409 research outputs found

    Knowledge discovery techniques for transactional data model

    Get PDF
    In this work we give solutions to two key knowledge discovery problems for the Transactional Data model: Cluster analysis and Itemset mining. By knowledge discovery in context of these two problems, we specifically mean novel and useful ways of extracting clusters and itemsets from transactional data. Transactional Data model is widely used in a variety of applications. In cluster analysis the goal is to find clusters of similar transactions in the data with the collective properties of each cluster being unique. We propose the first clustering algorithm for transactional data which uses the latest model definition. All previously proposed algorithms did not use the important utility information in the data. Our novel technique effectively solves this problem. We also propose two new cluster validation metrics based on the criterion of high utility patterns. When comparing our technique with competing algorithms, we miss much fewer high utility patterns of importance than them. Itemset mining is the problem of searching for repeating patterns of high importance in the data. We show that the current model for itemset mining leads to information loss. It ignores the presence of clusters in the data. We propose a new itemset mining model which incorporates the cluster structure information. This allows the model to make predictions for future itemsets. We show that our model makes accurate predictions successfully, by discovering 30-40% future itemsets in most experiments on two benchmark datasets with negligible inaccuracies. There are no other present itemset prediction models, so accurate prediction is an accomplishment of ours. We provide further theoretical improvements in our model by making it capable of giving predictions for specific future windows by using time series forecasting. We also perform a detailed analysis of various clustering algorithms and study the effect of the Big Data phenomenon on them. This inspired us to further refine our model based on a classification problem design. This addition allows the mining of itemsets based on maximizing a customizable objective function made of different prediction metrics. The final framework design proposed by us is the first of its kind to make itemset predictions by using the cluster structure. It is capable of adapting the predictions to a specific future window and customizes the mining process to any specified prediction criterion. We create an implementation of the framework on a Web analytics data set, and notice that it successfully makes optimal prediction configuration choices with a high accuracy of 0.895

    Maximizing Welfare in Social Networks under a Utility Driven Influence Diffusion Model

    Full text link
    Motivated by applications such as viral marketing, the problem of influence maximization (IM) has been extensively studied in the literature. The goal is to select a small number of users to adopt an item such that it results in a large cascade of adoptions by others. Existing works have three key limitations. (1) They do not account for economic considerations of a user in buying/adopting items. (2) Most studies on multiple items focus on competition, with complementary items receiving limited attention. (3) For the network owner, maximizing social welfare is important to ensure customer loyalty, which is not addressed in prior work in the IM literature. In this paper, we address all three limitations and propose a novel model called UIC that combines utility-driven item adoption with influence propagation over networks. Focusing on the mutually complementary setting, we formulate the problem of social welfare maximization in this novel setting. We show that while the objective function is neither submodular nor supermodular, surprisingly a simple greedy allocation algorithm achieves a factor of (1−1/e−ϵ)(1-1/e-\epsilon) of the optimum expected social welfare. We develop \textsf{bundleGRD}, a scalable version of this approximation algorithm, and demonstrate, with comprehensive experiments on real and synthetic datasets, that it significantly outperforms all baselines.Comment: 33 page

    Towards Name Disambiguation: Relational, Streaming, and Privacy-Preserving Text Data

    Get PDF
    In the real world, our DNA is unique but many people share names. This phenomenon often causes erroneous aggregation of documents of multiple persons who are namesakes of one another. Such mistakes deteriorate the performance of document retrieval, web search, and more seriously, cause improper attribution of credit or blame in digital forensics. To resolve this issue, the name disambiguation task 1 is designed to partition the documents associated with a name reference such that each partition contains documents pertaining to a unique real-life person. Existing algorithms for this task mainly suffer from the following drawbacks. First, the majority of existing solutions substantially rely on feature engineering, such as biographical feature extraction, or construction of auxiliary features from Wikipedia. However, for many scenarios, such features may be costly to obtain or unavailable in privacy sensitive domains. Instead we solve the name disambiguation task in restricted setting by leveraging only the relational data in the form of anonymized graphs. Second, most of the existing works for this task operate in a batch mode, where all records to be disambiguated are initially available to the algorithm. However, more realistic settings require that the name disambiguation task should be performed in an online streaming fashion in order to identify records of new ambiguous entities having no preexisting records. Finally, we investigate the potential disclosure risk of textual features used in name disambiguation and propose several algorithms to tackle the task in a privacy-aware scenario. In summary, in this dissertation, we present a number of novel approaches to address name disambiguation tasks from the above three aspects independently, namely relational, streaming, and privacy preserving textual data

    GENERIC FRAMEWORKS FOR INTERACTIVE PERSONALIZED INTERESTING PATTERN DISCOVERY

    Get PDF
    The traditional frequent pattern mining algorithms generate an exponentially large number of patterns of which a substantial portion are not much significant for many data analysis endeavours. Due to this, the discovery of a small number of interesting patterns from the exponentially large number of frequent patterns according to a particular user\u27s interest is an important task. Existing works on patter

    Enhancing operational performance of AHUs through an advanced fault detection and diagnosis process based on temporal association and decision rules

    Get PDF
    The pervasive monitoring of HVAC systems through Building Energy Management Systems (BEMSs) is enabling the full exploitation of data-driven based methodologies for performing advanced energy management strategies. In this context, the implementation of Automated Fault Detection and Diagnosis (AFDD) based on collected operational data of Air Handling Units (AHUs) proved to be particularly effective to prevent anomalous running modes which can lead to significant energy waste over time and discomfort conditions in the built environment. The present work proposes a novel methodology for performing AFDD, based on both unsupervised and supervised data-driven methods tailored according to the operation of an AHU during transient and non-transient periods. The whole process is developed and tested on a sample of real data gathered from monitoring campaigns on two identical AHUs in the framework of the Research Project ASHRAE RP-1312. During the start-up period of operation, the methodology exploits Temporal Association Rules Mining (TARM) algorithm for an early detection of faults, while during non-transient period a number of classification models are developed for the identification of the deviation from the normal operation. The proposed methodology, conceived for quasi real-time implementation, proved to be capable of robustly and promptly identifying the presence of typical faults in AHUs

    Data Mining Algorithms for Internet Data: from Transport to Application Layer

    Get PDF
    Nowadays we live in a data-driven world. Advances in data generation, collection and storage technology have enabled organizations to gather data sets of massive size. Data mining is a discipline that blends traditional data analysis methods with sophisticated algorithms to handle the challenges posed by these new types of data sets. The Internet is a complex and dynamic system with new protocols and applications that arise at a constant pace. All these characteristics designate the Internet a valuable and challenging data source and application domain for a research activity, both looking at Transport layer, analyzing network tra c flows, and going up to Application layer, focusing on the ever-growing next generation web services: blogs, micro-blogs, on-line social networks, photo sharing services and many other applications (e.g., Twitter, Facebook, Flickr, etc.). In this thesis work we focus on the study, design and development of novel algorithms and frameworks to support large scale data mining activities over huge and heterogeneous data volumes, with a particular focus on Internet data as data source and targeting network tra c classification, on-line social network analysis, recommendation systems and cloud services and Big data

    Classification Using Association Rules

    Get PDF
    This research investigates the use of an unsupervised learning technique, association rules, to make class predictions. The use of association rules to make class predictions is a growing area of focus within data mining research. The research to date has focused predominately on balanced datasets or synthetized imbalanced datasets. There have been concerns raised that the algorithms using association rules to make classifications do not perform well on imbalanced datasets. This research comprehensively evaluates the accuracy of a number of association rule classifiers in predicting home loan sales in an Irish retail banking context. The experiments designed test three associative classifier algorithms CBA, CMAR and SPARCCC against two benchmark algorithms conditional inference trees and random forests on a naturally imbalanced dataset. The experiments implemented and evaluated show that the benchmark tree based algorithms conditional inference trees and random forests outperform the associative classifier models across a range of balanced accuracy measures. This research contributes to the growing body of research in extending association rules to make class prediction
    • …
    corecore