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A framework that connects Computational Mechanics and molecular dynamics has been developed
and described. As the key part of the framework the problem of symbolising molecular trajectory and
the associated interrelation between microscopic phase space variables and macroscopic observables
of the molecular system are considered. Following Shalizi and Moore it is shown that causal states,
the constituent parts of the main construct of Computational Mechanics, ²-machine, define areas of
the phase space that are optimal in the sense of transferring information from the micro-variables to
the macro-observables. We have demonstrated that these areas of the phase space can be divided into
two classes according to their Poincare return times. The first class is characterised by predominantly
short time returns, typical to quasi-periodic trajectories of the dynamical system. This class includes
a limited number of areas that are robust with respect to different total length of the molecular
trajectory. The second class has a chaotic behaviour of the return times distributed exponentially
in accordance with the Poincare theorem. In contrast to the first class, the number of such areas
grows logarithmically with the length of the trajectory. We put forward and numerically illustrate
a hypothesis that explains this behaviour by the presence of temporal non-stationarity in molecular
trajectory.

I. INTRODUCTION

The dynamics of atoms and molecules in liquids can be
described by Newtonian ordinary differential equations
of motion. Therefore, any complex patterns formed by
the molecules due to their mutual interactions have ge-
ometric counterparts in the phase space defined by the
coordinates and velocities of all the particles in the anal-
ysed volume. The problem of describing and predicting
the appearance of such patterns is crucially important
since they ultimately define the functionality of the sys-
tems and fundamental properties of such processes as, for
example, protein folding. There is, however, a fundamen-
tal difficulty in the dynamical picture of molecular sys-
tems related to high-dimensionality of their phase space.
Commonly used approaches from non-linear dynamics,
such as Lyapunov exponents, dimensions, and entropies
fail if the motions occur in the phase space of dimension
higher than ≈10. Therefore, new conceptually different
methodologies have to be developed for high-dimensional
systems.

An alternative description in terms of probability and
statistics can be and has been successfully applied in
many cases to systems with too complicated behaviour.
However, due to the way the probability theory is built,
that is its axiomatic assumption of a priori given distribu-
tion functions, it has limited potential of understanding
the dynamic patterns in systems with complex non-trivial
behaviour.

Computational Mechanics (CM), a promising new con-
cept aimed at building a statistical and at the same time
dynamical description, has been recently proposed. It
combines the well developed theoretical framework of

generalised Markov chains, called ²-machines, with the
concept of short-time predictability characteristic to dy-
namical systems.

Since typical motions of molecules ultimately define
their conformational rearrangements, complete quantita-
tive analysis of the patterns in the trajectory provided by
CM gives new insight into molecular mechanisms. Our
goal, thus, is to find persistent structures in the phase
space formed by the trajectories and interpret typical be-
haviour of such structures in terms of both the statistical
theory and the dynamical systems approach. We analyse
trajectories of molecular dynamics (MD) simulated sys-
tems where the coordinates and momenta of the atoms
can be obtained with any reasonable precision.

One of the most difficult problems in the analysis of
the high-dimensional molecular trajectories is the defini-
tion of the notion of ”structure” or ”cluster” in the phase
space. We address this issue in a broad statistical sense
considering deviations from the uniform phase space fill-
ing by a typical trajectory as clusters. The clusters ap-
pear in the phase space due to the presence of abundant
resonances that arise as a result of nonlinear interactions
between atoms. The borders of resonant areas are known
to be ”sticky” in a sense that any trajectory spends a long
time in their vicinity in contrast to other, non-resonant
areas where the trajectories move randomly filling the
phase space almost uniformly.

It should be noted that there is another reason to ob-
serve areas in the phase space that are non-uniformly
filled with trajectories. It comes from a necessity to anal-
yse low-dimensional projections of the full-dimensional
phase space. Since performing the analysis in the space
of dimension of several thousands is infeasible in any re-
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alistic computer experiment, the focus of the research
shifts naturally to low-dimensional projections. Dense
areas can appear in projections if the motion occupies
a compact volume in the subspace embedded into the
whole-dimensional phase space. The process of project-
ing a high-dimensional object to lower dimensions pro-
duces dense areas in the middle of the analysed volume
and relatively sparse areas adjacent to its borders. Note,
however, that this happens only if non-trivial geometri-
cal structures do exist in the full-dimensional space when
the motion occupies an area with well-defined borders.
Any projection (i.e. linear function) of, say, a volume
filled with Gaussian noise would bring another Gaussian
noise, in other words projecting a randomly filled high-
dimensional spherical object does not induce any areas
of excessive concentration in the subspace. Therefore, we
don’t make any distinction between the non-uniformities
caused by the projection and those that appear due to
stickiness, regarding any deviation from uniformity in the
projection space as manifestation of intrinsic structures
present in the phase space.

In order to quantify the distinction between uniform
and non-uniform filling of the phase space we utilize the
Takens embedding procedure [1] combined with the ap-
proach of surrogate time series, a methodology widely
used for detecting geometric structures in the recon-
structed phase space of nonlinear dynamical systems.
The surrogate time series technique (also known as boot-
strapping statistic) compares a characteristic of the anal-
ysed time series (discriminating statistic) to the same
value, but calculated for a set of computer simulated
data (surrogates). The surrogate data are similar to the
original time series in certain properties (autocorrelation
function, power spectrum, probability distribution func-
tion) but differ in other characteristics of special interest.
In our analysis we focus on the properties of correlation
and uniform phase space filling, keeping other proper-
ties of the data intact. For the discriminating statis-
tic we take the value of Statistical Complexity (SC), a
measure introduced in CM [2] that quantifies clustering
in the statistical sense considering the short time pre-
dictability of the phase space trajectories. We would like
to stress that other statistics, like correlation dimension,
Lyapunov exponents, or Kolmogorov-Sinai entropy tradi-
tionally used in the field of time series analysis are unable
to discriminate between molecular dynamics and surro-
gate time series. For all the above mentioned character-
istics the necessary amount of data grows exponentially
with the dimensionality of the considered projection of
the phase space making the reliable calculation infeasible
in the subspaces of dimension higher then ≈10. On the
other hand, using the complexity based measures [3, 4]
and analysing the probabilistic properties of symbolic se-
quences corresponding to the phase space trajectories is
a promising alternative for detecting structures in the
phase space.

It is also interesting to note that the non-uniform cov-
ering of the phase space by the trajectories leads to

FIG. 1: Illustration of the degeneracy of a macro-
observable projection of the full-dimensional phase space
trajectory. The same sequence of the observable (the
velocity) {vtvt+1vt+2vt+3} is generated by two different
pieces of the phase space trajectory {qtqt+1qt+2qt+3} and
{q′

tq
′
t+1q

′
t+2q

′
t+3}

anomalous transport properties of the trajectories in the
phase space. This issue attracted a lot of attention re-
cently [5] and it has been demonstrated that important
insights into the details of the transport can be achieved
in terms of the Poincare theorem of returns. Using this
approach we show how the analysis of molecular tra-
jectories by SC provides a link from a purely statisti-
cal description with Markov chain-type modelling to the
dynamical systems theory based on Poincare recurrence
analysis.

II. MOLECULAR PHASE SPACE
TRAJECTORY AS A COMPLEX DYNAMICAL

SYSTEM

Molecular trajectory obtained in the simulation exper-
iment is a series of 2N -dimensional phase space points
qi ≡ {xi,pi}, where N is the number of degrees of free-
dom of the system, i.e. the number of atoms multiplied
by three and minus various constrains such as fixed bond
lengths, angles, etc., x are the coordinates and p the
momenta of the atoms. N is of the order of several thou-
sands for realistic MD simulations. Thus, the molecular
trajectory is a very high-dimensional object. The data
points are generated by the system along the trajectory
at fixed time moments (Fig. 1).
In order to analyse huge volumes of data correspond-

ing to the high-dimensional trajectory, low-dimensional
observables (macro-observables) have to be considered.
For example, the velocity of an atom v can be taken
for such an observable time series. So defined v is a
projection of the full-dimensional trajectory onto a low-
dimensional subspace. Because of the discrete nature of
the time sampled trajectory and the finite tolerance of
the measurements of v the analysed data cover a large,
but finite set of possible values.
This leads to the situation that different realisations

of the trajectory in the full-dimensional phase space may
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FIG. 2: Autocorrelation functions C(¿) ≡ 1
T

∑T

t
vt ⋅vt+¿ for

the original velocity of the hydrogen of bulk water (black) and
the signal made of 27 symbols (red, see text for details)

produce the same experimental time series due to the de-
generacy of the observable illustrated in Fig. 1. In other
words, many different phase space points correspond to
the same value of v obtained in the simulation. The
whole phase space Γ is thus partitioned into the areas
such that on each of them the macroscopic observable v
takes a unique value while the full-dimensional points qi

can be different (Fig. 1).

III. THE PROBLEM OF SYMBOLISATION

The values of the observables that we analyse are dis-
crete and take a finite number of values. This means that
the trajectory can be interpreted as a sequence of values
taken from a countable set of numbers or symbols. In the
case of, for example, the typical computer representation
of data as floating point numbers, the amount of equiv-
alent symbolic value is large but limited and defined by
the precision used in the simulation (single, double, etc).
Note, however, that sometimes the high precision and
hence large number of symbols in data representation
is not an essential requirement for further analysis. In
many cases even a very coarse representation of v pro-
duces statistical indicators characterising the dynamics
of the molecular system very close to their true values.
Fig. 2 shows an example of such a characteristic, the
common velocity autocorrelation function calculated for
a signal where the true (double precision) velocity co-
ordinates are replaced (rounded) with only one ternary
digit of vx,vy, and vz, such that {x ≡ −1, if x < −1;x ≡
0, if − 1 ≤ x < 1;x ≡ 1, if x ≥ 1}, where x represents
vx,vy, and vz. The total number of possible values of the
resulting coarse grained velocity vector is 33 = 27, that is
the signal is represented by only 27 symbols. Neverthe-
less, the autocorrelation function calculated from such a
rough approximation of the original signal is very similar
to that calculated from the double precision values of v.
The representation of the dynamics in terms of symbols

from a finite size alphabet is called ”symbolic dynam-
ics” and is the subject of the mathematical field with
the same name [6]. We here show one more time that

this appears to be a very useful framework that allows
to make unexpected conclusions about the phase space
trajectory of the molecular system. The common sense
perception could be that such a few symbol representa-
tion is an oversimplified description of the trajectory that
can provide only very approximate conclusions about the
system. However, somewhat counter intuitive, this is not
the case, especially when the dynamics is analysed, that
is when the sequences of the symbols (words) are consid-
ered, rather than the symbols separately. Moreover, it
can be proven that for a specially chosen partitioning of
the phase space any symbolisation, even the most coarse
grained one, the binary, contains the same information
about the dynamics as the original signal, if infinitely
long sequences of the data points are analysed (see bel-
low).

Thus, the ”default” partitioning of the phase space
provided by the finite precision of the computer repre-
sentation of floating point numbers can be further coarse
grained in order to reduce the number of symbols to just
a few. An obvious question is: how this symbolisation
should be performed and in what respect will the result-
ing sequence of symbols be different from the original
continuous signal? There is a rigorous answer to this
question. A natural choice for the symbolising partition-
ing is the so called generating partition (GP) [7] that
has the property of a one-to-one correspondence between
the continuous trajectory and the generated symbolic se-
quence. That is, for an infinitely long trajectory all infor-
mation is retained after the symbolisation. It has been
proven that such a partition exists for any dynamical
system [8]. It is defined as follows.

Consider a dynamical system xi+1 = f(xi), f : M →
M and a finite collection of disjoint open sets {Bk}Kk=1,
partition elements, such that for their closures M =
∪K
k=1B̄k. Given an initial condition x0, the trajectory

{xi}ni=−n defines a sequence of visited partition elements
{Bxi}ni=−n or {si}ni=−n, where si are symbols from the
alphabet that mark the elements where xi ∈ Bi. For
a generating partition the intersection of all images and
pre-images of these elements is, in the limit n → ∞, a
single point: ∩n

i=−nf
(−i)(Bxi).

This elegant mathematical construct has a very impor-
tant disadvantage when applied to realistic signals. An
algorithm for calculating a GP in a general case is un-
known. Recently methods for finding approximations for
GP are reported. The method from [9] is shown to re-
produce GP for several known low-dimensional systems
and could be designed to treat multi-dimensional data.
Its applications for a high-dimensional systems remains,
however, unknown.
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IV. HOW COMPUTATIONAL MECHANICS
CAN BE USED TO FIND A SUITABLE

SYMBOLISATION

Thus, the best possible partition, the GP, is very dif-
ficult, if possible at all, to find for a general dynamical
signal. Other criteria can be used to find an approxima-
tion of GP or other partition suitable for symbolisation.
For example, a partition can be constructed using a sta-
tistical argument that the properly designed symbolic se-
quence maximises the Shannon entropy, which is indeed
an approach often used in symbolic dynamics. In this
section, we study a different approach [10] that allows to
utilise CM for finding a suitable partition in both the dy-
namical and statistical senses. Specifically, CM allows to
find a partition (²-machine) that is optimal from two sta-
tistical viewpoints: (i) it transmits as much information
as possible from the continuous signal to the symbolic
sequence and (ii) it is optimal for the purpose of statisti-
cal prediction of the signal given all the the information
contained in the past. In the following we analyse three
stages of coarse graining used for symbolising the trajec-
tory and constructing the ²-machine that corresponds to
a specific partition of the phase space of the system.

A. The dynamics makes the partition finer

Suppose an arbitrary initial partition of the phase
space is chosen and consider one of its elements. Dy-
namical trajectories starting from every point of this area
move to new locations at the next time step. The set of
these new points represents the dynamical image of the
partition element generated by the system’s equations of
motion. Similar transformation happens to all the par-
tition elements thus changing the initial partition into a
new one.
More specifically, the evolution of the phase space

points q, sampled at times t, is governed by an operator
T: qt+1 = Tqt. T is a dynamical operator that advances
the phase space points in time according to Hamiltonian
equations of motion. The same transformation can be
considered in the statistical sense, as a sequence of ran-
dom points. Because of the determinism implied by the
Hamilton equations of motion the dynamical points {qt}
form a Markov chain, that is the value of q at the next
time step is completely defined by the current value of
q. Considering an ensemble of such dynamical systems
(that is a collection of all possible realisations of the tra-
jectories of the system), denote a random variable repre-
senting the current microstate as Q, that is a set of all
possible values of the phase space points having proba-
bilities generated by the dynamics T. The probability
distribution of Q is also known as the invariant measure
[11].
Consider now not an arbitrary partitioning of the

phase space, but the one defined by the choice of the
low-dimensional observable taken for the analysis (pro-

FIG. 3: Schematic illustration of the sequences used to define
formula (2). Phase space points {qi} and {q′

i} of two pieces
of the trajectory form Markov sequences. The corresponding
observation sequences {Ai} and {A′

i} are not Markovian since
the same value At leads to different At+1 and A′

t+1 depending
on the previous values At−1 and A′

t−1. However, if both his-
tories {. . . At−2At−1At} and {. . . A′

t−2A
′
t−1At} belong to the

same causal state ²t than the next causal state ²t+1 is defined
without knowing ²t−1, thus making {²} a Markov sequence

jection) and the finite precision of it’s measurement, as
discussed in the previous section. The macroscopically
observed variable A is a function f of the microstate Q.
For example, this could be the instantaneous tempera-
ture 1

Nk

∑
i miv

2
i , where N is the number of atoms, k

is the Boltzmann constant, mi are the atoms’ masses,
and vi are their velocities. As discussed before, the func-
tion f partitions the phase-space Γ into mutually exclu-
sive (a particular phase space point corresponds to only
one value of the macro-observable) and jointly exhaustive
(the union of all the partition elements gives the whole
phase space) sets, on each of which f takes a unique
value. Denote the partition of Γ induced by f as ℱ . The
observed process is equivalent to a phase space trajec-
tory, i.e. At = f(qt). Because of the degeneracy of the
macro-observable described in the previous section, it is
not necessarily Markovian. Fig. 3 gives an illustration
of how the degeneracy of A can lead to a situation when
both current and previous values of A are needed to pre-
dict the value of A at the next time step.
Now, what happens to the partition ℱ when we con-

sider the sequences of At instead of the individual values
of A? Take an observation at time t, At, and its parti-
tion element ℱt of Γ. For a sequence of two consecutive
observations at the current and previous time moments
the corresponding area of the phase space is

ℱt ∩Tℱt−1, (1)

which is a refinement of the partition ℱ . This new area
corresponds to the situation when we consider the value
of the macro- observable At at the current moment and
the value At−1 at the previous moment. In other words,
the area now corresponds to a sequence of two observa-
tions, rather than each observation independently. Note
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also that this new area is not larger than each of the two
areas (partition elements) representing single symbols be-
cause of the intersection operator. When considering the
partition as a whole this means that the partition typi-
cally becomes finer when one considers longer symbolic
sequences. This procedure can be repeated any countable
number of times thus providing the refined partitions for
the symbolic words (histories) of the macro-observable
A. Thus, the sequences generated by the system’s dy-
namics make the initial partition induced by the macro-
observable finer, the longer the sequence {At} (the ”his-
tory”) the finer the partition induced by the sequence.
If the initial partition ℱ is a generating partition, the

finest possible partition corresponds to the infinitely long
trajectory, and it is equivalent to a set of original data
points covering the accessible phase space.
It is appropriate to put here an example that illustrates

the partition refinement process by considering longer
and longer histories. For this purpose we use a well-
documented two-dimensional map called the Standard
map (or sometimes the Taylor-Greene-Chirikov map)
[12]. It is defined as a transformation of the plane to
itself

Pn+1 = Pn +K sin µn

µn+1 = µn + Pn +K sin µn

where P and µ are computed mod 2¼ and K is a positive
parameter that controls different kinds of behaviour that
the system can demonstrate. An example of a chaotic
trajectory in this system at the value of K = 6.908745
is given in Fig. 4, where one can see a large chaotic
area with only two large stability islands symmetrically
located with respect to the origin. Infinite number of
smaller islands exist in the vicinity of the large ones, but
they are not visible at the given picture resolution. Find-
ing the GP even for such a simply looking system as the
Standard map is not a trivial task. Therefore, we applied
a simple uniform partitioning in the variable µ. In other
words, considering one time step histories results in the
partition shown in Fig. 5a. Fig. 5b− d demonstrate the
effect of partition refinement by considering the histories
of increasing length. Here different colours correspond
to different symbolic histories and borders separating the
areas with different colours are the partition elements de-
limiters. It is evident that as the histories become longer
the partition becomes finer and the number of partition
elements grows exponentially with the length of the sym-
bolic words.

B. Computational Mechanics coarsens the
partition

So far we have considered two different stages of defin-
ing the phase space partition used in our numerical ex-
periments. The first one is produced by the choice of
macro-observable and the finite precision of the simu-
lation procedure. This partition can be further coarse
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FIG. 4: The Standard map trajectory in chaotic regime

FIG. 5: The refinement of a partition caused by considering
longer symbolic sequences for the Standard map. a) the orig-
inal three symbol partitioning corresponding to the one time
step history; b0 - d) two to four symbol histories induced
partitioning

grained for simplifying the analysis, down to a few sym-
bols representing the dynamical trajectory. The second
stage of building the partition is the refinement of the one
obtained at the first stage by considering the symbolic se-
quences (words) instead of the individual symbols.
The next step of the analysis is to apply a statistical

description called Computational Mechanics (CM) [2] to
the observed sequences of A. The rigorous definition of
CM can be found in the original works by Crutchfield
and co-authors. Here we briefly reproduce the principal
steps of the approach relevant for the present study.
All past A−

i and future A+
i halves of bi-infinite se-

quences of the macro-observable centred at times i are
considered. Two pasts A−

1 and A−
2 are defined equiv-

alent if the conditional distributions over their futures
P (A+∣A−

1 ) and P (A+∣A−
2 ) are equal. A causal state

²(A−
i ) is a set of all pasts equivalent to A−

i : ²i ≡ ²(A−
i ) =

{¸ : P (A+∣¸) = P (A+∣A−
i )}. At a given moment the

system is at one of the causal states and moves to the
next one with the probability given by the transition
matrix Tij ≡ P (²j ∣²i). The transition matrix deter-
mines the asymptotic causal state probabilities as its
left eigenvector P (²i)T = P (²i), where

∑
i P (²i) = 1.

The collection of the causal states together with the
transition probabilities define an ²-machine. The Sta-
tistical Complexity is the informational measure of the
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size of the ²-machine: C¹ = H[P (²i)], where P are
the probabilities of the causal states and H is the Shan-
non entropy of the distribution of a random variable º,
H[P (º)] ≡ −∑

º P (º) log2 P (º).
Thus, the essence of CM consists of grouping the his-

tories {A−
t } into causal states. In terms of the partitions

of the phase space this process corresponds to joining the
partition elements (areas) of Γ induced by the histories
with the same (in statistical sense) future (see the pre-
vious section). Importantly, the new partition elements
allow to construct a Markovian process from the observed
process At by building the ²-machine on A. Now, by the
²-machine definition, the sequence of the causal states
{²t} constitutes a Markov chain (Fig. 3).

C. The partition generated by Computational
Mechanics is the most informative one

The causal states {²i} are now used for the analysis
of dynamics instead of the symbolic sequences (histo-
ries) defining the phase space partition elements. Shalizi
and Moore [10] show that in this setting the Statistical
Complexity (the characteristic of the causal states {²i})
has a clear physical meaning: it quantifies the amount
of information contained in the new constructed macro-
observable process {²i} about the microstate Q:

C¹ = I[Q; ²], (2)

where I is the mutual information between random vari-
ables X and Y : I[X;Y ] = H[X]−H[X∣Y ]; and H[X∣Y ]
is a conditional entropy of X given Y : H[X∣Y ] =
−∑

P (X)
∑

P (X∣Y ) log2 P (X∣Y ).
Eq. 2 is obtained using the fact that the knowledge of

the microstate specifies the macro-observable precisely:
H[²∣Q] = 0. All histories contained in ²t and the cor-
responding partition of Q uniquely define the next state
²t+1 (the ²-machine definition). Using this property and
the equality H[X] +H[Y ∣X] = H[Y ] +H[X∣Y ] equation
(2) follows:

H[Q∣²] +H[²] = H[²∣Q] +H[Q]

H[Q∣²] + C¹ = H[Q]

C¹ = H[Q]−H[Q∣²]
C¹ = I[Q; ²].

Due to the properties of the ²-machine this partition con-
tains the maximal information that is possible to extract
from the chosen macro-observable and the specified ini-
tial partition of the phase space Γ.

D. Three stages of symbolisation

Summarising, the phase space partition we use in nu-
merical experiments is obtained in three stages. They
are schematically illustrated in Fig. 6.

FIG. 6: Three stages of symbolisation: I - converting the con-
tinuous phase space points qi to symbols using the partition
induced by the macro-observable; II - forming the symbolic
histories from the symbols st ≡ {. . . At−2At−1At}; III - join-
ing the histories into the causal states ²t ≡ {si . . . sj}

I. The observed macro variable induces the initial
(usually very coarse grained) partition of the phase
space defined by the procedures of projection, mea-
surement uncertainty, and symbolisation.

II. The partition elements of this partition are refined
by the dynamics, when we consider words (his-
tories) instead of single symbols (1). Note also
that considering words instead of symbols is similar
to reconstructing the high-dimensional phase space
from the scalar time series by the Takens embed-
ding procedure [1]. In terms of the embedding, the
histories correspond to different points in the phase
space, while the history length l is equal to the em-
bedding dimension.

III. The refined partition elements (histories) are fur-
ther grouped by the process of ²-machine recon-
struction, thus providing the final partition that
is the minimal, unique, and most informative one
(given the initial partition of Γ).

Molecular signals are chaotic. In statistical terms
this means that all two-point correlations quickly (ex-
ponentially) go to zero with time. Let us fix a time
moment ti. Analysing the observable forward in time
we can reach a moment tm+ after which the correla-
tions vanish and we can regard the signal as essen-
tially random. The same behaviour of correlations can
be expected when considering the signal backwards in
time with the boundary of randomness tm− . Thus, the
times tm− and tm+ define the interval beyond which
the sequence {. . . Ai−m− . . . Ai−1AiAi+1 . . . Ai+m+ . . .} is
undistinguishable from a random noise by the correlation
analysis. This implies that beyond these times all the se-
quences are statistically similar. In other words, there is
a subsequence of a minimal length tm = tm+ − tm− that
differs from random noise and, thus, reflects non-random
correlation properties in the system.
An important advantage of using the CM formalism

for analysing symbolic sequences the possibility of find-
ing the interval of substantial multi-point correlations by
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considering the histories of different length. A history
of length l induces a partition ℱ l, and longer histories
induce finer partitions. However, if the ”tails” of the
symbolic histories corresponding to finer partitions are
statistically indistinguishable from the shorter histories
because of the absence of correlations, the causal states
group the corresponding partitions ℱ l back into the same
partition ℱmin that contains all statistical information
and, therefore, is optimal from the future prediction point
of view. This reflects the fact that the ²-machine contains
the complete information that the observable possesses
about the microstate (2).

V. IMPLEMENTATION

A. Molecular Dynamics simulation

In subsequent sections we apply the developed theo-
retical framework to the analysis of dynamics in the en-
semble of interacting water molecules. Molecular Dy-
namics is a technique for numerically solving the New-
ton equations describing the time changes of the atomic
coordinates x and velocities v = ẋ: v̇ = − 1

mF. The
force F is derived from the prescribed interatomic in-
teraction potential V (also called the ”forcefield”): F =
−∇V (xi)∣i=1..N , which is a function of all the coordinates
of the atoms. Commonly used forcefields are empirical
functions that are the results of careful balance between
the sophistication of reproducing realistic interatomic in-
teractions and computational effectiveness. The param-
eters of forcefields are calibrated to reproduce either rig-
orous quantum mechanical calculations or experimental
thermodynamical data.
In this work, bulk water (periodic boundary con-

ditions) consisting of 392 or 878 SPC or SPC-E [13]
molecules was simulated using the GROMACS molecular
dynamics [14] package. The temperature of the systems
was kept constant at 300K using Berendsen [15] or Nose-
Hoover [16] thermostats whose combination with various
coupling constants was investigated. A sufficient equili-
bration was performed before collecting data for analysis.
The velocity of the hydrogen atom of one of the water
molecules was used. At the locations where the velocity
pierces the xy plane the points of a two-dimensional map
were generated and used as the original continuous signal
for analysis.

B. Symbolisation

As described above, the best possible initial partition
for converting the floating point double precision time se-
ries data to a symbolic string can be achieved using the
generating partition. Although it is not possible to find
it exactly, there are methods for computing approxima-
tions to it. GP provides a partition that preserves all

information in the signal. Therefore, the closer approxi-
mation to GP is used the more information is transferred
from the continuous signal to the symbolic sequence.
For an initial approximation to GP, we have chosen

the partition provided by the application of the method
described in [9]. The example of calculations with
this method for the two-dimensional cross-section of our
(tree-dimensional) velocity data using 2, 3, 4, and 5 parti-
tion elements are shown in Fig. 7. For all cases the result-
ing approximations to GP are centrally symmetric (prob-
ably, because of the central symmetry of the data points
distribution). The symmetry of the two-dimensional set
of points can be further illustrated by transforming the
data to the polar coordinates (x, y) → (½, ') and estimat-
ing the probability density w(') for the random variable
'. The histogram corresponding to such w(') distribu-
tion is given in Fig. 8. Almost perfect uniformity of
the distribution function is obvious, thus justifying the
choice of centrally symmetric partitions that we used in
all subsequent calculations.

FIG. 7: The process of converting the continuous atomic ve-
locity signal v into symbolic sequence. On the right the sym-
bolisation with 2, 3, 4, and 5 symbols are shown

C. ²-machine reconstruction: CSSR

At the next step of the analysis we change the descrip-
tion from considering the separate symbols in the sym-
bolic string to the study of histories (symbolic words of fi-
nite length) and building the ²-machine. For this purpose
we use the method developed by Shalizi with co-authors
who also proposed an algorithm of reconstructing the ²-
machine from the given data series [17]. In a general case
CM is formulated using the assumption of infinitely long
pasts and futures. In practice a finite history length l has
to be chosen and this is one of the adjustable parameters
of the CSSR algorithm. The number of possible histories
grows exponentially with the history length. Therefore,
for long histories an exponential increase in the number
of data points is also needed.
The second parameter of the CSSR algorithm is the

significance level ¾ used in comparing the distributions
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FIG. 8: The histogram of the random variable ' illustrating
the uniform symmetric distribution of points in the vz = 0
cross-section plane of the hydrogen velocity trajectory

P (−→s ∣Ã−s i) used for grouping the histories into causal
states by their predictive properies (the Kolmogorov-
Smirnov test is used). Too large ¾ values (too strict
threshold for two distributions to be considered equiv-
alent) lead to artificially too many causal states. This
is equivalent to under-sampling the histories. The same
situation takes place for too long history length since the
number of possible histories is too large and, for mod-
erately long experimental time series, the distributions
P (−→s ∣Ã−s i) become not statistically significant.
Therefore, for obtaining the robust results, it appears

necessary to perform the analysis of the ²-machine as a
function of these two parameters. Too long a history
or too large a ¾ value leads to statistically incorrect re-
sults. As the authors of CSSR recommend, the value
of ¾ should be chosen such that there is a ”plateau” in
the number of causal states as a function of l. If there
are several such values of l then the lowest one has to
be chosen (according to the minimality principle of CM).
This constant value of l is the ”true” value of the history
length for a stable ²-machine architecture, Fig. 9.

D. Surrogate time series

As we already mentioned in the previous chapter the
computation procedure implementing the idea of build-
ing an ²-machine and estimating the SC-value contains
several control parameters that require fine tuning. The
careful selection of the parameters is necessary for the
purpose of good algorithm convergence, as well as in-
dependence of the found SC-value on the details of the
computation process. In addition to the parameters ¾
and l that control, respectively, the robustness of parti-
tioning the symbolic phase space to the causal states and
the symbolic space dimension (in the sense of Takens [1]),
there are also other parameters that should be taken into
account. Such parameters include, for example, the size
of the alphabet used for the symbolisation purpose, or
the parameters specifying the position and orientation of

FIG. 9: The number of causal states in the ²-machines as
a function of the history length l, the tolerance ¾, and the
duration of the time series; left: the surrogate time series,
right: the molecular signal; top: time series duration of 60ns,
middle: 450ns, bottom: 1¹s

the cross-section plane utilized for discretising (decimat-
ing) the initially continuous time series (calculated at the
time increments equal to the numerical integration step).
As a consequence, there is a number of potential

sources for random deviations and biases that appear
in the calculated value of SC and, hence, may produce
a spurious indication of the presence of clustering. A
straightforward way of avoiding wrong conclusions from
biased estimates is a careful error analysis based on the
calculation of corresponding distribution functions for
the estimated values. This approach, however, encoun-
ters serious technical difficulties due to the complexity of
the calculation procedure and multiple possible choices
for the control parameters. We, therefore, accepted a
different, much simpler way of obtaining error estimates,
widely used in the literature devoted to the analysis of
time series. In the works devoted to statistical data
analysis the method is known as ”bootstrap” technique
[18], whereas in the papers discussing nonlinear dynamics
based analysis [19] it is called ”surrogate data” method.
Throughout this paper we employ the latter term as the
name for the artificial time series used for obtaining the
error estimates.
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The idea of the surrogate data approach is briefly de-
scribed in the Introduction and it consists of testing
the molecular time series against a hypothesis that it
is produced by a liner stochastic process like, for ex-
ample, a white noise passed through a band-pass filter
(coloured noise) or an autoregressive moving average pro-
cess (ARMA), etc. [20].

In practice the algorithm implementing the idea of sur-
rogate data includes several steps. First, we choose the
SC as the discriminating statistics, i.e. the measure used
for detecting the clustering in the phase space. Second,
the surrogate data series are produced by using a random
number generator that converts the initially random se-
quence of numbers to a time series with required proper-
ties. The surrogates, thus, preserve some well controlled
statistical characteristics of the analysed data but lack
the property of interest. In the context of the analysis
of deterministic dynamics the surrogates are often cho-
sen to have the power spectrum identical to the original
data series, but, due to the way the artificial data set
is constructed, do not possess any property imposed by
deterministic dynamics, such as, for example, the finite
value of correlation dimension [21] or others [22]. Since
the surrogate time series is characterized by an infinite
value of the correlation dimension it fills the phase space
almost uniformly. At the final stage the discriminating
statistics for the original data is compared to a set of
corresponding values calculated from the surrogate time
series. The detection of significant discrepancy can be
interpreted as an indication of essential differences be-
tween the surrogates and the original time series in the
analysed property of the phase space filling.

In this work we use two types of time series for surro-
gates:

- Phase shuffled surrogate. This is a standard
method of building the surrogate where time series
is obtained via the phase shuffling algorithm [19].
The surrogate data generated with this method
possess identical power spectrum (and, hence, au-
tocorrelation function) to the original time series,
but lack the property of dynamic correlation be-
tween the data points. It is calculated by estimat-
ing the Fourier spectrum of the original data and
assigning random values to all the phases of the
Fourier components. After calculating the inverse
Fourier transform the artificial data series (surro-
gate) has the unchanged amplitude spectrum but
it becomes random, i.e. belonging to the class of
Gaussian linear stochastic processes.

- White noise passed through a low pass filter. Con-
trary to the phase shuffled surrogate, which pre-
serves exactly the shape of the power spectrum and
autocorrelation function of the original data series,
this surrogate is simply a coloured noise at the out-
put of a filter with a flat frequency response func-
tion.
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FIG. 10: Power spectra of the two surrogates: phase-shuffling
algorithm (same shape of the spectrum as that of the original
time series for x-component of the Hydrogen velocity) and
coloured noise of approximately same effective bandwidth.

FIG. 11: Statistical complexity against time for the hydrogen
velocity signal and the surrogate. The curves, from bottom to
top, correspond to the values of the history length l from 2 to
11. The l = 11 curve does not settle on the logarithmic part
within the shown area but seems to follow the same trend.
The thick line is the C¹ values for the phase-shuffled surrogate
signal (l = 9). For all curves the alphabet size K is equal to
3

The power spectra for the two surrogates generated
with the algorithms described above are shown in Fig.
10.

VI. RESULTS

A. ²-machine grows with the length of time series

The calculated values of C¹ against the trajectory
length are shown in Fig. 11 for different history lengths
l. The heavy red curve corresponds to the phase shuffled
surrogate time series.
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FIG. 12: Statistical complexity vs. the length of histories
(dimension of the phase space) for the molecular data (solid
line) and the surrogate (dashed line), data length: 30 ns

The dependence of C¹ on time does not converge, but
first goes through a maximum and then settles on the
log2 t-like curve. The maximum at the small times is due
to the lack of statistics, when the algorithm finds too
many causal states considering almost every history s−

as a unique causal state. The number of causal states
at these times is abnormally high, and each causal state
consists of only a few histories s−. This part of the curve
is, therefore, of little interest for the present analysis and
in the following we focus only on the logarithmic part of
the curves.
While C¹ practically converges at any sufficiently large

time moment with l (for l > 7), Fig. 12, (and has
values significantly higher than those for a correspond-
ing phase shuffled surrogate time series), its logarithmic
dependence on time requires special consideration. It
should be noted that the time intervals discussed here
are very long compared to the correlation time (Fig. 2)
or any other time period where a non-trivial (i.e. non-
Brownian) statistics can be expected to exist.
Since the growth of C¹ has a clear logarithmic charac-

ter we propose to introduce a coefficient (ℎQ) that can
measure the growth rate:

C¹ = a+ ℎQ log2 t (3)

We put forward a conjecture that the coefficient ℎQ

can be used as a robust and universal characteristic of
of molecular trajectories in terms of the Statistical Com-
plexity, since it seems not to depend on the particular nu-
merical model, details of computational procedure, size
of the molecular ensemble, and type of the test atom
(hydrogen or oxygen). Moreover, we attribute the large
values of Statistical Complexity at long times to the de-
terministically chaotic nature of the molecular trajecto-
ries. In order to justify this hypothesis we compare the
plots of C¹ vs time for the molecular trajectory and the
phase-shuffled surrogates that lack the features of deter-
minism characteristic to chaotic motion.
In Fig. 13 we plot the curve of C¹ for a much longer

time interval of 1000 ns. It is evident that the equation
(3) holds even for very long periods of time and the ²-
machine continues to grow in the whole interval of the
analysis. It is also clear from Fig. 13 that the C¹ curves
for the surrogate time series display some growth at large
time values but the differences between the curves cor-
responding to the molecular dynamics and the surrogate

FIG. 13: Statistical complexity vs. the (log of) length of the
analysis interval for the hydrogen velocity time series (top
curve) and four surrogate time series (bottom curves): three
independent realisations of the phase-shuffling algorithm (red,
green, and blue), and single time series of a white noise passed
through a low-pass linear filter (black). The frequency re-
sponse functions of the equivalent filters used in generating
the surrogates are shown in Fig.10

time series are evident. At any given time moment both
the values of Statistical Complexity and its growth rate
are much higher for the molecular trajectory compared
to those of the surrogate time series. The origin of the
growth phenomenon in the values of C¹ for the surrogate
time series, although not yet fully understood, most prob-
ably lies in the deterministic properties of the algorithms
used for the generating surrogates. It has been recently
reported [23] that noise driven linear systems may pro-
duce trajectory patterns in the phase space that resemble
those of chaotic systems. Phase shuffled surrogate time
series is, in fact, white noise passed through a linear filter
with a frequency reponse, identical to the Fourier spec-
trum of the molecular trajectory. Since any filter is a
linear system, the surrogate obtained as the output of
such a filter may possess certain features characteristic
to deterministic dynamics.
The statistical complexity as a function of ¾ and l are

shown in Fig. 9. We have found that the CSSR algo-
rithm converges producing stable ²-machine architectures
for all cases studied (six examples are represented in Fig.
9). The optimal values of the causal states and the cor-
responding history lengths are those that produce large
areas of the same colour on the plots since the larger ones
correspond to more stable size of ²-machine.

B. Analysis of the causal states

The presence of structures in the phase space of dy-
namical systems can be interpreted as the existence of
nonuniformities in the invariant measure [11]. The lat-
ter defines the probabilities of visiting various parts of
the phase space by trajectories or, under the assump-
tion of ergodicity, by a typical trajectory observed for a
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long enough period of time. In Hamiltonian systems the
abundant resonances between natural oscillations of var-
ious frequencies create so-called islands of stability in the
phase space that are known, on the one hand, as strong
sources of non-uniformity in the invariant measure and,
on the other hand, lead to breaking the ergodicity due
to the formation of impermeable and ”sticky” barriers
in their vicinity [5]. The islands typically have a frac-
tal structure and the finer is the scale of sub-islands the
more ”sticky” are their borders for trajectories, i.e. a
typical trajectory, once trapped by such a structure, re-
mains there for a very long time.
A quantitative description of the nonuniformity of the

phase space covering by the trajectories can be achieved
via the Poincare recurrence theory [24]. Consider a small
element ΔΓ of the phase space Γ of a Hamiltonian sys-
tem located around the point x. A trajectory wanders
in the chaotic area visiting the element ΔΓ from time to
time (recurring to it). Denoting the time between succes-
sive recurrences as ¿ the probability distribution function
of recurrence times P (ΔΓ,x, ¿) can be introduced that
depends on the phase volume and the position of the el-
ement ΔΓ, as well as the value of ¿ itself. If the motion
is ergodic the dependence of ¿ on the coordinates x be-
comes inessential and one can introduce the distribution
function

P (¿) = limΔΓ→0P (ΔΓ, ¿)/ΔΓ (4)

For a typical chaotic trajectory the following asymp-
totic relation holds

P (¿) =
1

⟨¿⟩exp(−¿/⟨¿⟩), (5)

where ⟨¿⟩ is the average recurrence time over the distri-
bution P (¿). Eq. (5) can be used, in principle, for dis-
tinguishing areas with chaotic motion from those close to
sticky areas by introducing a partition of the phase space
into non-overlapping volumes and analyzing the distribu-
tions P (¿) for each of them. Note also, that under the
assumption of ergodicity the sizes and shapes of the par-
tition elements do not matter and, therefore, they can be
made arbitrary depending on the details and convenience
of the analysis of a particular problem.
As it has been stated in Section IVA the sym-

bolic words (histories) that we analyse correspond to
the elements of partitioning the phase space into non-
overlapping areas. Further joining the histories into the
causal states produces a more coarse grained partition
that possesses certain Markovian properties and defines
the Statistical Complexity through the distribution func-
tion of their occurrence rates P (²i). To get a further
insight into the link between the Statistical Complexity
and the dynamics we analyse the distribution of recur-
rence times for the set of causal states considering them
as elements of the phase space partitioning. In order to
introduce the recurrence times we looked at the time in-
tervals between the successive appearances of a causal

state in the symbolic time series. For all the analysed
data we first identified the set of causal states and then
plotted the histograms of the recurrence times (periods)
for each of them. This analysis reveals that the causal
states demonstrate a clear separation into two classes
that we will refer to as ”periodic” states (those defined
by short time recurrences) and ”chaotic” states (those
without a well defined characteristic time scale of recur-
rence). ”Periodic” states are characterised by a clearly
developed peak at the value of about 0.1 ps (see Fig.
14b), while the rest of the causal states are characterized
by an exponential distribution of the recurrence times
(Fig. 14e,f).
In order to quantify the difference between the two

classes we introduce a dimensionless parameter G that
quantifies the presence of the peak in the interval of the
recurrences ≤ 1 ps (compared to the interval 1 ps ≤ t ≤
2 ps)

G =
max(ℎ1)−m12

¾12
, (6)

where ℎ1 is the values of the recurrence time histogram
in the time interval t ≤ 1 ps, m12, ¾12 are the median
and the standard deviation values for the histogram in
the interval 1 ps ≤ t ≤ 2 ps. G can be used as a charac-
teristic of each of the causal states. Its large value indi-
cates high probability of the short time recurrences or, in
other words, the quasi-periodic nature of the correspond-
ing causal state. The causal states characterised by a low
value of G have exponential distribution of the return
times and do not have pronounced low-order periodicity.
In Fig. 15 we plot the scatter diagram representing the
apparent clustering of the causal states into two classes
with respect to the parameter G. The horizontal axis ap-
proximates the occurrence rate (or probability P (²i)) of
the causal states, i.e. for each of them we counted the
number of its appearances in the symbolic time series
and estimated the probability P (²i) by dividing it to the
total length of the symbolic series.
Additional illustration of splitting the set of the causal

states into two qualitatively different classes can be pro-
vided by Fourier analysis. For each of the causal states
we generated a binary time series that contained ”1” at
those time moments where the given causal state was
observed and ”0” elsewhere. By calculating the power
spectra for binary time series corresponding to each of
the causal states we obtain an alternative indication of
the difference between the ”periodic” states and the rest
of the set. ”Periodic” states have a comparatively high
level of spectral density in the vicinity of the character-
istic period of ≈ 1 ps, as well as around ≈ 0.03 ps where
the corresponding autocorrelation function reaches its firs
zero value. ”Chaotic” states have ”white noise” type of
the power spectrum with approximately uniform spec-
tral density function, Fig. 14a-c. This finding suggests
that the processes with characteristic time scales of ≈
0.03 ps corresponding to the first zero of the correlation
function as well as ≈ 1 ps corresponding to the peak of
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FIG. 14: Power spectra (a,d) and histograms of recurrence
times (b,c,e,f) for typical causal states belonging to different
types: a ”periodic” state (a-c) and a ”chaotic” state (d-f).
The histograms on (c,f) are zoomed and smoothed fragments
of those shown in (b,e). Spectra in (a,d) are the functions of
inverse frequency

the power spectrum are mainly defined by the ”periodic”
causal states.

Summarizing, the ”periodic” states are always present
in the analysed velocity time series of the hydrogen atom,
whatever is the length of the time series or the location of
the analysis time window on the time axis. The presence
of both the ”periodic” and ”chaotic” states is important
for the formation of the conditional probability distribu-
tion functions defining the causal states. The ”chaotic”
states of the ²-machine represent non-trivial, non-linear,
long-term processes that describe the way the system ex-
plores the phase space. For a molecular trajectory the
number of ”chaotic” states is high indicating a prevalence
of the areas of chaotic motions (chaotic sea) over the pe-
riodic components (resonance islands), a rather typical
picture previously reported in low-dimensional nonlinear
dynamical systems [5].
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FIG. 15: Clustering of the causal states for the hydrogen atom
velocity time series into ”periodic” (diamonds) and ”chaotic”
(triangles) classes. Parameter G is plotted vs. occurrence
rates of causal states

C. Non-stationary model of growing ²-machine

In order to get further insight into the mechanism pro-
viding the growth of the ²-machine with the length of
the time series we consider in some detail the process of
grouping the histories into the causal states performed by
the CSSR algorithm. The SC is defined as the Shannon
entropy of the distribution of the causal states probabil-
ities, hence, the observed increase in its value should be
related to the changes in the number and probabilities
of the corresponding groups of histories (causal states).
Our numerical experiments indicate that the main fac-
tor responsible for the growth is the process of splitting
the causal states, i.e. regrouping the histories within
causal states into pairs of sub-groups. The splitting oc-
curs from time to time with different causal states causing
the overall growth in their number and rearranging the
distribution of associated probabilities. As a result, the
²-machine grows, as well as its complexity measure, the
Statistical Complexity.

The key step in grouping the histories into the causal
states consists of estimating the distributions of con-
ditional probabilities for each history. The estimates
are made by the analysis of the occurrence rates for
the symbol following a given history: P (vi+1∣si), where
si ≡ {vi−l+1 . . .vi−1vi}. Since we have chosen the 3-
symbol alphabet the distribution of the conditional prob-
abilities can be illustrated with two-dimensional scatter
plots of P (0∣si) vs. P (1∣si) (the probability of the third
symbol is defined by the first two). Such two-dimensional
diagrams for the water and surrogate time series are
shown in Fig. 16. It is clear from Fig. 16 that: (i)
the distributions are significantly different for the two
cases and (ii) the former converges extremely slow com-
pared to the latter, even at the scale as long as hundreds
of nanoseconds. This slow convergence causes perpetual
regrouping of the histories belonging to different causal
states, most often resulting in numerous splitting of the
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FIG. 16: Conditional probabilities P (0∣si) versus P (1∣si) for
the analysed signal, where si are all sequences of 9 symbols
from the three symbol alphabet {012}; upper row: molecular
signal, lower row: the surrogate; the time shown on the panels
is the length of the trajectory used to calculate the plot

FIG. 17: The histograms of the standard deviations ¾ of the
dependence Disp(N) in the interval N ∈ [30× 106; 31× 106],
see text; histograms were calculated for all 9-symbol words
occurring in the symbolic sequences of left: a molecular tra-
jectory (thick line) and corresponding surrogate (thin line);
right: the surrogate obtained from the molecular trajectory
(thin line, same as that at the left) and an artificial symbolic
sequence with non-stationary conditional probabilities (thick
line), see text; periodic non-stationarity with the period of
5000 symbols was used

causal states to two or more sub-groups.

In order to analyse the convergence process in con-
ditional probabilities P (vi+1∣si) we studied their depen-
dence on the length N of the symbolic string. For this we
introduced a parameter Disp as the deviation of points
around the straight line approximating the dependence
of P (vi+1∣si) on N at large values of N (the last 3%
of the total simulation interval from 0 to N). The stan-
dard deviations of Disp were plotted as histograms for
the molecular signal and the surrogate, Fig. 17, left.
The curve corresponding to the molecular signal demon-
strates pronounced fluctuations shifted to larger values
of the variance that implies poorer convergence of the
probabilities P (vi+1∣si) for the molecular signal.

To provide an explanation for the appearance of slow
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FIG. 18: The dependence of C¹ vs. N for original time series
(black), and two simulated time series of stationary (blue)
and non-stationary (red) Markov chain models

convergence in the conditional probabilities of symbolic
sub-sequences we have designed a simple model that has
trivial statistical Markov chain type properties, while
demonstrating significant deviations of C¹ from zero and
the growth of the C¹ value with N . The model is a
ternary random sequence with the following properties.
The probabilities of any of the three symbols in the al-
phabet {0,1,2} are equal to each other P (0) = P (1) =
P (2) = 1/3, as well as the probabilities for any sequences
of two symbols P (00) = P (10) = . . .. The conditional
probabilities of the third symbol given a two previous
symbol word are assigned different values and, moreover,
they are made time dependent, i.e. the simulated sym-
bol string becomes non-stationary. The introduction of
non-stationarity appears to be a necessary element in the
model that is capable of producing the symbolic strings
with the desired property (i.e. demonstrating the growth
of the Statistical Complexity with the data volume). We
have found that the introduction of a periodic modula-
tion as non-stationarity in defining the conditional proba-
bilities in three symbol words causes the slow convergence
in the conditional probabilities, produces a shift in the
histograms of the parameter Disp (Fig. 17, right), and
also results in the plot of the the C¹ vs. N very similar
to that of the molecular signal, Fig. 18.

Moreover, the complexity growth rate depends on the
period of the introduced non-statiaonarity, being negli-
gible at short-periodic modulation, and becoming sub-
stantial at the time scales of the order of 100 ps. This is
in sharp contrast to the case of the similar Markov chain
with stationary conditional probabilities that always pro-
duced fast convergence and stationary value of C¹. Thus,
we believe that it is the non-stationarity in the transition
probabilities that produces the growth of C¹ and exhibits
non-trivial behaviour in their distributions P (vi+1∣si).
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VII. CONCLUSIONS

We have analysed the application of Computational
Mechanics to Hamiltonian dynamics of molecular sys-
tems. A conceptually important connection of the causal
states of the ²-machine built on an initially symbolised
trajectory of the system to the areas of phase space that
are optimal in the sense of predicting the trajectory’s
behaviour has been analysed. It has been shown that
the areas defined by the causal states possess unexpected
properties in the dynamical sense. The Poincare returns
statistic for these areas allows to classify them into quasi-
periodic and chaotic types. The ”periodic” ones are ro-

bust with respect to increasing the molecular trajectory
total length, while the number of ”chaotic” ones increases
with the size of the time series. We further suggest a
non-stationary Markov type model that is capable of re-
producing this behaviour. The non-stationarity of tran-
sition probabilities in the Markov chain is a necessary
attribute of the model that appears to be responsible for
the increase in the number of ”chaotic” causal states and,
hence, the growth of the ²-machine.
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