelligence in a

given modelling technique.

4.1.5 Implementation of the methodology for prediction

The given training data {x(k), y(k)}N
k=1 is used to estimate the parameters (αI , θI),

{(m1
i , Σ

1
i ), (m

2
i , Σ

2
i ), ai, i = 1, · · · , C} and thus the training of local models M1, · · · , MC

is accomplished. Now, the prediction of the output value for a given input (i.e. pre-

diction of activity of a compound that may or may not be included in training set)

follows as

• for an input x, compute the filtered output yf = GT (x, θI)αI ,
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• the outputs of the local models could be combined to predict the output ac-

cording to (4.8):

y =

C∑

i=1

aip(yf | m1
i , Σ

1
i )Mi(x)

C∑

i=1

aip(yf | m1
i , Σ

1
i )

, p(yf | m1
i , Σ

1
i ) =

exp{−(yf − m1
i )

2

2Σ1
i

}
√

2πΣ1
i

. (4.13)

4.2 The Bioconcentration Factor Modelling Prob-

lem

We demonstrate, by re-visiting the bioconcentration factor modelling problem of sec-

tion 2.2 of chapter 2, that the proposed fuzzy filtering based methodology could be

used for incorporating intelligence in the modelling methods and thus achieves a ro-

bustness against uncertainties. It will be seen that the training algorithms of table 2.2

of chapter 2, if used to train the local models with penalized data (as suggested by

our methodology), would result in an improvement in the generalization performance.

We employed a fuzzy filter, with membership functions defined by (3.4) for m̃ = 2,

for filtering out the uncertainties from the modelling problem. The number of rules in

the fuzzy filter (i.e. K) and initial guess about cluster centres (θ−1) were chosen via

performing clustering on the 5-dimensional input training data using finite mixture

models [40]. The identification algorithm was run till 100 epochs taking µ = µθ = 0.1.

The identified fuzzy filter was used to obtain for the training compounds the filtered

values (4.1) and the underlying uncertainties (4.2).

The Gaussian mixture modelling of the 2-dimensional data (filtered and uncer-

tainties values) identified 5 different component distributions describing the behavior

of the data. These 5 component distributions have been displayed in Fig. 4.2. Associ-

ated to these components, the penalized data sets Dp
1, · · · , Dp

5 (obtained using (4.12))

could be used to train the local models M1, · · · , M5 respectively. The local models

are finally combined using (4.13) to predict the overall output. Table 4.1 shows the

system performance when the local models M1, · · · , M5 are neural networks trained
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Table 4.1: The performance of “trainscg” network training algorithm via proposed tech-
nique

sp R2-training RMSE-training R2-testing RMSE-testing

0.01 0.7916 0.6355 0.6725 0.8542

0.03 0.7933 0.6309 0.6835 0.8405

0.05 0.7970 0.6230 0.6682 0.8598

0.1 0.8036 0.6084 0.6734 0.8433

0.2 0.8072 0.5962 0.6915 0.8188

0.4 0.8139 0.5793 0.7017 0.8009

0.5 0.8196 0.5681 0.7329 0.7485

0.75 0.8269 0.5541 0.6918 0.8022

1 0.8277 0.5516 0.7109 0.7790

2 0.8420 0.5253 0.7180 0.7627

with the “trainscg” algorithm. Here, M1, · · · , M5 have the same structure, initial con-

ditions, and training parameters (e.g. number of epochs) as of the network trained

with “trainscg” in table 2.2. The parameter ǫ in (4.12), to define the penalized data

sets for different values of switching parameter sp, was chosen as ǫ = 0. In this text,

we made no comment on the choice of switching parameter sp, thus we consider the

different values of switching parameter sp ranging from 0.01 to 2.

Similarly, the tables 4.2 and 4.3 show the performance of the “trainlm” and “anfis”

algorithms respectively via proposed fuzzy filtering based technique.

A comparison of tables 4.1, 4.2, and 4.3 with table 2.2, shown in Fig. 4.4, verifies

that the generalization performance (i.e. testing data performance) of the modelling

methods improved considerably via proposed approach. The type, structure, and

training conditions of the local models in the studies are the same as of the models

in table 2.2 of chapter 2. However, none of the modelling method resulted in the

overtraining of the model via proposed fuzzy filtering based technique. This indicates

that the robustness offered to the modelling methods is obviously a result of

1. penalizing the data,

2. combining the local models using a fuzzy rule base that has been carefully

designed,
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Figure 4.4: An improvement in the generalization performance of the modelling meth-
ods via proposed approach
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Table 4.2: The performance of “trainlm” network training algorithm via proposed tech-
nique

sp R2-training RMSE-training R2-testing RMSE-testing

0.01 0.7905 0.6366 0.6856 0.8371

0.03 0.7928 0.6306 0.6854 0.8346

0.05 0.7935 0.6282 0.6854 0.8314

0.1 0.8032 0.6077 0.6475 0.8721

0.2 0.8129 0.5879 0.7213 0.7752

0.4 0.8158 0.5747 0.7279 0.7484

0.5 0.8202 0.5672 0.7190 0.7676

0.75 0.8333 0.5444 0.6187 0.8920

1 0.8405 0.5315 0.7021 0.7821

2 0.8457 0.5198 0.6789 0.8127

based on Gaussian mixture modelling of filtered data and uncertainties.

If the chosen training algorithm is robust towards uncertainties, then the local

model could be trained with data sets D1, · · · , DC defined by (4.9). Since the training

algorithm is robust, there is no need of penalizing the training data. In this case,

an improvement in the modelling performance could be still expected as a result of

the fuzzy combination of local models. As an illustration, we consider the Bayesian

regularized neural networks that have been accepted as a robust methods of QSAR

modelling [16–18,125]. The local models are trained with data sets D1, · · · , D5 defined

by (4.9) for ǫ = 0.01 using Bayesian regularized neural network training algorithm

(MATLAB Neural Network Toolbox command “trainbr”). Table 4.4 illustrates the

performance of a Bayesian regularized neural network on BCF modelling problem

and an improvement (although slightly) to this as a result of the fuzzy combination

of local models.

4.3 Summary

Several modelling methods have been proposed in the literature aiming at the good

generalization performance of the models. This work, unlike many studies, doesn’t



CHAPTER 4. INCORPORATING INTELLIGENCE IN MODELLING 56

Table 4.3: The performance of “anfis” training algorithm via proposed technique

sp R2-training RMSE-training R2-testing RMSE-testing

0.01 0.7966 0.6293 0.6802 0.8421

0.03 0.7976 0.6248 0.6812 0.8383

0.05 0.7987 0.6208 0.6825 0.8343

0.1 0.7958 0.6197 0.6824 0.8257

0.2 0.8068 0.5961 0.6860 0.8152

0.4 0.8115 0.5830 0.6677 0.8352

0.5 0.8130 0.5789 0.6851 0.8067

0.75 0.8155 0.5715 0.7050 0.7805

1 0.8196 0.5636 0.6947 0.7938

2 0.8294 0.5459 0.7017 0.7841

Table 4.4: The performance of Bayesian regularized neural network training algorithm

method R2-training RMSE-training R2-testing RMSE-testing

“trainbr” 0.8731 0.4666 0.7112 0.7604

“trainbr” via

proposed method
0.8787 0.4579 0.7466 0.7129

propose a new modelling method but provides a tool for rendering robustness in any

modelling method. A case study dealing with the bioconcentration factor modelling

of chemicals was provided to illustrate the effectiveness of our technique.

The uncertainties, affecting adversely the generalization capabilities of the mod-

elling methods, are filtered using a fuzzy filter. Based on the available information

about uncertainties, the local models are developed in a manner that uncertainties

are not allowed to affect the training of the local models. This improves the general-

ization performance of a modelling technique. The combination of the local models

using a fuzzy rule base (that has been carefully designed based on Gaussian mixture

modelling of filtered data and uncertainties) provides additional tolerance towards

uncertainties.

The aim of this study is to provide to the researchers a piece of software that would

improve the robustness performance of their favourite modelling methods. One could
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observe in Fig. 4.4 a considerable improvement in the performance of the different

modelling methods via proposed technique. However, there are some issues which

remain to be addressed in our future work. The automatic selection of the value of

switching parameter sp is a part of our future work. Fortunately, the effectiveness of

our approach has been observed at all considered values of sp ranging from 0.01 to

2. For a choice sp = 0 (i.e. training of local models with filtered data), the technique

becomes close to the method of previous chapter.



Chapter 5

A Study on Ionic Liquids

This chapter presents a study on the ionic liquids (which has gained importance in

the field of green chemistry), their environmental behavior, and a computer model

for their toxicity prediction.

5.1 Ionic Liquids

The out comes of the constant efforts and hardwork of scientists revealed the new

class of chemicals which are not only of great industrial importance but are also

environmental friendly. Such chemicals are termed as “Green Chemicals”. One of

such class of green chemicals is of ionic liquids which are considered to possess en-

vironmental benign properties. The ionic liquids are known as green solvents due

to the fact that they exert immeasurable low vapour pressure at standard condition

and do not contribute to air pollution at all. The ionic liquids have enormous po-

tential for wide industrial application and are considered as potential replacement

for environmentally harmful, volatile organic solvents. The ranges of applications

of ionic liquids are wider than fluorous solvents and supercritical carbon dioxide.

There is a steady increase in the number of ionic liquids related publications in

recent years. The ionic liquids have drawn considerable attention as an alterna-

tive to conventional organic solvents in a variety of significant synthetic, catalytic,

electrochemical applications, separation and extraction process, biotransformation

58



CHAPTER 5. A STUDY ON IONIC LIQUIDS 59

etc [9, 15, 25, 26, 35, 65, 66, 86, 93, 95,96, 104, 106,110,120,123,124].

Molten organic salts like imidazolium and the quaternary ammonium salts exhibits

room temperature liquid-like behavior and interesting solvent properties for both

chemical reaction and extraction. The first room temperature molten salt systems

were reported in 1951 by Hurly and Wier [52]. The liquids that are comprised entirely

of ions could be called as ionic liquids, in this regard they are anhydrous aprotic

solvents [63]. Ionic liquids are salts with a melting point below 100◦C. One of the

salient features of the ionic liquids is strong ion-ion interaction that are not often seen

in the higher temperature molten salts.

The typical ionic liquids have an organic cation and an inorganic, polyatomic

anion. The general chemical composition of ionic liquid is consistent despite the

chemical and physical properties and specific composition vary tremendously. The

potential number of ionic liquids is large due to many known potential cation and

anions. Some examples of cations and anions commonly used for the formation of the

ionic liquids are shown in Fig. 5.1. The anion (X−) can be any of a variety of species

including nitrate [NO−
3 ], acetate [CH3COO−], terafluoroborate [BF−

4 ] etc.

Figure 5.1: Some examples of cations and anions of ionic liquids
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5.2 Environmental Behavior of Ionic Liquids

The ionic liquids are labeled as green solvent as they exert negligible vapour pressure

and prevent air pollution but they are at least to some degree water soluble and may

escape in water bodies which may cause water pollution. To facilitate their wide

industrial acceptance in accordance to the new European chemical policy REACH,

it is important to investigate their impact on the health and environment. Since

the ionic liquids are known as “designer solvents” [107], therefore the study of their

environmental behavior will help in designing eco-friendly ionic liquids.

Some of the ionic liquids show strong antimicrobial activity. The C-1 alkyl chains

substituents in imidazolium, pyridinium and quaternary ammonium based cation,

plays an important role in influencing the toxicity of the ionic liquid. The ionic liquids

with a longer alkyl chain are more toxic to the microbes [100]. Similar observation

was made in the detailed biological studies of dialkylimidazolium ionic liquids in

luminescent bacteria as well as in the the IPC-81 (leukemia cells) and C6 (glioma

cells) rat cell lines [34,103]. The toxicity of ionic liquids was found to be lower than the

conventional solvents such as acetone, acetonitrile, methanol and methyl tert-butyl

ether. The acetylcholinesterase can be inhibited by ionic liquids containing a cation

with a positively charged nitrogen and with a certain lipophilicity [108]. The effects

of ionic liquids on the Daphnia magna, algae (Secnedesmus spp), fresh water snail

(Physa acuta), plant (Lemna minor), nematodes(Caenorhabditis elegans), fish (Danio

rerio) have been also investigated [11, 12, 102, 111, 122]. The influence of the anion

moiety and side chain of ionic liquids have been also investigated in eco-toxicological

test battery. The side chain length effect was distinct and consistent than the anion

effect [87, 109]. The toxicity of the ionic liquids may also have a negative impact on

their biodegradation. The authors in [56] have reported a theoretical environmental

risk analysis on a set of dialkylimidazolium ionic liquids and illustrated the theoretical

metabolism scheme for [BMIM] cation. The suggested breakdown products can be

identified by a combination of strong ion-exchange SPE and GC-MS [78].

The biodegradation of the ethyl ester and amide imidazolium ionic liquids using
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standard OECD sturm and closed bottle test has been examined in [42]. The es-

ter imidazolium ionic liquids were found out to be more biodegradable than amide

imidazolium ionic liquids. The tested imidazolium based ionic liquids were turned

out to be “not readily biodegradable”. However the introduction of the group that

is susceptible to enzymatic hydrolysis improves the extent of biodegradation [41]. It

was found that octylsulfate anion conferred higher levels of biodegradability [43]. The

introduction of an ester group in the side chain of the 1,3-dialkylimidazolium cation

improves the biodegradation to a large extent [43]. This ionic liquid has been ob-

tained by combining cation 3-methyl-1-(propyloxycarbonyl) imidazolium and anion

octylsulphate. It shows a biodegradation of 49% in the closed bottle test.

We have performed a closed bottle test [1] on a set of five commonly used ionic

liquids (see Appendix C.3.1). The investigated ionic liquids were [BMIM][BF4],

[BMPy][BF4], [EMIM][OTos], [EMIM][EtSO4], and ECOENG2122P. The reference

substance taken was Sodium n-dodecyl sulphate (SDS). The results have been sum-

marized in Fig. 5.2. As seen from Fig. 5.2, none of the tested ionic liquids could be

classified as readily biodegradable ionic liquid. According to OECD standards a com-

pound that achieves a biodegradation level higher than 60% (in 28 days) is referred

to as readily biodegradable compound.

A recent study [33] has also indicated that none of the considered imidazolium

based ionic liquids could be classified as readily biodegradable. This suggest that

imidazolium ring does not get mineralized easily, however, imidazolium ring with

longer alkyl chain such as hexyl and octyl substituents are partially mineralized. In

contrary the pyridinum based ionic liquids with hexyl and octyl substituents are fully

mineralized. This implies that biodegradation rate increases with an increase in the

length of alkyl chain [33].
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Figure 5.2: Biodegradation curves of studied ionic liquids

5.3 A Computer Model for Predicting the Toxicity

of Ionic Liquids

The eco-toxicological assays are expensive and time consuming. Further, there are

theoretically over 106 ionic liquids which cann’t be tested for their toxicity. Thus, it is

necessary to develop QSAR models for a fast and accurate prediction of toxicity. The

QSAR method is based on the assumption that the toxicity of a chemical compound is

determined by its molecular structure and the structure is represented using molecular

descriptors.

In the earlier chapters, we calculated several constitutional, 2D autocorrelations,

Burden eigenvalue, geometrical, 3D-MoRSE, WHIM, GETAWAY, and molecular prop-

erties based descriptors using E-DRAGON [114]. However, in this study we consider

“group contributing molecular descriptors” [81] of ionic liquids. According to this

approach, the toxicity of a ionic liquid is assumed to depend upon the contribution
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Figure 5.3: Structures of cations of ionic liquids

of anions, cations, and alkyl-chain substitutions [81]. The typical ionic liquid cations

are imidazolium, pyridinium, and pyrrolidium (see Fig. 5.3). Here R is the long n-

alkane chain, R1 is short chain substitution, and R2 is an additional substitution on

cation apart from R and R1 as shown in Fig. 5.3. The anions examples are BF−
4 ,

PF−
6 , Cl−, Br−, N(CN2)

−
2 , CH3SO−

4 , etc. The different anions have been divided

into three groups: the A1 group includes BF−
4 , Cl−, tosylate, diethylphosphate; the

A2 group includes PF−
6 , Br−, N(CN2)

−
2 , CH3SO−

4 , C2H5SO−
4 ; and A3 group includes

octylsulphate, (CF3SO2)2N
−, [(O-OPhO)2B]−.

The structure of a ionic liquid, in our analysis, will be represented by a set of

9 descriptors (a1, a2, a3, c1, c2, c3, r, r1, r2) defined in table 5.1. Table 5.2 shows some

Table 5.1: Definitions of group contributing descriptors (similar to [81])

descriptor value

a1 equal to 1, if A1 group is present in the molecule, otherwise, equal to 0

a2 equal to 1, if A2 group is present in the molecule, otherwise, equal to 0

a3 equal to 1, if A3 group is present in the molecule, otherwise, equal to 0

c1 equal to 1, if imidazolium cation is present in the molecule, otherwise, equal to 0

c2 equal to 1, if pyridinium cation is present in the molecule, otherwise, equal to 0

c3 equal to 1, if pyrrolidium cation is present in the molecule, otherwise, equal to 0

r equal to number of carbons in long chain R

r1 is equal to number of carbons in chain R1

r2 is equal to number of carbons in chain R2

of the ionic liquid compounds, their group contributing molecular descriptors, and
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toxicity (Vibrio fischeri EC50) data either collected from literature or generated ex-

perimentally by performing bioluminescence inhibition assay (see Appendix C.3.2).

Our aim is to develop a model that takes the values of these 9 descriptors as inputs

and outputs the log EC50 value. The data set has been divided into training and test-

ing sets, as in sections 2.1.3 and 2.2.1 of chapter 2, such that testing compounds were

sandwiched between the training ones in the sense of Euclidean distance. This was

done by including every second compound in the series of ascending order arranged

compounds in the testing set and the remaining compounds in the training set. Thus

each set contains about half of the total compounds.

Bayesian regularized neural networks are considered as a robust method of QSAR

modelling in literature [16–18, 125]. This fact has been observed in our studies too

in previous chapters. Thus for the modelling of ionic liquid toxicity data, we train,

using MATLAB Neural Network Toolbox software, a 3-layer feed-forward Bayesian

regularized network that has 2 “tansig” (i.e. with hyperbolic tangent sigmoid transfer

function) neurons in first layer, 1 “tansig” neuron in second layer, and one “purelin”

(i.e. with linear transfer function) neuron in third layer. The performance (i.e.

coefficient of determination R2 and root mean squared error RMSE) of the trained

network on training and testing data is listed in the first row of table 5.3 and in

Fig. 5.4.

Although the performance of Bayesian regularized neural model on testing data is

acceptable, but a large difference exists between the training performance and test-

ing performance. Therefore, uncertainties exist in the formulated modelling problem.

Chapter 4 has outlined a methodology, summarized in Fig. 4.1, for incorporating an

intelligence in a given modelling technique to achieve a robustness of the modelling

performance against uncertainties. Now, we try to improve the performance of the

Bayesian regularized neural model based on the approach of Fig. 4.1. However, de-

scriptors data in this case is binary (i.e. either 0 or 1), see table 5.2, and thus we

don’t want to define fuzzy membership functions for the binary data (although the-

oretically it is possible to do so). In this particular case (when a fuzzy filter is not

preferred), we replace the fuzzy filter in Fig. 4.1 by the Bayesian regularized trained
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Table 5.2: Ionic liquids and their descriptors
compound a1 a2 a3 c1 c2 c3 r r1 r2 log EC50(µmol/L) Ref.

[MIM] 0 0 0 1 0 0 0 1 0 4.17 [34]

[C1MIM][CH3SO4] 0 1 0 1 0 0 1 1 0 4.76 [81]

[C2MIM][C2H5SO4] 0 1 0 1 0 0 2 1 0 4.02 [81]

[C2MIM][Cl] 1 0 0 1 0 0 2 1 0 4.55 [81]

[C3MIM][BF4] 1 0 0 1 0 0 3 1 0 3.94 [103]

[C4MIM][PF6] 0 1 0 1 0 0 4 1 0 3.07 [41]

[C4MIM][BF4] 1 0 0 1 0 0 4 1 0 3.55 [103]

[C4MIM][BF4] 1 0 0 1 0 0 4 1 0 3.10 [41]

[C4MIM][Br] 0 1 0 1 0 0 4 1 0 3.07 [103]

[C4MIM][Br] 0 1 0 1 0 0 4 1 0 4.01 [34]

[C4MIM][Br] 0 1 0 1 0 0 4 1 0 3.27 [41]

[C4MIM][Cl] 1 0 0 1 0 0 4 1 0 3.71 [34]

[C4MIM][Cl] 1 0 0 1 0 0 4 1 0 3.34 [41]

[C4MIM][N(CN2)2] 0 1 0 1 0 0 4 1 0 3.67 [41]

[C4EIM][BF4] 1 0 0 1 0 0 4 2 0 2.80 [103]

[C5MIM][BF4] 1 0 0 1 0 0 5 1 0 3.14 [103]

[C6MIM][Br] 0 1 0 1 0 0 6 1 0 1.42 [34]

[C6MIM][Cl] 1 0 0 1 0 0 6 1 0 1.94 [81]

[C6MIM][Cl] 1 0 0 1 0 0 6 1 0 2.32 [41]

[C6MMIM][Cl] 1 0 0 1 0 0 6 1 1 1.74 [81]

[C6MIM][PF6] 0 1 0 1 0 0 6 1 0 2.17 [41]

[C6MIM][BF4] 1 0 0 1 0 0 6 1 0 3.18 [103]

[C6EIM][BF4] 1 0 0 1 0 0 6 2 0 2.15 [103]

[C7MIM][BF4] 1 0 0 1 0 0 7 1 0 2.44 [103]

[C8MIM][Br] 0 1 0 1 0 0 8 1 0 0.63 [34]

[C8MIM][Cl] 1 0 0 1 0 0 8 1 0 1.19 [41]

[C8MIM][PF6] 0 1 0 1 0 0 8 1 0 0.95 [41]

[C8MIM][BF4] 1 0 0 1 0 0 8 1 0 1.41 [103]

[C9MIM][BF4] 1 0 0 1 0 0 9 1 0 0.72 [103]

[C10MIM][Cl] 1 0 0 1 0 0 10 1 0 0.50 [103]

[C10MIM][BF4] 1 0 0 1 0 0 10 1 0 -0.18 [103]

[MPy] 0 0 0 0 1 0 1 0 0 3.06 [34]

[C4Py][Br] 0 1 0 0 1 0 4 0 0 3.39 [34]

[C4MPy][Br] 0 1 0 0 1 0 4 1 0 2.75 [34]

[C4MMPy][Br] 0 1 0 0 1 0 4 1 1 2.69 [34]

[C4Py][Cl] 1 0 0 0 1 0 4 0 0 3.40 [34]

[C4Py][N(CN2)2] 0 1 0 0 1 0 4 0 0 3.30 [34]

[C4MPy][N(CN2)2] 0 1 0 0 1 0 4 1 0 2.65 [34]

[C4MMPy][N(CN2)2] 0 1 0 0 1 0 4 1 1 2.38 [34]

[C6MPy][Br] 0 1 0 0 1 0 6 1 0 2.06 [34]

[C6MPy][Cl] 1 0 0 0 1 0 6 1 0 1.44 [81]

[C8MPy][Br] 0 1 0 0 1 0 8 1 0 0.79 [34]

[C6MPyRR][Cl] 1 0 0 0 0 1 6 1 0 2.99 [81]

[C4MIM][BF4] 1 0 0 1 0 0 4 1 0 3.60 experiment

[C2MIM][C2H5SO4] 0 1 0 1 0 0 2 1 0 4.05 experiment

[C2MIM][(C2H5)2PO4] 1 0 0 1 0 0 2 1 0 4.63 experiment

[C2MIM][C7H7SO3] 1 0 0 1 0 0 2 1 0 4.59 experiment

[C2MIM][(2-OPhO)B] 0 0 1 1 0 0 2 1 0 2.96 [87]

[C4MIM][(CF3)2N] 0 1 0 1 0 0 4 1 0 3.46 [87]

[C4MIM][(CF3SO2)2N] 0 0 1 1 0 0 4 1 0 2.47 [87]

[C4MIM][octylOSO3] 0 0 1 1 0 0 4 1 0 1.82 [87]

[C4MIM][Cl] 1 0 0 1 0 0 4 1 0 3.47 [87]

[C1OIM][BF4] 1 0 0 1 0 0 1 8 0 1.40 [87]
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Table 5.3: Ionic liquids toxicity modelling performance

method R2-training RMSE-training R2-testing RMSE-testing

Bayesian regularized 0.9837 0.1440 0.7395 0.6509

Bayesian regularized with intelligence 0.9796 0.1644 0.8047 0.5374
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Figure 5.4: Plots for the Bayesian regularized neural modelling of ionic liquid toxicity

neural model.

Gaussian mixture modelling of data, by using the algorithm of [40], produced three

different clusters shown in Fig 5.5, i.e., 3 local models M1, M2, M3 will be trained. As

stated earlier in section 4.2 of chapter 4, for Bayesian regularized modelling technique

(being robust), the local models in Fig. 4.1 could be trained with data sets D1, · · · , D3

defined by (4.9) without any penalization. The parameter ǫ in (4.9) was taken in

such a way that all data lying at ±2
√

Σ1
i from mean m1

i are included in ith data

set Di which was then used for the training of ith local model Mi with Bayesian

regularized training algorithm. The overall output is computed by combining the

local models using a fuzzy rule base constructed from the Gaussian mixture model

as explained in the previous chapter. The performance of intelligence incorporated
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Figure 5.5: Data points and level curves for the different Gaussian components

Bayesian regularized neural modelling is listed in the second row of table 5.3 and also

in Fig. 5.6. We observe an improvement in the performance as a result of incorporating

intelligence. Finally, the experimental and model predicted log EC50(µmol/L) values

for the testing compounds are listed in table 5.4. Table 5.4 also lists the absolute

difference between the two.

5.4 Summary

This chapter has presented a computer model to predict the Vibrio fischeri toxicity

of ionic liquids. We achieved a prediction accuracy of R2 = 0.9796 on training com-

pounds and of R2 = 0.8047 on testing compounds. We observe clearly the presence

of a outlier in the testing compounds. This compound, marked in table 5.4, has

the maximum prediction error (equal to 1.5367) among the testing compounds. The

reason for behaving this compound (i.e. [C6MPyRR][Cl]) as outlier is that it is the

only compound with pyrrolidium cation (i.e. descriptor c3 in table 5.2 takes value

equal to 1 only for this compound). In simple words, our training data didn’t include
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Figure 5.6: Plots for the Bayesian regularized neural modelling (with intelligence) of
ionic liquid toxicity

such types of compound. Thus, for a fair assessment of prediction performance of

our model, this compound should be excluded from the testing set. After excluding

the outlier, the prediction accuracy of the model on remaining 25 testing compounds

increased to R2 = 0.8838. The testing compounds (i.e. unseen compounds not used

in the training of models) were in number nearly equal to the training compounds.

These results (i.e. a prediction accuracy of R2 = 0.8838 on testing compounds)

are encouraging and verify the effectiveness of our approach when it comes to the

generalization capability of the model.
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Table 5.4: Prediction of toxicity of testing ionic liquids

compound
experimental

log EC50(µmol/L)

predicted

log EC50(µmol/L)
absolute difference

[C2MIM][(2-OPhO)B] 2.96 3.2424 0.2824

[C4MIM][octylOSO3] 1.82 2.5021 0.6821

[C2MIM][C2H5SO4] 4.05 4.0489 0.0011

[C4MMPy][N(CN2)2] 2.38 2.5937 0.2137

[C4MPy][Br] 2.75 2.9845 0.2345

[C1MIM][CH3SO4] 4.76 4.3588 0.4012

[C2MIM][Cl] 4.55 4.2614 0.2886

[C4MIM][Br] 3.07 3.2644 0.1944

[C4MIM][BF4] 3.10 3.5269 0.4269

[C2MIM][(C2H5)2PO4] 4.63 4.2614 0.3686

[C4Py][Cl] 3.40 3.3253 0.0747

[C4MIM][Br] 3.27 3.2644 0.0056

[C4MIM][(CF3)2N] 3.46 3.2644 0.1956

[C4MIM][BF4] 3.55 3.5269 0.0231

[C4MIM][N(CN2)2] 3.67 3.2644 0.4056

[C4MIM][Br] 4.01 3.2644 0.7456

[C6MIM][Br] 1.42 2.2626 0.8426

[C6MIM][Cl] 1.94 2.8812 0.9412

[C6MPy][Br] 2.06 1.3287 0.7313

[C6MIM][Cl] 2.32 2.8812 0.5612

[C6MPyRR][Cl] 2.99 1.4533 1.5367 (outlier)

[C7MIM][BF4] 2.44 2.5112 0.0712

[C8MPy][Br] 0.79 1.0773 0.2873

[C8MIM][Cl] 1.19 1.3471 0.1571

[C8MIM][BF4] 1.41 1.3471 0.0629

[C1OMIM][BF4] -0.18 0.5731 0.7531



Chapter 6

Concluding Remarks

When it comes to the data-driven modelling of environmental behavior of chemicals,

neural/fuzzy techniques have a lot to offer. These techniques are potentially consid-

ered suitable for dealing with the complex and ill-defined problems where classical

modelling approaches either fail or don’t perform up to the acceptable level. Thus

we tried to apply neuro/fuzzy techniques in chemicals’s environmental behavior mod-

elling problems. However, the success of such modelling techniques depends upon

number of factors including choice of descriptors, choice of model structure, and the

robustness of training algorithm. If the uncertainties regarding the made choices is

high (i.e. the made choices are far away from the optimal ones), then a non-robust

model construction algorithm would typically overtrain the model resulting into a

low generalization performance. However, generalization is the key concern of such

studies.

The low generalization capability of the model is probably the most commonly

faced problem by the QSAR research community. In second chapter, we have high-

lighted this issue in the modelling of fathead minnow toxicity and bioconcentration

factor data of chemicals. Our aim in this thesis was to remove the generalization-

capability related bottleneck of the neural/fuzzy techniques in modelling of chemicals’

environmental behavior. In third and fourth chapter of the thesis, we have intro-

duced a methodology to remove this bottleneck. Many examples have been provided

to demonstrate that generalization performance of different neuro/fuzzy modelling

70
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techniques improved using the proposed methodology of incorporating intelligence.

Bayesian regularized neural networks due to their robustness properties perform,

in general, better than any other neuro/fuzzy technique for modelling in presence

of uncertainties. In chapter 4 and 5, we demonstrate that performance of Bayesian

regularized neural networks can be further improved using the proposed methodology.

We feel that this work, due to its basic nature, may be useful in several real-world

modelling problems. Chapter 5 outlines an application of the work in the emerging

field of green chemistry. An interesting feature of our work is that we don’t ask

someone to replace his favourite modelling technique by our technique, however, our

methodology improves the performance of a given modelling technique.

In this thesis, our concern was to address the problem:

How to improve the generalization performance of chemicals’ environmen-

tal behavior predicting models for a given choice of descriptors, model type,

and model structure?

Our future research work is concerned with the development of algorithms for an

automatic selection of descriptors and model structure.
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Appendix A

A Gauss-Newton based Algorithm

Given N input-output data pairs {x(j), y(j)}N−1
j=0 , to compute the parameters

θj = arg min
θ

[
[y(j) − GT (x(j), θ)αj−1]

2

1 + µ‖G(x(j), θ)‖2
+ µ−1

θ ‖θ − θj−1‖2

]

= arg min
θ

‖r(θ)‖2, where r(θ) =




[

[y(j)−GT (x(j),θ)αj−1]2

1+µ‖G(x(j),θ)‖2

]1/2

(
µ−1

θ

)1/2
(θ − θj−1)



 ,

αj = αj−1 +
µG(x(j), θj)

[
y(j) − GT (x(j), θj)αj−1

]

1 + µ‖G(x(j), θj)‖2
,

we use a Gauss-Newton based algorithm taken from [76]. The algorithm consists of

following steps:

1. Choose initial guess about cluster centres θ−1, number of maximum epochs

Emax, α−1 = 0, epoch count EC = 0, and data index j = 0.

2. If EC < Emax,

(a) if j ≤ (N − 1),

i. define r(θ) =




[

[y(j)−GT (x(j),θ)αj−1]2

1+µ‖G(x(j),θ)‖2

]1/2

(
µ−1

θ

)1/2
(θ − θj−1)



 and let s∗(θ) be the unique
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solution of following linear least-squares problem:

s∗(θ) = arg min
s

[‖r(θ) + r′(θ)s‖2],

where r′(θ) is the Jacobian matrix of vector r with respect to θ, de-

termined by the method of finite-differences. The Jacobian r′(θ) is a

full rank matrix, as a result of using regularization.

ii. compute θj = θj−1 + s∗(θj−1).

iii. compute

αj = αj−1 +
µG(x(j), θj)

[
y(j) − GT (x(j), θj)αj−1

]

1 + µ‖G(x(j), θj)‖2
.

iv. j := j + 1 and go to step 2(a).

(b) EC := EC + 1, α−1 := αN−1, θ−1 := θN−1, j = 0, and go to step 2.

A MATLAB (a product of Mathworks, MA, USA) code was developed to implement

the above algorithm. MATLAB is a high-level language and interactive environment

to perform computationally intensive tasks.



Appendix B

List of Abbreviation

BCF Bioconcentration factor

BOD Biological oxygen demand

[BF4] tetrafluoroborate

[BMIM] 1-Butyl-3-methyl-imidazolium

[BMPy] 1-butyl-4-methylpyridinium

BTA bis[(trifluoromethyl)sulfonyl]amid

COD Chemical oxygen demand

[C1MIM][CH3SO4] 1-n-Methyl-3-methyl-imidazolium methyl sulfate

[C2MIM][C2H5SO4] 1-n-Ethyl-3-methyl-imidazolium ethylsulfate

[C2MIM][Cl] 1-n-Ethyl-3-methyl-imidazolium chloride

[C3MIM][BF4] 1-n-Propyl-3-methyl-imidazolium chloride

[C4MIM][PF6] 1-n-Butyl-3-methyl-imidazolium hexafluorophosphate

[C4MIM][BF4] 1-n-Butyl-3-methyl-imidazolium tetrafluoroborate

[C4MIM][Br] 1-n-Butyl-3-methylmidazolium bromide

[C4MIM][Cl] 1-n-Butyl-3-methylimidazolium chloride

[C4MIM][N(CN2)2] 1-n-Butyl-3-methylimidazolium dicynamide

[C4EIM][BF4] 1-n-Butyl-3-ethylimidazolium tetrafluoroborate

[C5MIM][BF4] 1-n-Pentyl-3-methyl-imidazolium tetrafluoroborate

[C6MIM][Br] 1-n-Hexyl-3-methyl-imidazolium bromide

[C6MIM][Cl] 1-n-Hexyl-3-methyl-imidazolium chloride

[C6MMIM][Cl] 1-n-Hexyl-2,3-dimethylimidazolium chloride

[C6MIM][PF6] 1-n-Hexyl-3-methyl-imidazolium hexafluorophosphate

[C6MIM][BF4] 1-n-Hexyl-3-methyl-imidazolium tetrafluoroborate

[C6EIM][BF4] 1-n-Hexyl-3-ethyl-imidazolium tetrafluoroborate

[C7MIM][BF4] 1-n-Heptayl-3-methyl-imidazolium tetrafluoroborate

[C8MIM][Br] 1-n-Octyl-3-methyl-imidazolium bromide

[C8MIM][Cl] 1-n-Octyl-3-methyl-imidazolium chloride
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[C8MIM][PF6] 1-n-Octyl-3-methyl-imidazolium hexafluorophosphate

[C8MIM][BF4] 1-n-Octyl-3-methyl-imidazolium tetrafluoroborate

[C9MIM][BF4] 1-n-Nonecyl-3-methyl-imidazolium tetrafluoroborate

[C10MIM][Cl] 1-n-Decacyl-3-methyl-imidazolium chloride

[C10MIM][BF4] 1-n-Decacyl-3-methyl-imidazolium tetrafluoroborate

[MPy] 3-Methyl pyridine

[C4Py][Br] 1-n-Butyl pyridinium bromide

[C4MPy][Br] 1-n-Butyl-3-methyl pyridinium bromide

[C4MMPy][Br] 1-n-.Butyl-3,5-dimethyl pyridinium bromide

[C4Py][Cl] 1-n-Butyl pyridinium chloride

[C4Py][N(CN2)2] 1-n-Butyl pyridinium dicynamide

[C4MPy][N(CN2)2] 1-n-Butyl-3-methyl pyridinium dicynamide

[C4MMPy][N(CN2)2] 1-n-Butyl-3,5-dimethyl pyridinium dicynamide

[C6MPy][Br] 1-n-Hexyl-3-methyl pyridinium bromide

[C6MPy][Cl] 1-n-Hexyl-3-methyl pyridinium chloride

[C8MPy][Br] 1-n-Octyl-3-methyl pyridinium bromide

[C6MPyRR][Cl] 1-n-Hexyl-1-methyl pyrrolidinium chloride

[C2MIM][(C2H5)2PO4] 1-n-Ethyl-3-methyl-imidazolium diethylphosphate

[C2MIM][C7H7SO3] 1-n-Ethyl-3-methyl-imidazolium tosylate

[C2MIM][(2-OPhO)B] 1-n-Ethyl-3-methyl-imidazolium bis(1,2-benzenediolate)borate

[C4MIM][(CF3)2N] 1-n-Butyl-3-methyl-imidazolium bis(trifluoromethyl)imide

[C4MIM][(CF3SO2)2N] 1-n-Butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide

[C4MIM][octylOSO3] 1-n-Butyl-3-methyl-imidazolium octylsulfate

[C1OMIM][BF4] 1-n-methyl-3-octyl-imidazolium tetrafluoroborate

EC50 Half maximal effective concentration

ECOENG212 1-Ethyl-3-methyl-imidazolium ethylsulfate

ECOENG2122P 1-Ethyl-3-methyl-imidazolium diethylphosphate

e.g for example

[EtSO4] ethylsulfate

EU European Union

GC-MS Gaschromatography Massenspectrometery

IL Ionic liquid

LC50 Half maximum Lethal Concentration

[MIM] 3-Methylimidazolium

PFA Principal Feature Analysis

[PF6] hexafluorophosphate

QSAR quantitative structure-activity relationship

REACH Registration, Evaluation, and Authorization of Chemicals

SDS Sodium n-dodecyl sulfate

SOM Self organizing maps

SPE Solid phase extraction

[TOS] Tosylate



Appendix C

Materials and Methods

C.1 List of Chemicals

chemical CAS-Nr. address

1-n-Butyl-3-methyl-imidazolium tetrafluoroborate 17451-65-6 Solvent innovation GmbH, Köln

1-n-Butyl-4-methyl pyridinium bromide 343952-33-0 Fluka (Sigma-Aldrich Laborchemikalien GmbH)

1-n-Ethyl-3-methyl-imidazolium diethylphosphate not known Solvent innovation GmbH, Köln

1-n-Ethyl-3-methyl-imidazolium tosylate 328090-25-1 Solvent innovation GmbH, Köln

1-n-Ethyl-3-methyl-imidazolium ethylsulfate 342573-75-5 Solvent innovation GmbH, Köln

1-n-Ethyl-3-methyl-imidazolium

bis[(trifluoromethyl)sulfonyl]amid
not known Solvent innovation GmbH, Köln

Sodium n-dodecyl sulfate 8012-56-4 Carl Roth GmbH & Co. Kg, Karlsruhe

C.2 List of Apparatus

type

Microscope Zeiss, sterikroscope stemi 2000-C KL 750, HWS, Germany

Luminometer Bio-Orbit 1250, Labsystems, Turku, Finland

Oximeter WTW Oxi 330
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C.3 Methods

C.3.1 Closed bottle test

The biodegradability of a set of ionic liquids was investigated using standard “closed bottle test”.

The reference substance taken was Sodium n-dodecyl sulfate. The test and reference substances

were prepared in an aerated mineral medium with a concentration of 2 mg/L. The solutions were

inoculated with the secondary effluent (collected form activated sludge treatment plant). After well-

mixing, the solutions were filled into the BOD bottles. For each ionic liquid as well as for blank

and reference, triplicate bottles for each of three series (i.e. of 7 days, 14 days, and 28 days) were

analyzed immediately for dissolved oxygen and closed tightly. The BOD bottles were incubated at

20◦C in dark. These bottles were withdrawn in triplicate for an analysis of the dissolved oxygen over

the period of 7 days (first series), 14 days (second series), and 28 days (final series). The chemical

oxygen demand for each ionic liquid and reference was determined. And the biodegradation was

expressed as the ratio of BOD (mg O2) to COD (mg O2).

C.3.2 Bioluminescence inhibition assay with marine bacteria

Vibrio fischeri

A standard bioluminescence inhibition assay [2] was carried out for a set of ionic liquids. The test

bacteria Vibrio fischeri DSM 7151/ NRRL B-11177 was purchased from DSMZ (Deutsche Sammlung

von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany). The ionic liquids were

diluted to 10000 ppm in sterile 2% NaCl solution. The entire procedure is followed according to the

standard guidelines of test protocol. The 500µL aliquots containing the bacterial suspension were

pre-incubated at 15◦C for 15 minutes before measuring the initial luminescence and before adding

the diluted ionic liquids. The control was also run in parallel. The EC50 (the effective concentration

resulting in the 50% reduction of the light produced by bacteria) values were determined at 15 and

30 minutes thrice for each ionic liquids. The luminescence was measured with the luminometer. The

marine bacteria Vibrio fischeri exhibits bioluminescence as a result of a series of metabolic reaction.

The decrease in the bioluminescence is proportional to the toxicity of the test substance.
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