21,093 research outputs found

    A Robust Class of Linear Recurrence Sequences

    Get PDF
    We introduce a subclass of linear recurrence sequences which we call poly-rational sequences because they are denoted by rational expressions closed under sum and product. We show that this class is robust by giving several characterisations: polynomially ambiguous weighted automata, copyless cost-register automata, rational formal series, and linear recurrence sequences whose eigenvalues are roots of rational numbers

    A Simple Class of Bayesian Nonparametric Autoregression Models

    Get PDF
    We introduce a model for a time series of continuous outcomes, that can be expressed as fully nonparametric regression or density regression on lagged terms. The model is based on a dependent Dirichlet process prior on a family of random probability measures indexed by the lagged covariates. The approach is also extended to sequences of binary responses. We discuss implementation and applications of the models to a sequence of waiting times between eruptions of the Old Faithful Geyser, and to a dataset consisting of sequences of recurrence indicators for tumors in the bladder of several patients.MIUR 2008MK3AFZFONDECYT 1100010NIH/NCI R01CA075981Mathematic

    Computational Mechanics of Molecular Systems

    Get PDF
    New Yor

    Nonlinear time-series analysis revisited

    Full text link
    In 1980 and 1981, two pioneering papers laid the foundation for what became known as nonlinear time-series analysis: the analysis of observed data---typically univariate---via dynamical systems theory. Based on the concept of state-space reconstruction, this set of methods allows us to compute characteristic quantities such as Lyapunov exponents and fractal dimensions, to predict the future course of the time series, and even to reconstruct the equations of motion in some cases. In practice, however, there are a number of issues that restrict the power of this approach: whether the signal accurately and thoroughly samples the dynamics, for instance, and whether it contains noise. Moreover, the numerical algorithms that we use to instantiate these ideas are not perfect; they involve approximations, scale parameters, and finite-precision arithmetic, among other things. Even so, nonlinear time-series analysis has been used to great advantage on thousands of real and synthetic data sets from a wide variety of systems ranging from roulette wheels to lasers to the human heart. Even in cases where the data do not meet the mathematical or algorithmic requirements to assure full topological conjugacy, the results of nonlinear time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems
    corecore