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Abstract 

 

This research investigates the use of an unsupervised learning technique, association 

rules, to make class predictions. The use of association rules to make class predictions 

is a growing area of focus within data mining research. The research to date has 

focused predominately on balanced datasets or synthetized imbalanced datasets. There 

have been concerns raised that the algorithms using association rules to make 

classifications do not perform well on imbalanced datasets.  

 

This research comprehensively evaluates the accuracy of a number of association rule 

classifiers in predicting home loan sales in an Irish retail banking context. The 

experiments designed test three associative classifier algorithms CBA, CMAR and 

SPARCCC against two benchmark algorithms conditional inference trees and random 

forests on a naturally imbalanced dataset.  

 

The experiments implemented and evaluated show that the benchmark tree based 

algorithms conditional inference trees and random forests outperform the associative 

classifier models across a range of balanced accuracy measures. This research 

contributes to the growing body of research in extending association rules to make 

class predictions.  

 

Key words: association rule, associative classifiers, Apriori, predictive analytics, KDD, 

data mining, unsupervised learning  
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1. INTRODUCTION 

 

1.1 Overview of Research Area 

 

Customer expectations of their retail banking experiences are growing. As customers receive 

a greater level of personalised customer experience across many of their daily brand 

interactions from companies such as Starbucks, Netflix, Amazon, and Spotify, they 

increasingly expect this same level of personalised service from retail banks. Therefore, it is 

becoming increasingly important for retail banks to become customer centric and offer 

personalised customer experiences1.  

 

To meet these growing customer expectations, banks are leveraging their data and the 

growing global data footprint to better understand existing customers and new customer 

prospects. Banks are using the vast amounts of data they have available to develop deep 

understanding of their customers and build advanced analytical models to predict an 

individual’s future needs and behaviours. With deep customer understanding and more 

advanced models to predict consumer behaviour banks can interact with customers in a more 

personalised way, improve the accuracy of marketing campaigns and offer personalised 

loyalty programmes to retain customers.  

 

For example, a bank may develop an analytical model that identifies which customers are 

likely to leave the bank and switch to a competitor (Xie, Li, Ngai & Ying, 2008). The bank 

can then use the outputs of this model to offer discounts to high value customers to prevent 

them switching to another bank. Banks also build complex models to predict which product 

or service the customer is likely to require next. These models power tailored 

communications with customers across all of the bank’s channels whether that is marketing, 

in branch or in the contact centres. The objective is to truly understand each individual 

customer and offer a personalised customer experience to retain each customer and grow the 

banking relationship.  

 

                                                           
1 https://www.technative.io/new-banking-study-highlights-expectations-of-todays-customers/ 
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In order to build these analytical models, banks are using advanced statistical analysis and 

machine learning algorithms. The analytics process typically involves collecting and 

aggregating data about customers, transforming the data so it can be used for analytics and 

using that data to build predictive models that determine an individual’s propensity to carry 

out some behaviour. With growing customer expectations and new data regulations, 

additional pressure is being placed on these analytics departments within banks to improve 

the accuracy of these models. Banks are investigating new models and approaches to increase 

the accuracy of their models enabling this personalised experience.  

 

The new data regulation GDPR (“General Data Protection Regulation”), which comes in to 

effect on 25th May 20182, means that customers now have to clearly demonstrate their 

consent and willingness for organisations to collect, store and analyse their data. Customers 

will only do that if they feel they are getting value for handing over their personal data to 

retail banks. In order to convince customers to allow a particular organisation to analyse their 

data customers will need to feel they are getting considerable value in exchange for this data 

processing. If they don’t feel they are getting value then they are unlikely to ‘opt in’ to this 

type of data processing. One way to provide value is to use data to truly understand each 

customer and give each customer a personalised experience with tailored products and 

propositions. If customers believe the organisation is using their data to help them or provide 

personalised offers and service then this may entice customers to provide consent to process 

their data for analytics. This is another area where accurate advanced analytical models play a 

key role.  

 

1.2 Background 

 

Banks are using data mining techniques to predict when a customer is likely to be interested 

in a particular product and then contact or advertise to the customer with a relevant marketing 

message (Kamakura, Wedel, De Rosa, & Mazzon, 2003). To make these predictions for 

individual customers, banks are using supervised learning classification models such as 

decision trees (Quinlan, 1986), logistic regression (McCullagh, 1984), and random forests 

(Breiman, 2001). A typical example is the construction of a model to predict which customers 

                                                           
2 http://ec.europa.eu/justice/data-protection/ 
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are likely to take out a loan for a house purchase in the next twelve months using data such as 

demographics, current and previous product holdings, transactional data and savings patterns. 

 

There may also be an opportunity to use unsupervised learning models to make these 

predictions. Unsupervised learning is a machine learning approach to find patterns and trends 

in data where the input data does not include labelled responses. The most common 

unsupervised learning methods include clustering (Jain, Murty, & Flynn, 1999), anomaly 

detection (Chandola, Banerjee, & Kumar, 2009), and association rules (Agrawal, Imieliński, 

& Swami, 1993).  

 

Association rules are used to identify interesting rules in a dataset. The classic application of 

Association Rule algorithms is the identification of rules within retail store transactions, also 

known as Market Basket Analysis. The general concept is to identify rules, such as a 

customer who buys product A also buys product B. Classification using association rules is 

an extension whereby association rules are used to make class predictions. Classification 

Association Rules (CARs) is an alternative prediction approach to supervised learning 

models to make class predictions. 

 

The motivation behind this research is to test the accuracy of classifications using association 

rules with traditional classification methods. The scope involves testing the predictions made 

by association rules on real-world retail banking sales data. In this research, the focus will be 

on the prediction of loans for home purchase. The research will aim to address the problem as 

to whether association rules can make better predictions for product sales compared to 

traditional classification algorithms. If the research proves successful it will support the 

consideration of association rule learning for classification problems in the future. 

 

1.3 Research Problem 

 

The key research problem of this dissertation is to assess whether association rule algorithms 

can produce statistically better classifications of mortgage sales than alternative classification 

algorithms in an Irish retail banking context. 
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1.4 Research Objectives 

 

The primary goal of this research is to assess the predictive capability of association rule 

learning in predicting mortgage sales in an Irish retail bank.  

 

The three primary objectives of this research are as follows: 

 

Implement the Classification Based on Association Rules (‘CBA’) (Liu, Hsu & Ma, 1998) 

algorithm to predict mortgage sales and compare its performance to the performance of the 

conditional inference trees, Classification Based on Multiple Association Rules (‘CMAR’) 

algorithm, Significant, Positively Associated and Relatively Class Correlated Classification 

(‘SPARCCC’) algorithm and random forests. The results will be evaluated using a 

comprehensive assessment across multiple model performance metrics.  

 

Implement the Classification Based on Multiple Class-Association Rules (‘CMAR’) (Li, 

Han, & Pei, 2001) association rule algorithm to predict mortgage sales and compare its 

performance to the performance of the conditional inference trees, random forests, 

SPARCCC and the CBA algorithm. The results will be evaluated using a comprehensive 

assessment across multiple model performance metrics. 

 

Implement the Significant, Positively Associated and Relatively Class Correlated 

(‘SPARCCC’) (Verhein and Chawla, 2007) association rule algorithm to predict mortgage 

sales and compare its performance to the performance of the conditional inference trees, 

CMAR, random forests and the CBA algorithm. The results will be evaluated using a 

comprehensive assessment across multiple model performance metrics. 

 

These objectives will be achieved by the completion of the following steps: 

 

• Researching the relevant state of the art literature and industry best practices for 

association rule learning and classification using association rules. 

 

• Acquire, prepare and transform customer and sales data for analysis. 
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• Generate an Analytics Base Table (‘ABT’) for model development and testing. 

 

• Design experiments to test the three hypotheses. 

 

• Train benchmark prediction models to compare and evaluate the associative classifier 

models.  

 

• Design and build the classification using association rule models. 

 

• Critically evaluate the results from the association rule classification models and 

compare the results with the benchmark classification models to evaluate if 

classification using association rules should be considered when building predictive 

models in retail banking. 

 

• Identify areas for future research to be undertaken in this area.   

 

1.5 Research Methodologies 

 

The research method that will be employed in this dissertation is an empirical evaluation of 

classification using association rules. This research will compare the performance of 

algorithms using association rules to make class predictions to a number of benchmark 

classification approaches. For project direction and idea generation, the research will review 

the state-of-the-art experiments completed in the field of classification using association 

rules.  

 

To perform the experiment numerous disparate datasets will be acquired, cleansed, 

transformed and integrated together to develop an ABT. The datasets will include, socio-

demographic data (age, sex, location), transactional spend (debit, credit, credit card, direct 

debits) and current and previous product holdings. This will be supplemented with certain 

semi-structured web behavioural feature and unstructured textual features to complete the 

ABT. The ABT will form the basis for the development of numerous prediction models.  
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As part of the experiment, benchmark prediction models will be trained using traditional 

classification models. Prediction models will also be built using association rules (CBA, 

CMAR and SPARCCC). The prediction models using association rules will be compared and 

assessed against the benchmark classification models. Should the predictions from 

association rules perform better than the benchmark classification model this research will 

provide evidence that association rules should be considered for future classification 

problems.  

 

1.6 Scope and Limitations 

 

The scope of this project is to implement and evaluate three classification models using 

association rules, CBA, CMAR and SPARCCC on real-world Irish retail banking data. The 

classification results of these three models will be assessed against two benchmark 

classification models to provide evidence as to whether associated rules should be considered 

in classification problems in the future.  

 

The data to be included in this project will be retrieved from Bank of Ireland (‘The Bank’) 

CRM databases and product sales databases. These multiple datasets will be acquired, 

cleansed and aggregated to build the ABT for the experiments. 

 

To assess the capability of association rules to make accurate classification predictions this 

research will also include the development of a number of benchmark classification 

algorithms using traditional classification models such as decision trees and random forests. 

If the performance of the association rules models is better than the traditional classification 

models then CBA, CMAR and SPARCCC should be considered for inclusion in future 

customer behaviour prediction problems.  

 

The real-world dataset for use in these experiments is a naturally imbalanced dataset. This 

research is limited to providing analysis and results on imbalanced data. This research will 

not provide a comparison of the performance of association rule classifiers on real-world 

balanced datasets. This is a potential area for future research.  
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1.7 Document Outline 

 

The remaining chapters of this thesis are organised as follows: 

 

• Chapter 2 documents and evaluates the current state of the art in the field of 

association rules, the use of association rules for classification, and the general field 

of data mining which includes predictive modelling, performance measurement and 

handling imbalanced datasets. Techniques and methods for feature transformation are 

also discussed here. 

 

• Chapter 3 presents the design and research methodology for the project. This chapter 

explains the data used for the experiment and the robust experiment designed to test 

the accuracy of classifications using association rules and compare the results against 

benchmark data mining models. The models being employed will be explained here 

together with the approach to measure the results of the experiments.  

 

• Chapter 4 presents the implementation of the experiments carried out as part of this 

research. In this chapter, the experiment results will be evaluated and critically 

assessed. Conclusions and observations will be made where it is possible to do so. 

 

• Chapter 5 presents the results of the experiment in the context of the wider research in 

the field of classification using association rules. This chapter presents where this 

research confirms or challenges previous research in this field or presents new 

evidence. 

 

• Chapter 6 concludes the paper by presenting the contributions made to the problem of 

classification using association rules. It concludes by discussing limitations to the 

research, areas for future research that could be considered and some alternative 

experiments worth implementing. 
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2 LITERATURE REVIEW AND RELATED WORK 

 

2.1 Introduction 

 

Chapter 2 reviews the research literature in the field of knowledge discovery and data mining 

in particular association rule learning a form of unsupervised learning and classification using 

association rules. This Chapter analyses and critiques the state of the art algorithms from the 

existing body of research in extending association rule learning algorithms to make class 

predictions. The purpose of this research and the experiments outlined below in Chapter 3 is 

to extend the existing body of research in this area. Chapter 2 is divided into seven further 

sections.  

 

In Section 2.2 the state of the art frameworks for knowledge discovery in databases and data 

mining are presented and critiqued. Within the field of data mining, there are three main 

forms of algorithmic learning, supervised, unsupervised and reinforcement learning. This 

research is focused on association rule learning algorithms which is a form of unsupervised 

learning.  

 

Section 2.3 discusses the background to association rule learning, prior use cases and outlines 

some of the complexities of this data mining approach. The state of the art research on 

association rule algorithms is presented and the advantages and disadvantages of each 

algorithm are identified and discussed. These algorithms are the foundational layer for 

classification using association rules. These algorithms identify high quality rules which are 

then used to make class predictions in the associative classifier models presented in Sections 

2.4 and 2.5.  

 

Section 2.4 of the literature review outlines the process for extending the association rule 

algorithms presented in Section 2.3 to make class predictions. The key steps to adapt 

association rules algorithms to make class predictions are discussed. The state of the art 

models generally use three steps to extend association rule algorithms to make class 

predictions, generating interesting rules using an association rule learning algorithm, pruning 

the rules and using the rules to make classifications. The seminal algorithms CBA and 

CMAR are contrasted across these three major steps.  
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Section 2.5 outlines the impact of imbalanced datasets on classification using association 

rules. Real-world datasets are often imbalanced where the target being predicted is dominated 

by one class. This is often the case in retail banking product prediction cases similar to this 

research. In Verhein and Chawla (2007), the authors state that algorithms such as CBA and 

CMAR built under the support-confidence framework do not perform well on imbalanced 

datasets. Approaches to dealing with imbalanced datasets are discussed here as well as the 

SPARCCC classifier model which was built particularly to handle this imbalanced dataset 

problem. This section also describes in detail the existing research on handling imbalanced 

datasets including over sampling and undersampling.  

 

Section 2.6 presents the research on certain data transformation techniques such as data 

discretisation that are required for associative classifiers. Various unsupervised and 

supervised data discretisation techniques to convert continuous attributes into discrete 

attributes are reviewed and evaluated.  

 

Given the importance of testing and validation of the models, research is presented in Section 

2.7 on the techniques for model validation to avoid overfitting and underfitting. Methods for 

model validation such as cross validation are presented and evaluated.  

 

Section 2.8 of the review outlines the metrics that will be applied in this research to compare 

the predictive performance of one model to another. Where the underlying dataset is 

imbalanced the traditional accuracy measure may need to be avoided as it can be biased 

towards the majority class. More balanced metrics for imbalanced datasets such as F1-score, 

balanced accuracy and AUC are presented.  

 

2.2 Knowledge Discovery in Databases (KDD) and Data Mining 

 

KDD is the nontrivial process of identifying valid, novel, potentially useful, and ultimately 

understandable patterns in data (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). The aim of the 

KDD process is to garner insights from large datasets. Figure 2.1 provides an overview of the 

steps involved in gathering information and knowledge from sources of data (Fayyad et al., 

1996). The KDD process consists of several stages, selection, pre-processing, transformation, 
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data mining and interpretation/evaluation. Association rule mining is one data mining 

application to extract patterns in data.  

 

 

 

Figure 2.1: Overview of the KDD Process 

(Source: Fayad et al., 1996) 

 

Data Mining forms one of the steps in the KDD process. The goal of the data mining step is 

to identify patterns which can then be interpreted and allow for more informed decisions to 

be taken. The authors state that “Data mining is a step in the KDD process that consists of 

applying data analysis and discovery algorithms that, under acceptable computational 

efficiency limitations, produce a particular enumeration of patterns (or models) over the 

data”. 

 

There are several frameworks that outline a process to deliver a successful data mining 

project summarised in table 2.1. The two most well-known frameworks are CRISP-DM and 

SEMMA. The Cross Industry Process for Data Mining or CRISP-DM is a commonly used 

process to complete a data mining project. The CRISP-DM (Shearer, 2000) process presents 

six phases of the data mining process, business understanding, data understanding, data 

preparation, modelling, evaluation and deployment. The arrows between different process 
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steps in Figure 2.2 highlight the iterative nature of a data mining project where insights and 

results from one step can inform previous or future steps in the process.  

 

 

 

Figure 2.2: CRISP-DM Data Mining Process Model 

(Source: Shearer, 2000) 

 

The SEMMA process consisting of sample, explore, modify, model and assess is a list of 

sequential steps developed by the SAS Institute. It is often noted that the SEMMA process 

lacks business focus (Azevedo & Santos, 2008) in its process, unlike the CRISP-DM process 

which includes the business understanding phase as the first phase. Although gathering the 

domain and problem knowledge is not specifically identified as a phase in SEMMA, it is 

argued that it is not feasible to start a project without this understanding and therefore it is 

assumed that this forms part of the sample phase in SEMMA. Azevedo & Santos (2008, p. 5) 

state “we can integrate the development of an understanding of the application domain, the 

relevant prior knowledge and the goals of the end-user, on the Sample stage of SEMMA, 

because the data cannot be sampled unless there exists a true understanding of all the 

presented aspects”. Table 2.1 below neatly summarises the comparison of the three 

methodologies discussed above. 
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KDD SEMMA CRISP-DM 

Pre-KDD --------- Business Understanding 

Selection Sample 

Data Understanding Pre-processing Explore 

Transformation Modify Data preparation 

Data mining Model Modelling 

Interpretation/Evaluation Assessment Evaluation 

Post KDD --------- Deployment 

 

Table 2.1: Comparison of KDD, SEMMA and CRISP-DM 

 

Within the Data Mining step of the knowledge discovery process, there are three primary 

forms of learning algorithms namely supervised, unsupervised and reinforcement learning 

algorithms.  

 

In supervised learning, the data provided to the model has known class labels which are the 

corresponding correct outcomes. For supervised learning tasks, the data is usually represented 

in a table similar to Table 2.2. Supervised learning algorithms create a function that models 

the data using historic data instances and the function is then applied to predict the outcome 

of previously unseen data. The function created on historic data is used to score new 

previously unseen data instances. Real-world examples of supervised learning include spam 

detection (Androutsopoulos, Koutsias, Chandrinos, Paliouras, & Spyropoulos, 2000), default 

prediction models in financial services (Atiya, 2001), cancer prediction in health services 

(Shipp, Ross, Tamayo, Weng, Kutok, Aguiar, & Ray, 2002) and voice recognition (Hinton, 

Deng, Yu, Dahl, Mohamed, Jaitly, & Kingsbury, 2012). The data mining algorithms used to 

perform supervised learning tasks include logistic regression (McCullagh, 1984), decision 

trees (Quinlan, 1986), random forests (Breiman, 2001), support vector machines (Cortes & 

Vapnik, 1995) and neural networks. 
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Standard Data Format 

Instance Feature 1 Feature 2 … Feature n Class 

1 XXX X     Sale 

2 XXX X     No Sale 

3 XXX X     Sale 

…         … 

 

Table 2.2: Sample Dataset for Supervised Learning 

 

Another form of data mining is reinforcement learning (Barto & Sutton, 1997). 

Reinforcement learning is learning what to do and mapping situations to necessary actions. In 

reinforcement learning, the learner is not told what to do but instead must learn what action 

yields the maximum reward. An example of reinforcement learning is teaching an agent how 

to play computer games such as Super Mario or Pac Man. An example of a reinforcement 

learning algorithm is Q-learning (Watkins, 1992). In Q-learning, the goal is to reach the state 

with the highest reward, so that if the learner arrives at the goal, it will remain there 

indefinitely. In reinforcement learning this type of goal is called an absorbing goal. 

 

Unsupervised learning is applied where data instances are unlabelled. The dataset is typically 

similar to Table 2.2 above, however, the class label for prediction is not available. By 

applying these unsupervised algorithms, researchers hope to discover unknown, but useful, 

classes of items (Jain et al., 1999). Some of the most well researched unsupervised learning 

algorithms include clustering, anomaly detection and association rule learning.  

 

Considerable research has been carried out on supervised learning techniques to predict 

classes including models such as decision trees and neural network approaches. More recent 

studies (Liu et al., 1998; Li et al., 2001) propose the use of unsupervised association rules for 

classification purposes by using a set of high-quality association rules to make the class 

predictions.  
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2.3 Association Rule Learning 

 

Association rule learning, a form of dependency modelling3, examines the dataset for 

relationships between variables or items. The classical application of Association Rule 

algorithms is within the context of retail store shopping transactions and the items within 

those transactions (Agrawal et al., 1993). The analysis of association rules in retail store 

databases is more commonly known as Market Basket Analysis. The general concept of 

association rule learning is to identify rules such as a customer who buys product A also buys 

product B with an identifiable confidence level. Another area where association rules have 

been employed is in medical research to identify high-risk patients (Obenshain, 2004) and the 

early identification of infection (Brossette, Sprague, Hardin, Waites, Jones, & Moser, 1998). 

 

When applying association rule algorithms, the objective is completeness, the algorithm is 

required to find all interesting rules in the dataset. The difficulty with association rule mining 

is the size and complexity of the problem. The number of possible rules in the dataset 

increases exponentially with the number of items. The algorithms developed for association 

rule mining attempt to reduce this level of complexity and provide fast results from the 

models developed. 

 

The idea of applying Association Rule Mining to Market Basket Analysis was introduced by 

(Agrawal et al., 1993). Formally, the problem of association rule mining is defined as: Let  

𝐼 = {𝑖1, 𝑖2, … 𝑖𝑛} be a set of n distinct literals called items. Let 𝐷 = {𝑡1, 𝑡2, … 𝑡𝑚} be a set of 

transactions in the database. Each transaction T is unique and contains a number of items 

from I.  

 

An association rule is a conditional implication among itemsets, 𝑋 => 𝑌 where X, Y are 

items. In order to identify interesting rules in the dataset, there are two key metrics in 

measuring association rule mining results, the support and the confidence of the rule.  

 

The support supp(X) is defined as the proportion of transactions in the dataset which contain 

the itemset X and reflects its statistical significance. In simple terms, the number of 

transactions which contain X in the transaction is divided by the total number of transactions.  

                                                           
3 http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/2_tasks.html 



15 
 

The confidence of any rules identified is measured as the percentage of transactions 

containing Y which also contain X, divided by the number of transactions which contain X 

within the whole dataset. This identifies how often the identified combination occurs 

together. Confidence is the measure to monitor the individual strength of the association rules 

identified. 

 

The goal of association rule mining is to find all association rules which exceed some user-

defined minimum levels for both support and confidence. 

 

To identify the association rules within a dataset using an association rule algorithm there are 

typically two steps.  

 

1. The first step is to identify all combinations of itemsets that meet the user identified 

minimum support (minsupp) thresholds set. These itemsets are said to be large or 

frequent itemsets and those that do not meet the support level are said to be small or 

infrequent itemsets. 

 

2. The second step is to measure the confidence of each rule and compare against the 

minimum confidence level chosen (minconf). 

 

Once the rules that meet the minimum support threshold are identified the second step is 

rather straightforward (Agrawal et al., 1993). The algorithms for association rule learning 

focus predominately on the first sub-problem above and try to reduce the computationally 

expensive task of identifying all rules which are above the user-defined support level.   

 

As the number of items increases, there is an exponentially growing number of itemsets 

which need to be assessed. For example, if |I| = m, the number of possible distinct itemsets is 

2𝑚, which forms a lattice of subsets over I. Typically, only a very small number of the 

itemsets in this exponentially large subset will meet the minimum support levels set. Figure 

2.3 (Hipp, Güntzer, & Nakhaeizadeh, 2000) provides an illustration of the itemsets that need 

to be assessed with 4 items. 
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Figure 2.3: Lattice for I = {1,2,3,4} 

(Source: Hipp et al., 2000) 

 

The main problem in association rule mining is identifying itemsets which meet the user- 

defined minimum support level. When using these algorithms in practice with a large number 

of items, assessing each itemset is not possible as the size of the search space is too large.  

 

To reduce the size of the search space the algorithms rely on the downward closure property 

(Agrawal & Srikant, 1994) which prevents the algorithm from counting itemsets which will 

not be frequent at the end. Employing this property significantly reduces the number of 

itemsets to be assessed.  

 

There are four main types of association rule algorithms, each of which employs a different 

strategy for identifying itemsets that meet the minimum support level defined. The variances 

between the models are whether the algorithm employs breath first search or depth-first 

search and secondly whether the algorithm uses candidate generation or set intersecting to 

determine the support values of candidates. Within set intersections the algorithms use a 

tidlist. A TID is a unique transaction identifier for all transactions in the databases. For each 

item in I the relevant tidlist is a list of all transaction ids for transactions which contain the 

item. The use of tidlists is applied in the Partition and EClat algorithms. 
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2.3.1 AIS Algorithm 

 

In Agrawal et al. (1993), the authors first introduced the idea of mining large datasets for 

association rules. The authors presented the AIS algorithm which generated new itemsets by 

extending out large itemsets found in the previous database pass with other items in the 

transactions, a step known as candidate generation. This resulted in a large number of 

itemsets being counted which would ultimately turn out not to meet the minimum support 

levels set. Houtsma and Swami (1995) subsequently presented an algorithm called SETM 

which introduced the idea of trying to solve the association rule problem using a relational 

database.  

 

2.3.2 Apriori Algorithm 

 

Agrawal et al. (1994), presented the Apriori and AprioriTID algorithms. The Apriori 

Algorithm uses a breath-first search and builds on previous algorithms through the 

application of the downward closure property to reduce the number of itemsets which need to 

be counted and therefore run more efficiently. In the paper the authors present the following 

lemma, “The basic institution is that any subset of a largest itemset must be large. Therefore, 

the candidate itemsets having k items can be generated by joining large itemsets having k – 1 

items, and deleting those that contain any subset that is not large. This procedure results in 

the generation of a much smaller number of candidate itemsets” (Agrawal et al., 1994, p.4).  

 

For example, if it is found the itemset {1,2,3} is small, then none of the itemsets which are 

extensions of {1,2,3} such as {1,2,3,4} or {1,2,3,5,7} need to be tested for minimum support. 

In practice, the Apriori algorithm prunes particular sets as it makes passes over the database 

and does not count any itemset in the next pass where a subset of the itemset did not meet the 

support level required in a previous pass. One of the criticisms of the Apriori algorithm is that 

the algorithm requires multiple passes over the database which can be computationally 

expensive. 

 

The AprioriTid (Agrawal et al., 1994) aims to address the computationally expensive nature 

of the Apriori algorithm. AprioriTid encodes all the large itemsets in a transaction after the 

first pass to prevent having to pass over the database itself in subsequent passes. In 

subsequent passes, the level of transactions can be much smaller than the database, however, 
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for initial passes, the encoding of the transactions may be larger than the actual database. To 

overcome this issue, the authors propose a hybrid of Apriori and AprioriTid named Apriori 

Hybrid, which uses Apriori for earlier passes and AprioriTid for later passes.  

 

The authors compared the performance of the two new algorithms with the previous 

algorithms AIS and SETM. The results showed that the performance gap, in favour of the 

two new algorithms, increased as the size of the problem increased, ranging from a factor of 

three for small problems to more than an order of magnitude for large problems. 

 

The CBA algorithm for performing classification using association rules extends the Apriori 

algorithm to make class predictions.   

 

2.3.3 Partition Algorithm 

 

Savasere, Omiecinski, and Navathe (1995) present an alternative method for association rule 

mining known as the partition algorithm. The objective of the partition algorithm is to reduce 

the number of required passes over the database to identify large itemsets. Reducing the 

number of passes the algorithm needs to make over the database reduces the run time and 

reduces the impact on the underlying hardware system (Savasere et al., 1995). 

 

The partition algorithm requires only two passes over the database. In the first pass of the 

database, the algorithm splits the database into a number of non-overlapping smaller 

partitions and then identifies all large itemsets within each of the smaller sets. The model 

ensures that the partition sizes are chosen to ensure there are no difficulties in relation to the 

main memory. In the second pass, these large itemsets are joined together, their actual count 

and support is calculated and those that meet the target support level are identified. The 

second step ensures that the itemsets which are found to be large in each partition i.e. locally 

supported are also supported globally on the full database. 

 

Similar to the Apriori Algorithm the Partition Algorithm employs the downward closure 

property and prunes itemsets which are found not to be large from being considered for 

counting support.  
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In testing the model against previous algorithms, the authors used the same synthetic data as 

in Agrawal et al. (1994). The author’s tests showed that the Partition Model outperformed the 

Apriori model by up to a factor of seven while also reducing the levels of CPU usage and I/O. 

 

2.3.4 Frequent Pattern (FP) Growth Algorithm 

 

Han, Pei, and Yin (2000) developed a new approach to identifying association rules moving 

away from an Apriori-like approach. Apriori algorithms use a generate and test approach 

which involves generating itemsets and then testing if they are frequent. Identifying frequent 

itemsets is the costliest element of Apriori-like algorithms. The authors note that applying the 

downward closure property (Agrawal et al., 1994) achieves good performance gain on 

previous algorithms but is still very costly in terms of performance in situations where there 

are a large number of frequent itemsets or the minimum support thresholds are low.  

 

The FP Growth model proposes an alternative approach to identifying frequent itemsets 

which does not rely on candidate generation. The FP Growth model works in two steps: 

 

1. The model converts the transactions in the database into a more compact data 

structure, a Frequent Pattern Tree (FP Tree) which is built using two passes of the 

database. 

 

2. In the second step, the model then uses the FP tree constructed rather than the 

database to find frequent patterns. 

 

The FP Tree is constructed using two passes over the database; in the first pass the support 

for each item in the database is calculated and infrequent items are pruned. Frequent items are 

sorted in a fixed order to ensure efficiency. Then in the second pass the FP tree is constructed 

and all transactions are mapped to a path on the tree and the counting is completed. As certain 

transactions may have items in common their paths may overlap, this is taken into account 

when building the FP Tree and therefore reduces the size of the data structure. Figure 2.4 

(Tan, 2006) below outlines the process of creating an FP-tree for 10 transactions (TIDs). 

Where subsequent transactions follow similar paths the nodes of the tree will increase the 

count by 1.  
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Figure 2.4: FP Tree for 10 Transactions Dataset 

(Source: Tan, P. N., 2006) 

 

Once the tree is created to identify frequent patterns “the search technique employed in 

mining is a partitioning-based, divide and conquer method rather than an Apriori-like bottom 

up generation of frequent itemset combinations” (Han et al., 2000, p.2).  

 

In order to identify the frequent patterns, the authors create prefix path sub-trees for each item 

set. Each prefix path sub-tree is then processed recursively to extract the frequent itemsets. 

Based on the prefix path the model creates conditional FP Trees for each itemset. 

 

The authors test the FP growth model against the candidate generation models and find that 

the model is about an order of magnitude faster than Apriori.  

 

The CMAR algorithm for classification using association rules is an extension of the FP-

growth algorithm for association rule learning.  
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2.3.5 Equivalent Class Transformation Algorithm 

 

Zaki, Parthasarathy, Ogihara and Li (1997) present four new algorithms which only require 

one pass over the database. The algorithms presented by the authors differ to Apriori-like 

algorithms in that they traverse the prefix tree in depth-first order compared to breath-first 

search in the Apriori algorithm. The most important algorithm presented, EClat, relies on tid-

lists as described above. Each transaction has a transaction id or tid, a tid-list is a list of all the 

transactions which contain a particular item. The Eclat model determines the support of any 

k-itemset by intersecting tid-lists of two of its (K-1) subsets. The authors state this as ‘We 

partition Lk into equivalence classes based on their common K-1 length prefix, given as [a] = 

[b[k]|a[1:k-1] = b[1:k-1]}’. 

 

The authors propose that a vertical format for storing the transactional data is more applicable 

to association rule mining than a horizontal format. Under this method, the model only needs 

to make one pass of the database. Both Apriori and FP Growth use horizontal data format 

which starts with the transaction id and the itemsets within the transaction. The vertical 

format starts with the itemset and lists all transactions which contain that itemset. The authors 

state that a “vertical format seems more appropriate for association mining since the support 

of a candidate k-itemset can be computed by simple tid-list intersections” (Zaki et al., 1997, 

p.285). Figure 2.5 shows an example of a tid-list intersection.  

 

 

 

Figure 2.5: Example of tid-list intersection 

 

The authors compare the new algorithms presented against Apriori and Partition (with 10 

partitions). The authors state that EClat outperforms Apriori by a factor of 10 and Partition by 

a factor of 5. The authors also state the new models scale well as the transactions sizes 
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increase. The advantage of this algorithm is that the depth-first search can result in much 

faster results, however, the intermediate tid-lists may become too large for memory. 

 

2.3.6 Conclusion Association Rule Learning Algorithms 

 

Zheng, Kohavi and Mason (2001) performed the first evaluation and comparison of 

association rule learning algorithms on real-world datasets. In this experiment, the authors 

evaluated five of the state of the art association rule algorithms including Apriori and FP-

growth. The authors evaluated performance on three real-world datasets and one artificial 

dataset using a range of minimum support values to test performance and scalability. For the 

artificial dataset, every algorithm outperformed Apriori by a significant margin for minimum 

support values less than 0.10%. FP-growth was one order of magnitude faster than Apriori 

when the minimum support was set to 0.02%.  This evidence is consistent with the results of 

other previous experiments (Han & Pei, 2000; Zaki, 2000). The performance improvement of 

FPgrowth over Apriori increases as the minimum support decreases, indicating that FP-

growth scales better than Apriori. For all of the real-world datasets, FP-growth is faster than 

Apriori, but the differences are not as large as on the artificial dataset. The reasoning 

proposed by Zheng et al. (2001) is that the artificial dataset has different characteristics to the 

real world datasets.  

 

In Hipp et al. (2000), the authors compare a number of association rule algorithms on 

efficiency by carrying out several runtime experiments on synthetic data. The authors 

compare Apriori, DIC a variation of Apriori (Brin, Motwani, Ullman, & Tsur, 1997). 

Partition and Eclat. The authors state that the results of the experiments indicate that the 

runtime behaviour of the various algorithms is more similar than expected. Only in certain 

more extreme cases did the authors evidence varying performance. In Figure 2.6 one of the 

experiments on a more complex dataset shows Eclat and Partition performing better than 

Apriori, particularly at low minimum support levels.  
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Figure 2.6: Comparison of association rule algorithms across varying support levels 

(Source: Hipp et al., 2000) 

 

Heaton (2016), compared the performance of Apriori, Eclat and FP-growth across varying 

artificially created datasets. Two dataset characteristics were evaluated, maximum transaction 

size and frequent item density and the algorithms were tested under various conditions. The 

results demonstrate that Eclat and FP-Growth both handle increases in maximum transaction 

size and frequent itemset density considerably better than the Apriori algorithm, while FP-

growth marginally outperformed Eclat. Figure 2.7 below shows the results of the tests for 

various frequent itemset densities. It shows that all three of the algorithms perform to a 

similar level up to roughly 70% at which point the performance of Apriori considerably 

deteriorates.  

 

 

 

Figure 2.7: Comparison of association rule algorithms across varying itemset densities 

(Source: Heaton, 2016) 
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2.4 Extending Association Rules to make predictions 

 

In data mining, making class predictions is typically associated with supervised learning. 

Supervised learning aims to create a function or set of rules to accurately classify labels and 

then the rules or function are applied to newly unseen data to make predictions. Association 

rule mining is an unsupervised learning approach that finds all rules in the database that 

satisfy some minimum support and minimum confidence constraints, for example Agrawal 

and Srikant (1994). Liu et al. (1998) propose a framework to combine these two techniques 

of data mining. The authors propose an integrated framework, called associative 

classification. The framework concentrates on a subset of association rules where the right-

hand side of the rule is restricted to the class being predicted. This subset of rules is called 

class association rules.  

 

The approach to associative classification involves three key steps: 
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2.4.1 Generating Interesting Rules 

 

Liu et al. (1998) propose a new algorithm CBA with two parts, a rule generator CBA-RG and 

CBA-CB which uses the rules generated to build classifications. To use association rules for 

classification the underlying algorithms described in Section 2.3 above need to be adapted. 

The CBA-RG is an adaptation of the Apriori algorithm described in Section 2.3. Class 

association rules are a subset of all association rules where the right-hand-side is restricted to 

a distinct class label. Class association rules or itemsets take the form <condset,y> where y is 

a class label. The CBA-RG identifies frequent itemsets with high support and high 

confidence within the subset of rules.  

 

Support is defined as 
𝑟𝑢𝑙𝑒𝑠𝑢𝑝𝐶𝑜𝑢𝑛𝑡

|𝐷|
 where rulesupCount is the total count of a particular 

itemset and D is the total database. Itemsets that satisfy a set minimum support level are 

deemed frequent and other remaining itemsets are deemed infrequent.  

 

The confidence of the itemset is defined as 
𝑟𝑢𝑙𝑒𝑠𝑢𝑝𝐶𝑜𝑢𝑛𝑡

𝐶𝑜𝑛𝑑𝑠𝑢𝑝𝐶𝑜𝑢𝑛𝑡
 where CondsupCount is the total 

count of the condset within D.  

 

For example, if there is a rule {Age: 25-35, Location: Dublin} -> Sale. If the count of the 

condset {Age: 25-35, Location: Dublin} is 3 and the count of the itemset {Age: 25-35, 

Location: Dublin} -> Sale is 2 and the total database is 10. The support of the itemset is 2 / 

10 or 20% and the confidence of the itemset is 2/3 or 66.67%.  

 

The CBA-RG outputs all CARs that meet the minimum support and minimum confidence 

levels. For itemsets with the same condset the algorithm chooses the itemset with the highest 

confidence. The criticism of CBA-RG is that the algorithm outputs only a single high-

confidence rule. This may lead to biased classifications that overfit the data. Verhein and 

Chawla (2007) challenge the ability of CBA to build an accurate classifier on imbalanced 

datasets. 

 

Li et al. (2001) propose a new algorithm Classification Based on Multiple Association Rules 

(CMAR) to overcome the restrictions inherent in CBA. The authors propose the use of more 

rules to support the class prediction problem. The requirement to store many more rules, 
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however, has an impact on the combinatorial explosive nature of association rules as 

described in Section 2.3. If |I| = m, the number of possible distinct itemsets is 2𝑚. In CMAR, 

the authors propose the use of multiple high-quality rules to make a classification decision 

rather than restricting the decision to the rule with the highest confidence score as applied in 

the CBA algorithm.  

 

For example, suppose there is a new database instance {Age: 25-35, Location: Dublin, Job: 

Accountant} and the Bank wants to determine whether this customer is likely to take out a 

mortgage for home purchase. The three rules with the highest confidence for this customer 

are as follows: 

 

• Rule 1, {Location: Dublin} -> No Sale (Support 20%, Confidence 90%) 

• Rule 2, {Age: 25-35} -> Sale (Support 30%, Confidence 87%) 

• Rule 3, {Job: Accountant} -> Sale (Support 25%, Confidence 85%) 

 

Using the CBA algorithm Rule 1 would be chosen for classification purposes given it is the 

rule with the highest confidence, however, the other two rules both have higher support and 

only marginally lower confidence. The objective of CMAR (Li et al., 2001) is to use a 

number of high-quality rules to make a more balanced decision to classification and increase 

prediction accuracy over CBA by reducing the levels of overfitting.  

 

To find rules for classification, CMAR adopts a variant of the FP-growth method explained 

in Section 2.3. The FP-growth model is faster than the Apriori model particularly in situations 

where there are a large number of frequent itemsets or the minimum support thresholds are 

low (Hipp et al., 2000). One of the major advantages of the CMAR adaptation of FP-growth 

is that it is capable of identifying frequent itemsets and generating rules in one pass while 

traditional algorithms like Apriori and Apriori extensions such as CBA require two passes. In 

Apriori, first all items that pass the minimum support levels are identified and then in the 

second step, the confidence of frequent itemsets are calculated. In the CMAR algorithm, 

however, “CMAR maintains the distribution of various class labels among data objects 

matching the pattern. This is done without any overhead in the procedure of counting 

(conditional) databases. Thus, once a frequent pattern (i.e., pattern passing support 
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threshold) is found, rules about the pattern can be generated immediately” (Li et al., 2001, p. 

4). This is a major advantage for CMAR over CBA in the rule generation phase.  

 

2.4.2 Data Storage CR-tree representation 

 

Li et al. (2001) also propose a new approach to data storage and retrieval of a large number of 

association rules. The authors present a structure called a CR-tree which is a prefix tree 

structure. CR tree is a prefix tree structure that exploits sharing among rules. The main 

advantage of the CR-tree structure is that the representation of the data in this way means 

rules can be stored in a compressed way thus saving memory. The authors state that in their 

experiments about 50-60% of space can be saved by using a CR-tree structure to store the 

data.  

 

Figure 2.8 below shows an example of the compression capability of CR-tree. A CR-tree has 

a root node. All of the values from the left-hand side of the association rules are sorted 

according to their frequency. The first rule abcd -> high is inserted in the tree, the class and 

the support and confidence of the rule are stored at the node. The next rule abcde -> high is 

then inserted but is simply an extension of the last rule where e is added as a new node, again 

the class, support and confidence are registered with the node. Storing each element of the 

left-hand side of the rules individually would require 17 cells while in this CR-tree 

representation just 11 cells are needed so a saving of 35% in this example.  

 

2.4.3 Pruning 

 

The number of rules generated from the Association Rule mining stage can be extremely 

large. In order to reduce the quantity of rules to a smaller number that are effective and 

efficient for classification purposes, a post pruning strategy is required. There are a number of 

pruning approaches employed across the state of the art models for classification using 

association rules. Across, the CBA and CMAR algorithms there are both similarities and 

differences to the pruning strategies employed.  
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Figure 2.8: Example of the compression capability of CR-tree 

 

Both the CBA and CMAR algorithm generate a global order of rules or a rule precedence. 

Given two rules R1 and R2, R1 ranks above R2 as follows: 

 

(1) Confidence R1 > Confidence R2 

(2) Confidence R1 = Confidence R2 but Support R1 > Support R2 

(3) Confidence R1 = Confidence R2 and Support R1 = Support R2 but R1 has fewer 

attributes on the left-hand side than R2.  

 

The CMAR algorithm implements three steps in the pruning process. First, CMAR employs 

general to specific ordering. A rule R1 is said to be a general rule w.r.t R2, if the left-hand 

side of R2 is a subset of the left-hand side of R1. CMAR uses general and high-confidence 

rules to prune more specific and lower confidence rules. Given two rules, R1 and R2, where 

R1 is a general rule w.r.t R2. CMAR prunes R2 if R1 also has a higher rank than R2. More 

general rules are favourable to reduce overfitting and improve the ability for the model to 

generalize.   

 

In the second pruning step, CMAR uses a statistical measure to further prune the rule set. In 

this step, CMAR selects only positively correlated rules. For each rule, R: P -> C, the 
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algorithm tests whether P is positively correlated with C using 𝑥2 testing. Only rules that are 

positively correlated and above a certain statistical significance threshold are carried forward 

for use in classification. To perform the chi-square test, the rule R is tested against the whole 

database. 

 

In the third pruning step, CMAR uses database coverage to prune rules. Database coverage 

ensures that each rule brought forward to the classification model can classify at least one 

training instance correctly. Database coverage also ranks the rules by precedence ensuring 

that the rules brought forward are those rules with the highest ranking among rules that can 

cover the instance. In association rule learning, a rule R covers an instance d if the attributes 

of the instance satisfy the condition of the rule. An example of rule coverage is outlined 

below using two example rules.  

 

R1 (Age 45 – 55 = Yes), (Employed = No) -> No Sale 

R2 (Age 25 – 35 = Yes), (Occupation = Mechanic) -> Sale 

 

Name Age Employed Occupation Location  Class 

Colin 25 - 35 Y Mechanic Dublin Sale 

John 45 - 55 N Unemployed Galway No Sale 

 

R1 covers the instance John 

R2 covers the instance Colin 

 

In this pruning step, CMAR retains more rules than CBA. In the CBA algorithm, once one 

rule covers an instance the instance is removed from the training dataset. In CMAR, in order 

for an instance to be removed, the instance must be covered by some threshold number of 

rules 𝛿 (in CBA 𝛿  = 1). Once the threshold is achieved all of these rules are brought forward 

for classification. The pruning approach is outlined in Figure 2.9. The CMAR approach 

increases the number of rules brought forward for classification purposes but should lead to 

less overfitting as a number of rules are used to make a collective decision when a new 

instance is to be classified. Li et al. (2001) state that their approach CMAR, using multiple 

rules for prediction, leads to higher average class accuracy than CBA and C4.5.  
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Figure 2.9: Pruning using database coverage. 

(Source: The scheme is an adapted version from Li et al. (2001) and Liu et al. (1998)) 

 

As described above, CBA uses a simpler version of database coverage than CMAR for 

pruning where the threshold 𝛿 is set to one. This results in a smaller set of rules brought 

forward to be employed in the classification model. CBA also employs a number of 

additional obligatory and optional pruning steps. The additional obligatory pruning step 

completed in CBA is called default rate pruning and the optional pruning step is pruning 

based on the pessimistic error rate (Quinlan, 1993). 

 

The CBA algorithm uses three steps to perform the default rate pruning process. Using the 

rule precedence set out above the rules are sorted based on highest precedence. Rules with the 

highest confidence are ranked at the top. Figure 2.10 below outlines the method applied 

where R is the set of sorted rules. Lines 2 – 12 below, select rules from R. For each rule r, go 

through D to find those cases covered by r (line 5). R is then marked if it correctly classifies a 

case d. d.id is the unique identification number of d. If r can correctly classify at least one 

case, it will be a potential rule for use in the classification stage. Those cases it covers are 

then removed from D (line 9). A default class is also selected (the majority class in the 

remaining data), which means if the algorithm stopped selecting more rules to include in the 

1. Input: rule set sorted according to interestingness measure, threshold 𝜎 

2. Set cover count of all training instances to 0. 

3. For all rules r sorted order DO: 

(a) For all training instances d DO: 

i. If r covers d Then 

ii. mark d 

iii. If r classifies d correctly Then 

iv. mark r 

(b) If r marked Then 

i. Increase cover count of all marked d 

ii. If cover count of a marked d exceeds a threshold 𝜎 Then 

iii. remove d from the training set 

(c) delete all marks from each training instance d. 
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classifier C this class will be the default class of C. A computation is then carried out to 

record the numbers of errors that are made by the current iteration of C. This is the combined 

sum of the total number of errors made by C and the errors made by default class across the 

total training data. When there is no rule or no training case left then the selection process is 

complete.  

 

At this point, the model then checks back across the rules and errors logged. The first rule at 

which there is the least number of errors recorded on D is the cutoff point. All the rules after 

this rule can be pruned because they only produce more errors. The undiscarded rules 

together with the default class are the final list of rules for classification.  

 

1. R = sort (R); 

2. for each rule r 𝜖 R in sequence do 

3. temp = ∅ 

4. for each case d 𝜖 D do 

5. if d satisfies the conditions of r then 

6. store d.id in temp and mark r if it correctly classifies d; 

7. if r is market then 

8. insert r at the end of C 

9. delete all the cases with the ids in temp from D; 

10. selecting a default class for the current C; 

11. compute the total number of errors of C; 

12. end 

13. end 

14. find the first rule p in C with the lowest total number of errors and drop all the rules 

after p in C; 

15. Add the default class associated with p to the end of C and return C (our classifier). 

 

Figure 2.10: CBA Pruning Process 

(Source: Liu et al., 1998) 

 

CBA also uses an optional pruning step during the mining for association rule phase, Section 

2.4.1 above. The approach used is known as pessimistic pruning and is based on the 
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pessimistic error rate (PER) approach proposed in C.4.5 (Quinlan, 1993). In this approach, 

the training data is used to generate and prune rules. C4.5 examines each decision node and 

will replace the node with either the leaf or the most frequently used branch with fewer 

estimated errors.  

 

In the case of classification using association rules, the PER is used to evaluate the expected 

classification error of the rules. For every rule identified through the mining process, during 

the pruning step the PER of the rule is compared with the PER value of general rules. The 

rule is pruned if the PER value is higher than the PER value of at least one of its general 

rules. This indicates the rule is less likely to be accurate than one of its general rules. The 

formal definition of PER pruning states, let R be rule set. A rule 𝑟𝑗 can be pruned from R if 

there is a rule 𝑟𝑖 in R, such that (i) 𝑟𝑗 is a subset of 𝑟𝑖 (ii) len(𝑟𝑗) - len(𝑟𝑖) = 1 and (iii) error(𝑟1) 

< error (𝑟𝑗). Unlike database coverage described above, pessimistic pruning retains all rules 

and database instances until the end of the pruning. Therefore, each rule is always compared 

with all other available rules in the dataset. Liu et al. (1998), demonstrate that pruning using 

pessimistic pruning significantly reduces the number of rules with no impact on model 

accuracy.  

 

2.4.4 Using rules to make classifications  

 

The CBA approach to classification is much simpler when compared to the approach for 

pruning outlined above. In CBA, when a new instance needs to be classified the algorithm 

simply searches the pruned and ordered list of rules and picks out the top rule (highest 

confidence) that covers this instance. The predicted class of the new instance is the class from 

the top rule. As mentioned above, CBA also uses a default class. Where no rule covers the 

new instance seen CBA assigns the default case identified during training.  

 

Unlike CBA, in the classification phase, CMAR selects a subset of high-quality rules for 

prediction rather than simply the top rule. The algorithm analyses a subset of high-quality 

rules that match the new unseen instance. The CMAR authors, state that such a simple 

selection process, as applied in CBA, using just one rule may affect the classification 

accuracy of the model through overfitting.   
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If all the rules that match a new instance have the same class, then CMAR simply assigns this 

class to the new instance. If the subset of rules has different class predictions a voting 

methodology is required to select the class for the new item. There are a number of weighted 

voting techniques including majority vote, simple linear weighting and inverse function. The 

CMAR algorithm uses a more complex weighting methodology based on weighted 𝑥2.  The 

authors propose a number of approaches using 𝑥2.  

 

If the rules are not consistent in terms of predicted class, CMAR divides the rules into groups 

which have the same class label. CMAR then compares the effects of these groups to identify 

the strongest group and uses the label from that group for prediction. In CMAR, the strength 

of a group is calculated using a Weighted Chi-Squared (WCS) measure.  

 

This is done by first defining a Maximum Chi-Squared (MCS) value for each rule A -> c: 

 

𝑀𝐶𝑆 = (
(min(𝑠𝑢𝑝(𝐴) , 𝑠𝑢𝑝(𝑐)) − sup(𝐴) sup(𝑐))

𝑁
)2 ∗ 𝑁 ∗ 𝑒 

 

Where: 

1. sup(A) = support for antecedent. 

2. sup(c) = support for consequent. 

3. N = Number of records in test set. 

4. e is calculated as follows: 

 

𝑒 =
1

sup(𝐴) sup(𝑐)
+

1

sup(𝐴)𝑁 − sup (𝑐)
+

1

𝑁 − sup(𝐴) sup (𝑐)

+
1

(𝑁 − sup(𝐴))(𝑁 − sup (𝑐)
 

 

For each group of rules, the Weighted Chi-Squared value is defined as: 

 

WCS = The sum of (Chi-Squared * Chi-Squared)/(MCS) 

 

The authors also tested a number of other approaches. A simpler approach is to take the 

strongest rule from each group, the rule with the highest 𝑥2. However, this approach may 
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favour minority classes, see Figure 2.11 below for illustration. Another alternative proposed 

by the authors is to use the compound correlation of rules as the measure. For example, one 

option is to sum up values in a group as the measure of the group. However, this method 

suffers from the same problem that it may favour the minority class too much. The empirical 

results presented by the authors suggest that the weighted chi-squared measure is the best 

approach for identifying the class for new unseen instances. 

 

For example, if there are two rules for mortgage sales R1: employed = no -> No Sale (support 

30, confidence 60) and R2: Over 30 = yes -> Sale (support = 200, confidence 97.5%). The 

observed and contingency tables are presented below in Figure 2.11.  

 

 

 

Figure 2.11: Chi-Squared rule choice illustration 

 

In this example, the 𝜒2 value for rule 1 is 88.6 and 35 for rule 2. If the choice of rules was 

based on 𝜒2 values only Rule 1 would be chosen from the above rules. However, a closer 

look at Rule 2 shows it has both higher confidence and support. Weaknesses such as this 

investigated by Li et al. (2001), resulted in the development of the WCS measure.  

  

2.5 The impact of class imbalance on Association Rules and the SPARCCC 

algorithm 

 

Many real word problems face the issue where the dataset is imbalanced. Target class 

imbalance is described by Japkowicz (2000) as domains for which one class is represented by 

a large number of examples while the other class is represented by relatively few examples. 

Typical domains with imbalanced target classes include disease identification, fraud detection 

Observed Contingency Rule 1 Observed Contingency Rule 2

R1 Sale No Sale total R2 Sale No Sale total

employed = yes 438 32 470 Over 30 = yes 195 5 200

employed = no 12 18 30 Over 30 = no 256 48 304

total 450 50 500 total 451 53 504

Expected Contingency Rule 1 Expected Contingency Rule 

R1 Sale No Sale total R2 Sale No Sale total

employed = yes 423 47 470 Over 30 = yes 178 22 200

employed = no 27 3 30 Over 30 = no 272 28 300

total 450 50 500 total 450 50 500



35 
 

and marketing response. In these examples, one of the classes typically covers the majority of 

instances and the second class is rarely evidenced in the data. In many cases, the smaller 

second class is the class of interest for the research. For example, in the fraud identification 

domain, only a small number of transactions will be fraudulent but these are the transactions 

that are most interesting for fraud identification purposes. In this research, the target class is 

whether the customer took out a mortgage loan or not. The volume of customers who took 

out a mortgage during the performance window is a low percentage of the total customer base 

(<2%), therefore the dataset for this research is largely imbalanced.  

 

The problem of imbalanced datasets can also affect unsupervised learning approaches. 

Taking the classical retail store transactions example again, bread and milk, occur frequently 

and will have both high support and confidence. Other associations might be rare, for 

example, customers buying a vacuum cleaner and washing machine, although the items are 

likely to be bought together and therefore have high confidence they are not items that are 

frequently bought and therefore will have low support. This rule is then likely to be excluded 

from the final list of rules. To find this association the minimum threshold needs to be set 

very low, which will then cause the combinatorial explosion described in Section 2.3. This 

example is similar to rules that have sales = Yes in this research. Given these examples 

appear rarely it is likely that many rules with this value on the right-hand side of the rule will 

be excluded. This makes it difficult for the algorithm to predict the rare class accurately.  

 

The risk with imbalanced datasets is that the model will focus on the majority class because it 

is evidenced more regularly in the dataset and the model will make poor predictions for the 

minority class of interest. Although the overall accuracy of the model will be high given the 

level of imbalance, a model that predicts the majority class for all examples will be correct in 

98% of cases, however, these outputs provide no value. Weiss and Provost (2003) carried out 

a study over twenty-six datasets, the results showed that the error rate of minority class 

classification rules was 2-3 times that of the rules that identify majority class examples and 

minority-class examples are much less likely to be predicted than majority class examples. 

Many practitioners have observed that for extremely skewed class distributions the recall of the 

minority class is often 0, there are no classification rules generated for the minority class. 

 

It is therefore important when dealing with imbalanced data to choose the right evaluation 

metrics, described in detail below in 2.5. One example is ROC analysis and the area under the 
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ROC curve (AUC) to assess classification performance of the models (Bradley 1997; Provost 

& Fawcett, 2001).  The AUC measure does not place more emphasis on one class over the 

other, so it is not biased against the minority class. Other alternative measures such as 

balanced accuracy, the average of specificity and sensitivity, may be more applicable than 

simple accuracy at measuring the performance of algorithms on imbalanced datasets.  

 

Given that class imbalance in real-world datasets is ubiquitous the class imbalance problem 

has been researched heavily in recent years in the machine learning domain (Chawla, 

Japkowicz, & Kotcz, 2004). A number of different approaches have been proposed and tested 

to improve prediction accuracy on imbalanced datasets. These methods include, among 

others, sampling approaches, cost-sensitive learning and learning only the rare case.  

 

The most basic sampling approaches include under-sampling and over-sampling. Under-

sampling removes majority class records, this can be done by using random under-sampling 

where a certain volume of records with the majority class are removed at random. Over-

sampling is increasing the volume of the minority class. The simplest approach to over-

sampling involves simply duplicating existing minority class records. A number of problems 

with oversampling have been identified through research on the problem of imbalanced 

datasets. Oversampling can cause overfitting as the new examples are typically exact matches 

of the existing cases in the rare class. Oversampling does not introduce any new data into the 

experiment and certain research has shown oversampling to be ineffective in resolving the 

imbalanced dataset problem (Ling & Li, 1998; Drummond & Holte, 2003).  

 

There are also more advanced forms of sampling that combine oversampling and 

undersampling or introduce new data in a more advanced way. SMOTE is one such method 

of a more advanced sampling technique (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). 

While oversampling simply replicates existing data points, SMOTE, oversamples by 

introducing new data using statistical methods. Minority-class examples are generated by 

adding examples from the line segments that join the k minority-class nearest neighbours 

(SMOTE uses k=5). This causes additional generalisation, as opposed to the potential 

overfitting that may be caused by exactly replicating existing data in simple oversampling.  

 

Another approach to dealing with imbalanced datasets is cost sensitive learning (Pazzani, 

Merz, Murphy, Ali, Hume, & Brunk 1994). This approach increases the value of correctly 
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identifying the minority class cases and reduces the value of correctly identifying the 

majority class records. This is typically done by assigning a greater cost to false negatives 

than to false positives. Areas where cost-sensitive learning are appropriate include medical 

diagnostics, fraud identification or terrorism prediction. In these cases, a false negative can 

lead to the loss of life in the examples of terrorism and medical diagnosis, while a false 

positive can lead to increased expenses in terms of investigation or testing. One difficulty 

with cost-sensitive learning models is getting access to the right misclassification cost ratio to 

apply for the given scenario.  

 

SPARCCC 

 

Verhein and Chawla (2007), challenge the existing Associative Classifiers, including CBA 

and CMAR described above, identifying classification performance concerns in imbalanced 

datasets. The authors state that association rule classifiers using the support confidence 

framework do not perform well with imbalanced datasets. Verhein and Chawla (2007, p. 1), 

propose a new measure Class Correlation Ratio, “which measures the relative class 

correlation of a rule. A high CCR is desirable because it means the rule is more positively 

correlated with the class it predicts than the alternative(s)”. The authors prove that 

confidence and support are biased towards the majority class in the context of CCR.  

 

Verhein and Chawla (2007) propose a new algorithm SPARCCC using only rules that are 

statistically significant and positively correlated where the antecedent is more correlated with 

the class it predicts than other class(es). In comparison to the CBA and CMAR algorithms 

which require the user to define specific thresholds for support and confidence, the 

SPARCCC algorithm is parameter free, only using standard significance levels to prune rules.  

 

The SPARCCC algorithm is built using significance and the authors propose a new metric 

Class Correlation ratio. The authors state “We are interested in rules X → y that are 

statistically significant in the positively associated direction” (Verhein and Chawla, 2007, p. 

2). To test for significance the authors use Fisher’s Exact Test (Equation 2.1) on contingency 

tables of the form in Figure 2.12. The authors select only rules that are below a certain P 

value which outputs rules that are statistically significant in the positively associated 

direction. 
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  X ¬X Σrows 

y a b a + b 

¬y c d c +d 

Σcols a + c b + d n = a + b + c + d 

 

Figure 2.12: Contingency tables for Fisher’s Exact Test 

 

𝑝([𝑎, 𝑏, 𝑐, 𝑑]) =  ∑
(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

𝑛! (𝑎 + 𝑖)! (𝑏 − 𝑖)! (𝑐 − 𝑖)! (𝑑 + 𝑖)!

min(𝑏,𝑐)

𝑖=0

 

 

Equation 2.1 

 

Correlation is the second element of the SPARCCC algorithm. The authors state “We are 

interested in rules X → y where X is more positively correlated with y than it is with ￢y” 

(Verhein and Chawla, 2007, p.2). For correlation, the authors propose a metric Class 

Correlation Ratio to measure how much more positively the rule is correlated with the class it 

predicts relative to other classes. The correlation definition is outlined in Equation 2.2.  

 

𝑐𝑜̂ 𝑟𝑟(𝑋 → 𝑦) =  
sup( 𝑋 U 𝑦) . |𝐷|

sup(𝑋) . sup(𝑦)
=

𝑎. 𝑛

(𝑎 + 𝑐). (𝑎 + 𝑏)
 

 

Equation 2.2 

 

Where 𝑐�̂�̂𝑟𝑟 (𝑋 → 𝑦) is greater than 1 or less than 1 X and y are positively and negatively 

correlated respectively. In this approach, CCR is used to measure how correlated X is with y 

compared to￢y. The CCR equation is described below in Equation 2.3.  

 

𝐶𝐶𝑅(𝑋 → 𝑦) =  
𝑐�̂�̂𝑟𝑟 (𝑋 → 𝑦) 

𝑐�̂�̂𝑟𝑟 (X → ¬y)
=
𝑎. (𝑏 + 𝑑)

𝑏. (𝑎 + 𝑐)
 

 

Equation 2.3 
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The SPARCCC model only uses rules with 𝑐�̂�̂𝑟𝑟 > 1 and CCR > 1, which ensures the rule is 

statistically significant in the positive association direction X -> Y, rather than in the opposite 

direction X-> ¬Y. 

 

Using the CCR approach described above the authors prove that confidence and support are 

biased towards the majority class in imbalanced datasets in the context of CCR. This is a 

major concern in terms of using the CBA and CMAR algorithms on imbalanced datasets.  

The authors identify two areas where the confidence framework used in CBA and CMAR is 

biased towards the majority class. The first bias is where a highly confident rule predicting 

the majority class may, in fact, be more negatively correlated than the same rule predicting 

the other class(es), and the second concern is where a rule that is more positively correlated 

but predicts the minority class may have much lower confidence than the same rule 

predicting the other class(es). 

 

To avoid the biases identified above, the SPARCCC algorithm does not rank with 

confidence, instead, the SPARCCC algorithm uses the CCR to identify and rank rules to be 

used for classification. The authors state that in balanced datasets the CCR ranking and the 

confidence ranking are comparable, however, in imbalanced datasets, the CCR measure 

outperforms the confidence measure for the bias reasons described above.  

 

For search and pruning the authors propose the use of GLIMIT (Verhein & Chawla, 2006) as 

the underlying association rule learning algorithm but state that in line with previous 

experiments any of the alternative association rule learning algorithms such as Apriori and 

FP-Growth could be used. 

 

The authors’ experiments comparing SPARCC and CCR to CBA, C4.5 and alternative 

associative classifiers indicates comparable classification performance on balanced datasets 

but significantly improved classification performance on imbalanced datasets. These 

experiments point towards an inability for CBA and CMAR to achieve a high level of 

classification accuracy on imbalanced datasets. 
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2.6 Data Discretisation Approaches 

 

For certain datamining algorithms, the dataset may need to be transformed to a binary format 

to be used by the model. Data discretisation is a data transformation approach where 

continuous data is converted to categorical data. There is a range of data discretisation 

techniques that can be applied. The main categories of discretisation are unsupervised 

discretisation approaches and supervised discretisation approaches. Unsupervised approaches 

are generally much simpler and do not take account of the class label. In unsupervised 

approaches, there are typically two options, one where the number of intervals is set and the 

second where the number of records per interval is set. These two methods are known as 

equal-width discretisation and equal-frequency discretisation. In the equal width approach, 

the user defines the number of intervals and the model simply divides the range of values into 

the user defined number of equal width intervals. In equal frequency discretisation the 

intervals are split such that each interval has the same number of records. An example of 

these discretisation approaches is provided below in Figure 2.13.  

 

 

Figure 2.13: Example of unsupervised data discretisation techniques 

 

Supervised discretisation approaches take account of the class label in making the interval cut 

off points. The objective is to identify the best split such that the majority of the values in a 

bin correspond to the same class label while also minimizing the information loss from 

transforming continuous variables into categorical variables. There are a number of 

supervised data discretisation approaches. Kerber (1992) and Liu and Setiono (1997) present 

supervised methods which discretise numeric data based on the χ2 statistic.  
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2.7 Benchmark models 

 

A number of benchmark models will be developed as part of this research to enable a 

comparison between traditional classification based models and the classification models 

developed using association rules. The benchmark models chosen for comparison purposes 

are ‘rule’ or ‘tree’ based models. The most popular implementations of such algorithms are 

‘CART’ (Breiman, Friedman, Olshen, & Stone 1984) and ‘C4.5’ (Quinlan, 1993). The use of 

rule based models for comparison purposes is in line with existing research in this area where 

models performing classification using association rules are typically compared to existing 

rule based models (Li et al., 2001).  

 

Conditional Inference Trees 

 

The first benchmark model that will be implemented in this research is conditional inference 

trees (Hothorn, Hornik & Zeileis, 2006). Similar to traditional decision trees (Breiman et al., 

1984) conditional inference trees recursively partition the data by performing a univariate 

split on the dependent variable. The difference between conditional inference trees and other 

decision tree methods is the choice of measure used to select variables at each node. Methods 

such as Breiman et al. (1984) use information measures such as the Gini coefficient or 

entropy and select the covariate showing the best split. Hothorn et al. (2006) claim that there 

are two main problems with these decision tree methods using an exhaustive search approach. 

 

The first problem is that these methods have overfitting problems and secondly the models 

have a selection bias towards covariates with many missing values or covariates with many 

possible splits. To avoid overfitting, algorithms such as C4.5 can implement a pruning 

strategy after the tree is fully grown. Instead of applying a pruning approach conditional 

inference trees implement a unified framework for handling both selection bias and 

overfitting. In comparison to the traditional decision trees, conditional inference trees use a 

statistical test procedure in order to select variables instead of an information gain measure 

such as Gini coefficient. The statistical test procedure applied in conditional inference trees is 

based on permutation tests, a class of widely applicable non-parametric tests. Permutation 

tests randomly shuffle the data to get the correct distribution of a test statistic under a null 

hypothesis. To try to overcome the overfitting and selection bias issues of other decision tree 

http://en.wikipedia.org/wiki/Gini_coefficient
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models the authors propose a new method that separates the variable selection from the 

splitting criteria. The approach used by Hothorn et al. (2006) follows three steps, in step 1 

variable selection is made, in step 2 the methodology for splitting is chosen and step 3 is the 

recursive application of these first two steps. The authors state “that recursive partitioning 

based on statistical criteria as introduced in this paper lead to regression models whose 

predictive performance is as good as the performance of optimally pruned trees by means of 

benchmark experiments” (Hothorn et al., 2006, p. 2). When the tree is required to classify a 

new previously unseen record the new record is passed through the tree and the final node the 

record arrives at is used to classify the record, in this research project the classification is a 

binary result sale or no sale.  

 

Random Forests 

 

The second benchmark model that will be implemented in this research is random forests 

(Breiman, 2001). Random forests is an ensemble method using a large number of 

classification trees as opposed to one tree in conditional inference trees. When the forest is 

required to classify a new previously unseen record the new record is passed through each of 

the trees to arrive at many individual classification values. The algorithm then takes each of 

these individual results and applies a voting system to arrive at the final classification. The 

forest chooses the class with the most votes over all the trees in the forest.  

 

Each tree is grown by first selecting a sample, if there are N cases in the training dataset, the 

sample will be N records selected at random with replacement. If there are M input variables, 

a number m<<M is specified such that at each node, m variables are selected at random out 

of the M and the best split on these m variables is used to split the node. The value of m is 

held constant during the forest growing. No pruning strategy is applied in building out the 

trees so each tree is grown to the largest extent possible. Within random forests, there are a 

small number of parameters that can be tuned including m, the number of features to select at 

each node and the total number of trees to build. The value for m is an important factor in 

producing a good classifier. The value for m affects the correlation between the trees and the 

strength of the individual trees the two factors identified by Breiman (2001) affecting the 

performance of the model. Increasing the value of m increases the correlation between trees, a 

negative impact on performance while increasing the strength of individual trees a positive 
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impact on performance. The objective is to identify a value of m in a range that minimises the 

errors produced by the model.  

 

The out of bag (OOB) error is used to identify the range for m while also providing error 

estimation during model building. After the N records have been sampled without 

replacement to build an individual tree a third of the records are taken out of the sample. 

Using this approach records that have not been used to build the tree can be put down the tree 

to get an immediate classification. Using the OOB error rate to get a running unbiased 

estimate of the classification error generally means there is no requirement to use cross-

validation approaches when using the random forest algorithm.  

 

2.8 Model Validation Methods 

 

A classification model is trained on historical data and then used to predict the result for 

previously unseen data. To measure if the model generalises well the performance on the 

training dataset must be validated. There are a number of approaches in data mining to 

validate the results of the model. The aim of the testing is to identify if the model is under or 

overfitting the data. This is the basic idea for a whole class of model evaluation methods 

including, for example, cross-validation (Friedman, Hastie, & Tibshirani, 2001). 

 

Overfitting is evidenced when the performance of the model in training does not translate to 

new unseen data. Overfitting can occur for a number of reasons but generally means the 

model is learning concepts, noise or patterns in training that does not apply to new data. This 

essentially means that the model has been too tightly fitted to the specific data points in the 

training data, trying to model patterns in the data originating from noise. The performance of 

the model on new data is then worse than the performance in training.  

 

Underfitting is evidenced when the performance of the model is poor both in training and in 

use with new data. This indicates the model being trained is too simple and cannot identify 

the patterns and relationships in the data. Underfitting may occur, for example, if a linear 

model was used to fit non-linear data.  
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Figure 2.14: Graphical illustration of underfitting and overfitting 

 

In order to judge if a model is overfitting or not, the model is tested on previously unseen 

data and the performance compared with the performance on the training data. Estimating 

this error can be done in several different ways. 

 

Dataset Split 

 

The most straightforward approach to estimating the generalised performance of a model is to 

partition the dataset into two or more partitions, a training set, a validation set and a test set. 

For example, the simplest method is to split the data into two subsets a training subset and a 

test subset. The model is developed on the training dataset and then tested to see how it 

performs on previously unseen data. This indicates how well the model generalises to new 

data instances. This approach is common and very respected but may not be appropriate 

where the dataset is small. Using this approach on small datasets is likely to result in poor 

performance and biased results. This method also holds out a large portion of the dataset that 

otherwise may have been used for training purposes. Other approaches to validation aim not 

to waste this large amount of valuable data in the training phase.  

 

 

 

Figure 2.15: Illustration of the Dataset split data validation technique 
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K- fold Cross-Validation 

 

K-fold cross-validation is one approach to account for the biases and data wastage identified 

in Dataset Split. In K-fold cross-validation the full dataset is used to train and test the model’s 

generalization performance. The idea behind K-fold cross-validation is to split the dataset 

into K subsets and use each of the K-folds as a test set while training the model on the 

remaining K-1 subsets of the dataset. K models are developed and the performance metric 

used is then averaged across each of the K models. The more folds used for evaluation the 

smaller the bias but this also leads to higher variance across the folds (Geman, Bienenstock, 

& Doursat, 1992). 

 

 

Figure 2.16: K-fold Cross-Validation illustration 

 

Leave-one-out cross-validation  

 

Leave-one-out cross-validation (LOOCV) is K-fold cross-validation taken to its logical 

extreme, with K equal to N, the number of data points in the set. That means that N separate 

times, the function approximator is trained on all the data except for one point and a 

prediction is made for that one point. As before, under K-fold cross-validation, the average of 

the relevant performance metrics used is computed and used to evaluate the model. 
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Bootstrap 

 

The bootstrap approach is similar to K-Fold Cross-Validation, however, in this case, the 

training sets are sampled from the whole dataset with replacement. This introduces an amount 

of randomness into the sample data. The trained model is then used to predict the outcome of 

the data not chosen in the sampling process. This process is repeated many times and the 

average of the relevant performance metrics used is computed to evaluate the model.  

 

Efron and Tibshirani (1997) propose the 0.632+ Bootstrap method to reduce the upward bias 

of leave-one-out bootstrap. The 0.632+ Bootstrap method takes into account the amount of 

overfitting in the model training. In order to calculate the overfitting term, the authors define 

the non-information error-rate, 𝛾 , which is a measure of the classification error assuming 

that predictive variables and the class are independent. Given a classification learned from a 

dataset D, φ (x; D), an estimation of γ can be obtained as follows: 

 

𝛾 =  
1

𝑁2
∑∑𝛿(𝑐𝑖, 𝜙(𝑥(𝑗); 𝐷))

𝑁

𝑗=1

𝑁

𝑖=1

 

 

Equation 2.4 

 

The relative overfitting rate is defined as: 

 

�̂� =
𝐸𝑟𝑟(1)̂ −𝑒𝑟𝑟

𝛾 − 𝑒𝑟𝑟 
 

 

Equation 2.5 

 

The final 0.632+ estimator is calculated as follows: 

 

𝐸𝑟𝑟(.632+)̂ = (1− 
0.632

1−0.368�̂�
 ) 𝑒𝑟𝑟 +

0.632

1−0.368�̂�
𝐸𝑟𝑟(1)̂  

 

Equation 2.6 
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The idea of the bootstrap 0.632+ method is to obtain a trade-off between zero bootstrap and 

resubstitution that depends on how much the classifier overfits the training set. 

 

2.9 Model Performance Metrics 

 

This section describes some of the measures used to assess the quality of the class predictions 

made by a model. In this project, the class predictions will be a binary yes/no, where yes 

indicates the customer took a mortgage product and a no indicates the customer did not take a 

mortgage product. To calculate model performance a contingency table known as a confusion 

matrix is created. This section describes the confusion matrix and the relevant metrics that are 

available once the confusion matrix has been constructed. 

 

Confusion Matrix 

 

A confusion matrix is a table that documents the class predicted by the model and the actual 

correct class. Figure 2.17 below provides a sample confusion matrix for the prediction of 

whether a given animal is a cat or a dog. The prediction rows represent the class predicted by 

the model and the columns reflect the actual known class.  

 

Confusion Matrix 

Actual  

Cat Dog 

Predicted 

Cat 20 5 

Dog 3 50 

 

Figure 2.17: Example of a confusion matrix 

 

Figure 2.18 below provides a more generic version of a confusion matrix used to compare the 

results of the various models applied in this project. In this project, a 1 reflects a product sold 

or a positive and a 0 reflects no sale or a negative.  
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Confusion Matrix 

Actual  

0 1 

Predicted 

0 TN FN 

1 FP TP 

 

Figure 2.18: Generic confusion matrix and key metrics 

 

The confusion matrix produces four key outputs which can then be used to create appropriate 

performance metrics. The four outputs are True Negatives (TN), True Positives (TP), False 

Positives (FP) and False Negatives (FN). 

 

True Positives – In our example, this implies the model correctly identified the data instance 

as a sale.  

 

False Positives – In our example, this implies the model incorrectly identified the data 

instance as a sale when in fact no sale took place. This is defined as a Type I error.  

 

True Negatives – In our example, this implies the model correctly identified the data 

instance as a no sale.  

 

False Negatives – In our example, this implies the model incorrectly identified the data 

instance as no sale when in fact a sale took place. This is defined as a Type II error. 

 

Once the confusion matrix is constructed this facilitates the calculation of a number of 

performance metrics. The simplest performance metric is accuracy which measures how 

many of the total instances the classifier scored correctly (Equation 2.7). As described above, 

when the dataset is highly imbalanced this performance metric may not be appropriate. 

Sensitivity, also known as the true positive rate (TPN) or recall, measures the proportion of 

positives (sale occurred) that have been correctly identified as a positive (Equation 2.8). 

Specificity or the true negative rate measures the proportion of negatives (no sale occurred) 

that have been correctly identified as a negative (Equation 2.9).  

 



49 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 

Equation 2.7 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Equation 2.8 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

 

Equation 2.9 

 

Other metrics include precision which measures the percentage of the instances predicted to 

be positive that are correctly predicted (Equation 2.10) and negative predictive value (NPV) 

measures the percentage of instances predicted to be negative and were correctly predicted as 

negative (Equation 2.11).  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜̂𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Equation 2.10 

 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 

Equation 2.11 

 

These metrics are often combined to create a balanced performance metric. Two such metrics 

are balanced accuracy and the F1-score. Balanced accuracy is particularly useful for 

imbalanced datasets. The F1-score is the harmonic mean of precision and recall where an F1-

score reaches its best value at 1 (perfect precision and recall) and worst at 0. 
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𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑟𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

 

Equation 2.12 

 

𝐹1 − 𝑠𝑐𝑜̂𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜̂𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜̂𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Equation 2.13 

 

Figure 2.19 below provides an example confusion matrix aligned to this research project 

which is attempting to accurately classify mortgage sales. The metrics outlined above are 

then demonstrated using this example in Figure 2.20. 

 

Confusion Matrix 
Actual  

0 (No Sale) 1 (Sale) 

Predicted 
0 (No Sale) 90 5 

1 (Sale) 7 80 

 

Figure 2.19: Example mortgage sales confusion matrix 

 

 

 

Figure 2.20: Calculation example Key performance metrics 
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2.10 Conclusion 

 

This chapter has summarised and evaluated the existing body of research in the key areas 

underpinning this research namely data mining methodologies, association rule learning and 

extending association rules to make class predictions.  

 

Data Mining is a broad area of research endeavouring to identify patterns and draw 

conclusions from the analysis of data. Data Mining can be further segmented into three 

categories, supervised learning, unsupervised learning and reinforcement learning.  

 

Association rule learning is a form of unsupervised learning where there is no target variable. 

In unsupervised learning, the algorithm is simply looking for patterns in the data as opposed 

to making class predictions. When implementing associations rule algorithms, the objective is 

completeness, the algorithm is required to find all interesting rules in the dataset above user 

defined thresholds for support and confidence. The majority of the research on association 

rules focuses on the speed of rule generation and reducing the computationally expensive 

nature of the rule generation process. 

 

Classification using association rules is an extension of association rules where rules created 

using an association rule learning algorithm are extended to make class predictions. This 

chapter reviewed the seminal papers in this area describing the three-stage process. Step 1 is 

the adaptation of association rule learning algorithms to generate the classification 

association rules, Step 2 involves applying a rule pruning technique and Step 3 involves using 

a subset of high quality rules to make predictions.  

 

The two seminal algorithms CBA and CMAR were discussed in detail. The CMAR research 

claims that the CBA algorithm overfits based on the simplified approach of using only 

individual rules to make predictions. CMAR proposes the use of multiple rules to make an 

individual prediction by using a voting system across the top-quality rules.  

 

Verhein and Chawla (2007), claim that CBA and CMAR are not suitable for imbalanced 

datasets as they have a tendency to be biased towards the majority class. Given the 

imbalanced nature of the dataset used in this experiment potential approaches for dealing 
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with imbalanced datasets such as oversampling and undersampling have been evaluated and 

compared. The SPARCCC algorithm has been developed to deal with imbalanced datasets so 

the expectation is that this algorithm will compete best with the traditional classification 

algorithms in the experiments designed for this research.  

 

Given the computationally expensive nature of Association rule learning, classification 

models using associations rules often require particular feature engineering approaches. One 

example described in detail above is the use of supervised and unsupervised data 

discretisation approaches to convert continuous attributes into discrete attributes.  

 

In Section 2.7 the state of the art in rule based tree models including random forests and 

Conditional Inference Trees were presented and evaluated. The performance of these two 

benchmark models will be used for comparison purposes against the performance of the 

classification using association rule models CBA, CMAR and SPARCCC. How these 

experiments will be designed is outlined in Chapter 3. 

 

Given the imbalanced nature of the dataset to be used in this experiment it is important that 

the performance metrics used for evaluation account for this bias. The simplest performance 

metric is accuracy which measures how many of the total instances the classifier scored 

correctly, however, when the dataset is highly imbalanced this performance metric may not 

be appropriate. Alternative performance metrics such as AUC, F1-score and Balanced 

Accuracy have been proposed as alternative metrics to give a more balanced performance 

assessment given the imbalance in the dataset.  
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3. DESIGN AND METHODOLOGY 

 

3.1 Introduction 

 

This chapter outlines the design and methodology of the experiments that will be carried out 

as part of this research. The aim of the design and methodology is to test whether 

classification using association rules can outperform traditional classification algorithms in 

predicting customer mortgage sales in an Irish retail banking context. This chapter is divided 

into five additional sections.  

 

Section 3.2 presents the data that will be used for the experiments. This section outlines what 

customer data has been acquired to build the ABT modelling dataset. It describes how the 

data was acquired, the data discovery process, what data integration, filtering and 

transformation was carried out on the data, the process of feature engineering and ultimately 

the output delivered as an ABT for the purposes of analytical modelling. This section also 

highlights areas within the data where data quality issues were identified and how those 

issues were handled.  

 

Section 3.3 presents the hardware, software and modelling algorithms used to develop the 

ABT and to implement the algorithms required to complete the necessary experiments.  

 

Section 3.4 outlines the experiment design for the benchmark models that will be used for 

comparison purposes. In line with previous research on classification using association rules 

(Liu et al., 1998; Li et al., 2001) the benchmark models chosen are ‘rule’ or ‘tree’ based 

models. In this research, the two benchmark models that have been implemented are 

conditional inference trees and random forests (Hothorn et al., 2004; Breiman 2001). In 

Chapter 4 the results of these benchmark algorithms will be used for comparison purposes 

with the results derived from the association rule classification models.  

 

Section 3.5 describes the design of the three association rule experiments that will be 

performed as part of this research. This section presents how each of the experiments will be 

set up and how the algorithms will be implemented.  
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The final section, Section 3.6, describes how the experiments will be evaluated with reference 

to Sections 2.7 and 2.8 above which describe in detail the model validation methods and 

model performance metrics.  

 

3.2 Data sources and creation of the ABT 

 

3.2.1 Data Acquisition and Integration 

 

The data for this research project has been acquired from Bank of Ireland, Ireland’s largest 

retail bank. The Bank provides a full suite of banking and insurance products to personal, 

business and corporate customers. The focus of this project is on personal retail banking 

customers and particularly the sale of mortgage loans to purchase residential property.  

 

The Bank collects a large amount of data about its customers as they interact with the Bank 

on a daily basis. Figure 3.1 shows the types of data collected in the organisation. For 

example, the Bank collects data about customer transactions and spending habits, products 

held with the Bank, interactions with the Bank collected through customer relationship 

management (CRM), demographic data from application forms and data from customer 

complaints.  

 

 

 

Figure 3.1: Types of data available in Retail Banks 
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Data is collected in a very siloed manner throughout Bank of Ireland with data predominately 

stored at a product level rather than a customer level. This is due to legacy systems which 

were originally set up independently to support only one product, for example, the loans 

system or the deposits system. Additional individual systems arose from the many 

acquisitions the Bank has made over its 235-year history. In order to overcome this problem 

of siloed data repositories the Bank has commenced a large-scale project to build an 

Enterprise Data Warehouse (‘EDW’). This EDW project is collecting data from a number of 

structured data systems in what is described as an acquisition layer or staging area. The 

expectation is that over time this data will be integrated into an integrated data layer, 

however, this part of the EDW project is not mature at this point. Although the data is now in 

one environment it is not combined and cleansed across systems, there is no customer level 

view, data cleaning and standardisation has not been performed and there is limited master 

data management. This means that the data is not yet pre-processed to the point that it is easy 

to integrate datasets for analytical purposes. The siloed nature of the data requires a large 

investment of time to integrate the data and derive variables for model building purposes. 

 

A large part of this research project has been invested in the preparation of this siloed data for 

analysis. This has involved the integration of a large number of these data sources together so 

it is possible to aggregate data at a customer level rather than the traditional account level 

view in these systems. Using the traditional banking data sources such as product holdings, 

balances and transactions c.200 derived features have been engineered for inclusion in the 

ABT. Each of these features needs to be hand crafted and the code written for each which is 

an expensive process from a timing perspective. Features such as current product holdings are 

reasonably straightforward to build, however, lagged features such as growth in deposit 

balance, or average month end current account balance for the last 12 months are more 

complex and require more development time. A sample of the features created from 

traditional banking systems can be seen in Table 3.1. The full list of features from these data 

sources can be seen in Appendix 1.  
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Feature Name Feature Description 

Per_Age Age of the customer 

Num_Open_Prod Number of open products the customer holds 

Num_Open_Sav_Prod 
Number of open saving products the customer 

holds 

Avg_Credit_Turnover_3Mths 
Average of incoming payments into the 

customer’s current account over a 3-month period 

 

Table 3.1: Sample of features built from structured data 

 

A smaller number of features have been developed from semi-structured and unstructured 

data sources. The Bank collects semi-structured JSON data from online user interactions on 

the Bank’s website, mobile application, tablet application and desktop computer online 

banking application. This data is collected by putting JavaScript tags on the website or 

mobile application which collect data on user behaviour such as the pages the user has visited 

or user events such as buttons clicked. This data can be used to identify visits to the website 

for certain customers where, for example, customers have looked at certain webpages or 

started application forms and then abandoned the application process. This online behaviour 

may be useful to predict when a customer is likely to take out a product. The benefit of using 

this data in classification modelling is that the data is more dynamic. Customers tend to visit 

online applications very often compared to demographic data such as age or income which 

tends to be more static over time. A sample of features built from the online behavioural data 

sources can be seen in Table 3.2. 

 

Feature Name Feature Description 

Num_Website_Visit_90 Number of visits to the website in last 90 days 

Num_Mobile_Visit_90 Number of visits to the mobile app in last 90 days 

Num_Mtg_Visit_10 
Number of visits to the mortgage home page in the 

last 10 days 

Num_Loan_Visit_10 
Number of visits to the loan home page in the last 

10 days 

 

Table 3.2: Sample of features built from semi-structured data 

 

Similarly, a small number of features have been abstracted from unstructured textual data. 

Customers often visit one of the Bank’s branches to discuss their financial needs with a 

financial advisor. This conversation is typically known as a financial needs review. Here the 
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advisor asks the individual a series of questions to understand their financial life goals and 

aspirations together with shorter term objectives. The outcome of the conversation is a 

personalised financial plan for each individual providing the customer with support to 

achieve the goals identified. For traceability and risk purposes the advisor must document the 

responses to the questions asked throughout the conversation. The notes taken during these 

advisor conversations with customers tend to be hand typed by the Bank advisor into free 

form text fields in the Bank’s CRM system. This data may be very valuable for predicting 

customer behaviour as the customer may give some indication of his life circumstances or 

intent to buy products in the near future. For example, the customer may explain that the 

reason they want to have a conversation about their finances is that they are getting married 

in six months. Where a customer is getting married this might trigger the need to buy a new 

home or the requirement for a personal loan to fund the wedding.  

 

This data is not easily consumable for featuring engineering and requires considerable data 

manipulation in order to pre-process it for amalgamation in an ABT. In this research, 

historical customer conversations have been analysed and the features embedded in the ABT. 

In order to develop the features, the data must first be converted into a suitable 

representation. The first step was to parse the data from the notes into individual words. 

Certain data cleansing and filtering methods were then applied, for example, all words were 

converted to lowercase, all punctuation was removed, all numbers were removed and stop 

words were removed. The data was then represented in a bag of words representation which 

is the most convenient form to represent this data. In a bag of words representation, a 

dictionary of all the possible words that could occur in all text examples is generated and 

each text example is represented as a vector indicating the presence or absence of words from 

the dictionary.  

 

Table 3.3 illustrates a simple bag of words representation for four examples and a dictionary 

of seven key words. The columns indicate the presence or absence of a word in a specific 

document. For example, example 1 contains the words abroad, farm, and married; while 

example 2 contains the words married and young. Figure 3.2 below visually represents in a 

word cloud certain words found in a sample of records from the dataset.  

 

 



58 
 

ID abroad account finance farm married short young 

Example 1 1 0 0 1 1 0 0 

Example 2 0 1 1 0 1 0 1 

Example 3 1 0 0 0 0 0 0 

Example 4 0 0 0 0 1 0 1 

 

Table 3.3: Example of data from text analysis 

 

 

 

Figure 3.2: Word cloud of high frequency words from text analysis 

 

A sample of features built from the unstructured notes fields can be seen in Table 3.4. 

 

Feature Name Feature Description 

Number_Dependents Number of dependents noted 

Marital_Status Up to date marital status 

Home_Status 

Whether the customer said they were renting, 

looking to buy, already have a home, own their 

own house etc.  

Occupation 
Up to date occupation status employed (what 

company), unemployed, carer etc.  

 

Table 3.4: Sample of features built from unstructured data 

 



59 
 

The three sets of features from each of the structured, semi-structured and unstructured data 

sources are then amalgamated into one dataset. The features are then analysed for inclusion in 

the final modelling process.  

 

3.2.2 Data Analysis 

 

Once the dataset was developed the first review was carried out in relation to the extent of the 

imbalance in the dataset. The initial dataset has c.1.23m customer records and 3,078 

responders, i.e. customers who took out a mortgage loan during the performance window. 

The figures for the initial raw dataset are outlined below in Figure 3.3 and indicate a response 

rate of 0.25%. This demonstrates a high level of imbalance in the dataset with the dataset 

dominated by customers who did not take out the product over the performance window.  

 

Response Rate 

Count of 

Customers Rate 

Responders 3,078 0.25% 

Non-Responders 1,227,322 99.75% 

Total Customer Base 1,230,400 100.0% 

 

Figure 3.3: First view of imbalance in the dataset 

 

This dataset includes all customers across a wide range of demographics, income bands, 

location etc. An assessment was carried out to identify certain cohorts of the customer base 

that could potentially be removed from the modelling dataset. The approach followed was to 

remove as many customers as possible from the total customer base but remove as few 

responders as possible. This approach should considerably increase the response rate of the 

remaining records. An example is identified in Figure 3.4 below; in this example, it can be 

seen that the majority of responders are in Segments 1, 4 and 6. Therefore a decision was 

taken to remove Segments 2, 3 and 5 from the modelling dataset.  

 

By removing these three segments the base of customers reduces by 50%, from 1,230,400 

622,713, however, only 3% of responders are lost with responders reducing from 3,078 to 

2,981. The removal of these customers increases the natural response rate of the modelling 

dataset by nearly 100% from 0.25% to 0.48% as seen in Figure 3.5 below.  
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Segment 
Non-

Responders 
Responders Total Response Rate 

Response 

Rate / Total 

Segment 1 325,883 1,751 327,634 0.53% 213.64% 

Segment 2 247,998 14 248,012 0.01% 2.26% 

Segment 3 219,792 17 219,809 0.01% 3.09% 

Segment 4 200,229 1,019 201,248 0.51% 202.40% 

Segment 5 139,800 66 139,866 0.05% 18.86% 

Segment 6 93,620 211 93,831 0.22% 89.89% 

Total 1,227,322 3,078 1,230,400 0.25% 100.00% 

 

Figure 3.4: Response rates of particular customer segments 

 

Response Rate 

Count of 

Customers Rate 

Responders 2,981 0.5% 

Non-Responders 619,732 99.5% 

Total 622,713 100.0% 

 

Figure 3.5: Dataset imbalance following first filter application 

 

This exercise was repeated a number of times following a detailed data discovery and 

bivariate analysis between each of the independent variables and the target variable. 

Following this filtering exercise, the final dataset volumes and response rate are identified in 

Figure 3.6 below. The final modelling dataset contains 15% of the starting total customer 

base while maintaining 73% of responders.  

 

Response Rate 

Count of 

Customers Rate 

Responders 2,240 1.2% 

Non-Responders 189,629 98.8% 

Total 191,869 100.0% 

 

Figure 3.6: Final dataset imbalance 

 

Although the dataset remains highly imbalanced with a response rate of 1.2%, the response 

rate is nearly five times higher than the raw dataset of the total customer base seen in Figure 

3.3 above.  
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An additional bi-variate analysis was carried out across a large number of the variables to 

identify variables with very little differentiation between the two classes i.e. redundant 

variables. For example, the majority of these customers have active current accounts with 

money coming in and out of their account so certain current account variables such as 

Tran_Active_3Mths was flagged as 1, the customer is an active customer, for nearly all of the 

customers in Figure 3.6. This variable is inherently redundant on that basis. This exercise was 

repeated across all of the variables in the ABT and redundant variables were removed.  

 

3.3 Software 

 

A number of software applications have been used to perform this research. This section is 

split into two parts. The first describes the software used for data acquisition, data integration 

and transformation to build the ABT, while the second part describes the software used to 

implement the algorithms in each of the three experiments.  

 

Data Integration and Transformation (ABT) 

 

The data described above has been acquired from multiple different data sources. The product 

and transactional data have been acquired from the Bank’s databases including database 

technologies such as Teradata (EDW), Oracle and Microsoft SQL server. The data has been 

pulled together in Teradata, integrated and transformed using the SQL programming 

language. The semi-structured JSON data is stored in Google Big Query a product in the 

Google Cloud Platform suite. Again, SQL has been used to build certain features within Big 

Query. Once constructed, these features were then exported and imported into Teradata. As 

described above, the unstructured data from branch financial advice notes has been 

manipulated using R, an open source programming language, to parse the data and identify 

certain key words for inclusion as features in the ABT.  

 

Implementation of the Models 

 

The models used to perform the experiments in this research have been implemented in R and 

Java. R is an open source statistical programming language with a large variety of statistical 

and graphical techniques available through R packages. In this research, CBA has been 
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implemented in R using the arulesCBA R package. Unlike CBA, there is no R or Python 

implementation of CMAR and SPARCCC available. In order to implement these algorithms, 

the source code in Java has been obtained and applied directly for experiments two and three 

outlined in Section 3.5.2 and Section 3.5.3. The Java code has been sourced, compiled and 

adjusted to be implemented for use in experiments two and three. The Java code for SPARCC 

has been applied using the WEKA (Waikato Environment for Knowledge Analysis) 

software4, a free software developed in Java that is licensed under the GNU General Public 

License. The software Apache Ant 5 has been used to build and compile the SPARCCC Java 

code. Ant is a Java based build tool created as part of the Apache open-source project.  

 

3.4 Benchmark Models 

 

3.4.1 Experiment 1 - Conditional Inference Trees 

 

The conditional inference tree model will be implemented using the R statistical 

programming tool. Specifically, within R, the library used to run the model is the ‘party’ 

library using the ‘ctree’ model.  

 

A number of sampling methodologies will be tested during the experiment including, 

oversampling, SMOTE and undersampling to determine which approach generates the best 

classification performance. 

 

In implementing the conditional inference tree algorithm there are a number of parameters 

that can be tuned. The parameters for tuning are predominately focused on tree pruning to 

prevent overfitting. These parameters will be tested to identify the appropriate level of 

pruning to prevent the model overfitting on the training data. Examples of these parameters 

include minimum criterion and max depth. Minimum criterion is a parameter setting that 

determines a test statistic that must be exceeded for the tree to perform another split, the 

parameter is set to 1 minus the parameter setting so for example if testing a P-value of 0.05 

the parameter would be set at mincriterion = 0.95. Max depth reflects the maximum number 

of splits the model can perform, for example, a parameter setting of maxdepth = 10, means 

the model cannot perform more than 10 tree splits.  

                                                           
4 https://www.cs.waikato.ac.nz/ml/weka/ 
5 http://ant.apache.org/ 
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3.4.2 Experiment 2 - Random Forests 

 

The random forests model will be implemented using the R statistical programming tool. 

Specifically, within R, the library used to run the model is the randomForest library. There 

are a smaller number of parameters that can be tuned when implementing the random forests 

model. The two key parameters are the number of trees to grow, parameter ntree in R and the 

number of independent variables randomly sampled as candidates at each split, parameter 

mtry in R. In order to help determine the right value for mtry, it is possible to use an 

independent algorithm to identify the optimum value of mtry which minimises the OOB error 

rate. In R the tuneRF library is used to estimate the optimal mtry value.  

 

3.5 Classification Using Association Rule Models 

 

The aim of the three experiments outlined below is to evaluate whether classification models 

using association rules can outperform the benchmark classification approaches discussed 

above in an Irish retail banking context. In this research, three experiments will be completed 

and the results of each experiment compared and contrasted. 

 

Experiment set up 

 

In order to run the model, the ABT will be split into two files, a train file and a test file. The 

data will be split 50% train and 50% test using stratified sampling. Where oversampling is 

applied the oversampling will be applied to the train dataset only. It is important to split the 

dataset before performing any oversampling otherwise there is a risk that similar or identical 

records synthetically created appear in the train and testing datasets causing the model to 

overfit and not generalise well beyond the dataset. A number of different sampling techniques 

will be applied including, oversampling, SMOTE and undersampling to determine which 

approach generates the best classification performance.  

 

3.5.1 Experiment 3 - CBA 

 

In experiment 3, the CBA association rule algorithm will be implemented to predict mortgage 

sales and the performance of the model compared with the performance of conditional 
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inference trees, CMAR, SPARCCC and random forests. The results will help to determine 

whether CBA should be used alongside traditional supervised classification methods to make 

predictions in an Irish retail banking context.  

 

The CBA algorithm has been implemented in the R statistical programming language using 

the arulesCBA package6. The CBA algorithm requires the user to define the minimum 

support and confidence levels in the rule generation phase. This requires an amount of trial 

and error in order to identify a range of levels that produce the highest level of classification 

accuracy.  

 

Experiment 3 will be implemented in line with Section 3.4.1 where a number of different 

sampling techniques will be applied including, oversampling, SMOTE and undersampling to 

determine which approach generates the best classification performance. 

 

The results of the model are presented using a confusion matrix and the key evaluation 

metrics calculated using the same output.  

 

3.5.2 Experiment 4 - CMAR 

 

In experiment 4, the CMAR association rule algorithm is applied to predict mortgage sales 

and the performance of the model compared with the performance of conditional inference 

trees, CBA, SPARCCC and random forests.  

 

As described in section 2.4.1, the CMAR algorithm uses a three-stage approach to 

classification using association rules. The first step is to generate the CARs using the support 

confidence framework. In this framework, the user must define the relevant support and 

confidence metrics. The second stage is to prune the rules generated and the third step is to 

use the rules generated to make classifications.  

 

 

                                                           
6 Package 'arulesCBA' - CRAN.R-project.org 

 

https://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjKuPDD5bHYAhXEI8AKHYY5DB4QFgg6MAE&url=https%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2FarulesCBA%2FarulesCBA.pdf&usg=AOvVaw1IC86dfsjdM1E9hh2uptmX
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In order to implement the CMAR model, there is an amount of data pre-processing required. 

The dataset must be in a particular format. A small example of how the dataset must be set up 

is shown below in Table 3.5.  

1 2 3 6 

1 4 5 7 

1 3 4 6 

1 2 6 

1 2 3 4 5 7 

 

Table 3.5: Example data following data pre-processing for CMAR 

 

Attribute numbers are ordered sequentially commencing with the number 1 including the 

class attributes which should follow on from the last attribute number as in the above 

example. In the example above, the last variable is the class variable and has been 

transformed from 0/1 to 6/7.  

 

In order to transform the original ABT dataset into a format that could be used by CMAR, a 

discretisation and normalisation process needs to be applied. Discretisation is the process of 

converting a continuous variable into a number of sub ranges and then assigning an integer 

value to each of those subranges. Normalisation is the process of transforming nominal 

variables in a list of unique integer values. There are a number of approaches to class 

dependent discretisation as described in Section 2.6. The numerous approaches can generally 

be categorised according to three differentiating factors 1) supervised vs. unsupervised 2) 

bottom up vs. top down and 3) direct vs. in-direct. The approach used for CMAR 

discretisation in this research is a supervised, bottom up and direct method.  

 

A sample output of a dataset pre and post discretisation and normalisation is presented below 

in Figure 3.7 and Figure 3.8.  
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This dataset has 4 attributes, colour, average size, age and the binary class. 

 

red 25.6 56 1 

green 33.3 1 1 

green 2.5 23 0 

blue 67.2 111 1 

red 29 34 0 

yellow 99.5 78 1 

yellow 10.2 23 1 

yellow 9.9 30 0 

blue 67 47 0 

red 41.8 99 1 

 

Figure 3.7: Dataset prior to discretisation  

 

This would be discretised and normalised as follows: 

 

3 5 9 13 

2 5 8 13 

2 5 8 12 

1 7 11 13 

3 5 9 12 

4 7 10 13 

4 5 8 13 

4 5 8 12 

1 7 9 12 

3 6 11 13 

 

Figure 3.8: Dataset post discretisation 

 

In this example, the dataset is now presented by 13 binary valued attributes where the class 

attributed is the last column 12/13 having replaced the original binary input 0/1. Figure 3.9 

below shows the GUI for the discretisation and normalisation tool used7. The tool takes an 

input schema, the input data source and discretises and normalises the dataset for use in 

model development.  

 

                                                           
7 https://cgi.csc.liv.ac.uk/~frans/KDD/Software/ 
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Figure 3.9: GUI for data discretisation and normalisation software 

 

The algorithms applied for CMAR were sourced from the University of Liverpool “LUCS-

KDD IMPLEMENTATIONS OF THE CMAR ALGORITHM”8. The two algorithms applied 

were the ClassCMAR_2file_App.java and the ClassCMAR_App10.java. The second 

algorithm ClassCMAR_App10.java includes 10-fold cross-validation while the first uses two 

distinct training and test datasets. The CMAR_2 algorithm requires five parameters to be 

completed, -F training filename, -T test set filename, -N number of classes, -S minimum 

support threshold and -C minimum confidence threshold. For example, the implementation of 

the algorithm with a support of 5% and confidence of 80% using the train and test data would 

be implemented as follows: java ClassCMAR_2file_App -Ftrain.txt -Ttest.txt -S5 -C80 -N2.  

 

                                                           
8 https://cgi.csc.liv.ac.uk/~frans/KDD/Software/ 

https://cgi.csc.liv.ac.uk/~frans/KDD/Software/CMAR/ClassCMAR_2file_App.java
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/CMAR/ClassCMAR_App10.java
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/CMAR/ClassCMAR_App10.java
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The ClassCMAR_2file_App model outputs the accuracy and AUC. The ClassCMAR_App10 

outputs the average accuracy and average AUC across the 10-fold cross-validation.  

 

There are certain limitations in the implementation of CMAR compared with the other 

models. The Java software implementation described above does not provide the confusion 

matrix for the results instead it simply provides the metrics described above.    

 

3.5.3 Experiment 5 - SPARCCC 

 

In experiment 5, the SPARCCC association rule algorithm will be applied to predict 

mortgage sales and the performance of the model will be compared with the performance of 

conditional inference trees, CMAR, SPARCCC and random forests. Experiment 5, will look 

to evaluate whether the SPARCCC model performs better given the imbalanced nature of the 

dataset.  

 

The SPARCCC algorithm has been sourced from Liu et al. 20109 where the code was made 

available following the publication. The algorithm has been compiled in Java and then loaded 

into the Weka software10. Weka is a Java based tool for running data mining algorithms 

which facilitated the loading of the SPARCCC algorithm. The software has been compiled by 

running the authors’ build.xml file using the Apache Ant software. Figure 3.10 below shows 

the Weka GUI where data can be loaded, visualised and manipulated and Figure 3.11 shows 

the parameters of the SPARCCC algorithm that can be tuned in advance of running the 

algorithm.  

 

                                                           
9 https://sites.google.com/site/weiliusite/ 

10 https://www.cs.waikato.ac.nz/ml/weka/downloading.html 

https://www.cs.waikato.ac.nz/ml/weka/downloading.html


69 
 

 

 

Figure 3.10: GUI for WEKA used to run SPARCCC 

 

 

 

Figure 3.11: Parameter setting in WEKA for SPARCCC 
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Similar to CMAR the SPARCCC algorithm cannot handle numeric data, therefore, a 

discretisation process has been applied to variables such as customer age and transactional 

spend to be suitable for use in the model.  

 

The experiment will be designed in line with Section 3.4.1 where a number of different 

sampling techniques will be applied including oversampling, SMOTE and undersampling to 

determine which approach generates the best classification performance. 

 

3.6 Model Evaluation 

 

In line with previous discussions on imbalanced datasets in Section 2.5 and model evaluation 

metrics in Section 2.9, the models will be evaluated using a number of measures. Given the 

dataset for use in this research is highly imbalanced the accuracy performance metric may not 

be appropriate. In these experiments, if the model predicted that all records belong to the 

majority class the accuracy of the model would be high but it would provide little value in 

differentiating between the two classes.  

 

In this research the accuracy performance metric will be avoided and a number of alternative 

model evaluation metrics will be used for model evaluation. The sensitivity and specificity of 

the models will be evaluated and these metrics will also be combined to give more balanced 

performance metrics. Two such metrics are balanced accuracy and the F1-score. As described 

above, balanced accuracy is particularly useful for imbalanced datasets as it measures the 

ability of the model to correctly identify both classes and is less subject to the potential bias 

of the majority class. The F1-score is the harmonic mean of sensitivity and specificity where 

an F1-score reaches its best value at 1 (perfect sensitivity and specificity) and worst at 0. No 

one measure is suitable to assess the performance of any model, therefore it important to 

assess each of the models across a number of different performance metrics.  

 

3.7 Conclusion 

 

This chapter outlined the design and methodologies for the five experiments that will be 

carried out as part of this research and presented in Chapter 4.  
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The chapter has outlined what data will be collected and how the data will be acquired and 

integrated to build an ABT for model development. The imbalanced nature of the dataset has 

been presented together with a number of data filtering approaches that have been applied to 

somewhat address this imbalance. The various pieces of software required to extract and 

transform the structured, semi-structured and unstructured data sources have been presented.  

 

The experiment design for each of the five experiments has been explained in detail, the two 

benchmark models and the three associative classifiers CBA, CMAR and SPARCCC. For 

each of the experiments the methodology, the key parameters that need to be tuned and the 

approach to evaluating the results has been clearly outlined.  

 

Chapter 4 will detail the implementation of the five experiments designed in Chapter 3 and 

the results of each of the experiments.  
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4. IMPLEMENTATION AND RESULTS 

 

4.1 Introduction 

 

This chapter presents the implementation of the experiments designed in Chapter 3. The 

purpose of the experiments in this research is to test whether classification models developed 

using association rules can outperform traditional supervised classification models in 

predicting mortgage loan sales in an Irish retail banking context. Two benchmark models 

have been developed to support the evaluation of the three experiments using associative 

classifiers.  

 

This chapter is divided into 4 sections, section 2 outlines the implementation approach and 

results for the two benchmark models, conditional inference trees and random forests, section 

3 outlines the results of experiment 3 using CBA, section 4 outlines the results of experiment 

4 using CMAR and section 5 outlines the results of experiment 5 using SPARCCC.  

 

4.2 Benchmark models 

 

Two traditional classifications models were implemented to provide benchmark classification 

performance metrics for comparison with the three association rule classification models. The 

two benchmark models implemented were conditional inference trees and random forests. A 

more detailed description of the algorithms can be found in Section 2.7. Both benchmark 

models were implemented using the R statistical programming language.  

 

Experiment 1 - Conditional Inference Trees 

 

Outlined below are the results of the conditional inference trees implementation. Stratified 

sampling was applied to split the dataset 50% training dataset and 50% test dataset.  Simple 

oversampling was applied to the minority class to rebalance the dataset close to 80% zeros 

and 20% ones. The results presented below are the classification performance on the test 

dataset. Table 4.1 below presents the confusion matrix for the predictions made on the test 

dataset using the conditional inference trees. Table 4.2 presents the key evaluation metrics 

used to assess the performance of the model. The results give some indication of the ability of 
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the larger class to distort the accuracy metric. In this model, the total model accuracy is 

93.1%., however, the results for recall and precision are much lower at 36.7% and 6.5% 

respectively. The F1-score which is the harmonic mean of recall and precision gives a 

balanced perspective of these two measures at 11.1%. The balanced accuracy at 65% 

compensates for the poorer performance in classifying the minority class.  

 

 
Actual Class 

Predicted Class 1 0 

1 411  5,867  

0 709  88,947  

 

Table 4.1: Confusion Matrix for Conditional Inference Trees 

 

Recall 36.7% 

Precision 6.5% 

F1-score 11.1% 

Accuracy Class 1 (Recall) 36.7% 

Accuracy Class 0 93.8% 

Balanced Accuracy 65.3% 

Accuracy 93.1% 

AUC 72.7% 

 

Table 4.2: Key Evaluation Metrics for Conditional Inference Trees 

 

The ROC curve for the conditional inference tree model is shown below in Figure 4.1 and the 

model AUC calculated is 72.7%.  

 

The confusion matrix shows the difficulty this model has dealing with the imbalanced data. 

The model has a high volume of false positives, 5,867 records classified as 1 when in fact the 

true value is zero. The model also misclassifies a high percentage of true value 1s as 0s.  

 



74 
 

 

 

Figure 4.1: ROC for Conditional Inference Trees 

 

Figure 4.2 below ranks the variables in terms of importance to the model. The most important 

variable in the model receives a score of 100 and all other variables are scored relative to this 

variable. Variables CA_AVG_CR_TURNOVER_LAST_3M, which is a proxy for an 

individual’s salary, number of open products (ABT_CNT_OPEN) and the number of open 

savings products the customer has (ABT_CNT_OPEN_CATEGORY_SAVINGS) are the 

three most important variables. These variables all appear to be intuitive outcomes for a 

mortgage prediction model as customers with higher salaries and more savings are more 

likely to be in the market for a mortgage loan.  
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Figure 4.2: Variable importance for Conditional Inference Trees 

 

Experiment 2 - Random Forests 

 

The implementation of random forests is in line with the implementation approach for 

conditional inference trees above. The data has been split 50% for training purposes and 50% 

for test purposes and oversampling of the minority class has been applied to rebalance the 

training dataset closer to 20% in the minority class and 80% in the majority class. The results 

presented below are the classification performance on the test dataset. Table 4.3 below 

presents the confusion matrix for the predictions made on the test dataset using the random 

forests algorithm. Table 4.4 presents the key evaluation metrics used to assess the 

performance of the model. The performance of the random forest is similar to the 

performance of the conditional inference trees and has similar failings in terms of 

misclassification.  Although the model accuracy is high at 96.1% the minority class metrics 

are considerably lower with a recall of 28.8% and precision of 9.9%. Similar to the 

conditional inference trees model these low values reflect a high number of false positives 

and a high percentage of the minority class incorrectly classified as no sale.   
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Actual Class 

Predicted Class 1 0 

1 323  2,942  

0 797  91,872  

 

Table 4.3: Confusion Matrix for Random Forests 

 

Recall 28.8% 

Precision 9.9% 

F1-score 14.7% 

Accuracy Class 1 (Recall) 28.8% 

Accuracy Class 0 96.9% 

Balanced Accuracy 62.9% 

Accuracy 96.1% 

AUC 80.5% 

 

Table 4.4: Key Evaluation Metrics for Random Forests 

 

Figure 4.3 below plots the ROC curve for both the conditional inference tree model and the 

random forest model. The blue line represents the random forest model and based on this 

chart indicates the classification performance of the random forest model is better than the 

conditional inference tree model. The random forest model has lower type 1 errors than the 

conditional inference trees resulting in a higher precision value but has a lower balanced 

accuracy due to lower accuracy on the minority class.  
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Figure 4.3: ROC comparison for Conditional Inference Trees and Random Forests 

 

Figure 4.4 below ranks the variables in terms of importance to the random forest model. The 

figure shows the mean decrease in Gini coefficient. The mean decrease in Gini coefficient is 

a measure of how each variable contributes to the homogeneity of the nodes and leaves in the 

random forest model developed. Each time a particular variable is used to split a node, the 

Gini coefficient for the child nodes are calculated and compared to that of the original node. 

The Gini coefficient is a measure of homogeneity from 0 (homogeneous) to 1 

(heterogeneous). The changes in Gini are summed for each variable and normalized at the 

end of the calculation. Variables that result in nodes with higher purity have a higher decrease 

in Gini coefficient. In Figure 4.4, the trend in variable importance is similar to that of the 

conditional inference tree model, however, the actual ranking of variables varies slightly. The 

CA_AVG_CR_TURNOVER_LAST_3M, which is a proxy for an individual’s salary, is still 

the top variable in terms of importance, however, in the random forest model the second most 

important variable is age and the third most important variable is 

FNR_FLAG_PROD_MORTGAGE, which indicates if the customer came to speak to an 

advisor and indicated a long-term interest in getting a mortgage.  
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Figure 4.4: Variable Importance for Random Forests 

 

A comparison of the performance of the two benchmark models in table 4.5 below shows that 

each of the two benchmark models has certain metrics where it outperforms the other model. 

For example, the conditional inference trees outperform the random forests on recall and 

balanced accuracy but is lower on F1-score and AUC.   

 

Evaluation Metrics CI Trees Random Forests 

Recall 36.7% 28.8% 

Precision 6.5% 9.9% 

F1-score 11.1% 14.7% 

Accuracy Class 1 (Recall) 36.7% 28.8% 

Accuracy Class 0 93.8% 96.9% 

Balanced Accuracy 65.3% 62.9% 

Accuracy 93.1% 96.1% 

AUC 72.7% 80.5% 

 

Table 4.5: Comparison between CI Trees and Random Forests across performance metrics 
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4.3 Experiment 3 - CBA Algorithm 

 

In line with the implementation approach applied in the benchmark models, the dataset was 

first sampled 50% for the training dataset and 50% for the test dataset. The dataset was 

oversampled bringing the minority class close to 20% of records in the training dataset. 

Certain continuous variables such as age and income variables were discretised into 

categorical variables suitable for association rule mining.  

 

The class association rules were created based on the training dataset and used to make 

predictions on the test dataset. In order to generate the rules, the minimum support level was 

set to 1% and the minimum confidence level set to 40%. A number of varying support and 

confidence levels were applied and tested to identify a range of support and confidence levels 

producing the highest level of classification accuracy. The parameter values for support and 

confidence identified above were chosen given they produced the optimal results. Figure 4.5 

below shows a subset of rules where the right-hand side of the rule is the target variable 

minority class. The figure shows the left-hand side of the rule, the right-hand side and the 

support, confidence and lift metrics. The final column shows the count of appearances of 

each particular rule in the training dataset. 

 

 

 

Figure 4.5: Top ranking rules for CBA implementation 

 

After the classification association rules are built the rules can be sorted by a number of 

varying metrics including support, confidence and lift. Once the rules have been sorted 

according to one of these metrics they can be used to make predictions on the test dataset. In 
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this experiment, the rules have been sorted by both confidence and lift and the classification 

accuracy compared.  

 

The results presented below are the classification performance on the test dataset. Table 4.6 

below presents the confusion matrix for the predictions made on the test dataset using the 

CBA algorithm. Table 4.7 presents the key evaluation metrics used to assess the performance 

of the model. Although the CBA model performs better than the two benchmark models in 

classifying the minority class, the model predicts a high volume of 1s where in fact the actual 

value is 0. The high volume of type 1 errors is therefore reflected in a very low precision 

metric of 2.7%. 

 

 
Actual 

Predicted 1 0 

1 687 24,383 

0 433 70,431 

 

Table 4.6: Confusion Matrix for CBA 

 

Recall 61.3% 

Precision 2.7% 

F1-score 5.2% 

Accuracy Class 1 (Recall) 61.3% 

Accuracy Class 0 74.3% 

Balanced Accuracy 67.8% 

Accuracy 74.1% 

 

Table 4.7: Key Evaluation Metrics for CBA 

 

A comparison of CBA against the two benchmark models confirms the model evaluation 

above. The CBA algorithm has produced a high volume of type 1 errors or false positives. 

The balanced accuracy of the CBA model is the highest of the three models but the low 

precision value is a major concern about the model’s predictive ability.  
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Evaluation Metrics CI Trees Random Forests CBA 

Recall 36.7% 28.8% 61.3% 

Precision 6.5% 9.9% 2.7% 

F1-score 11.1% 14.7% 5.2% 

Accuracy Class 1 (Recall) 36.7% 28.8% 61.3% 

Accuracy Class 0 93.8% 96.9% 74.3% 

Balanced Accuracy 65.3% 62.9% 67.8% 

Accuracy 93.1% 96.1% 74.1% 

AUC 72.7% 80.5%   

 

Table 4.8: Comparison between CI Trees, Random Forests and CBA across performance 

metrics 

   

4.4 Experiment 4 - CMAR 

 

A number of various approaches were applied in the CMAR experiment, however, none of 

the methods returned positive results. For each of these approaches, the data was discretised 

and normalised in line with the methodology set out in Section 3.5.2. 

 

The first approach applied was 10-fold cross-validation on the full dataset with no treatment 

for the imbalanced nature of the dataset. Here the model is trained on 90% of the data and 

tested on a holdout sample of 10%, and this is repeated 10 times. The CMAR algorithm was 

run with parameters of support 1% and confidence 40%. The results of each model are then 

aggregated together. This method did not work and the model did not predict any of the 

minority class in the final class predictions. The model predictions results in an AUC of 0.5, 

indicating the model was of no value.  

 

The second approach applied was to undersample the majority class and then apply 10-fold 

cross-validation. In this undersampling approach, records with the majority class were 

removed at random from the dataset until the minority class represents 2.4%, a 50% reduction 

in the majority class. The CMAR algorithm was run with parameters of support 1% and 

confidence 40%. This model was not able to correctly predict any of the minority class values 

and the resulting AUC was 0.5.  
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In the third approach, in line with the implementation approach applied in the CBA 

experiment described above, the dataset was first sampled 50% for the training dataset and 

50% for the test dataset. The dataset was oversampled bringing the minority class close to 

20% of records in the training dataset. The CMAR algorithm was run with parameters of 

support 1% and confidence 40%. In this approach, the AUC reached 0.54 but this is still a 

model with very poor performance. Figure 4.6 below presents the top-ranking rules from the 

CMAR implementation.  

 

 

 

Figure 4.6: Top ranking rules for CMAR implementation 

 

 

 

Figure 4.7: Experiment Results CMAR 

 

An alternative approach would have been to apply oversampling during the cross-validation 

implementation. This would involve oversampling only in the 90% sampled for model 

training and the remaining 10% test remains unbalanced. If the cross-validation approach is 

applied to the full dataset where oversampling has already been applied there is a risk of 

overfitting as synthetically created records could appear in both the test and training datasets. 

However, there were certain limitations in the implementation of this algorithm.  The 
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implementation did not allow oversampling the 90% training sample while leaving the 10% 

test sample untreated. 

 

4.5 Experiment 5 - SPARCCC 

 

In line with the implementation approach applied in the experiments described above, the 

dataset was first sampled 50% for the training dataset and 50% for the test dataset. The 

dataset was oversampled bringing the minority class close to 20% of records in the training 

dataset. The SPARCCC algorithm does not accept numeric values so variables were 

converted to nominal values or discretised into a number of bins.   

 

The class association rules were created based on the training dataset and then used to make 

predictions on the test dataset. In order to generate the rules, the minimum support level was 

set to 1% and the CCR, described in Section 2.5, set to a value of 1. A number of varying 

support and CCR levels were applied and tested to identify a range of support and confidence 

levels producing the highest level of classification accuracy.  

 

A subset of the rules generated during the model training phase is presented below in Figure 

4.8. In addition to the outputs from the previous rule generation models, the SPARCCC CCR 

value can be seen, the furthermost right value. For example, the variable FNR 

FNR_CNT_LAST_12MTH=2 -> 1 generates a CCR value of 8.8, the highest in this subset of 

rules where the right-hand side of the rule is the minority class of the target variable. 

 

 

 

Figure 4.8: Subset of the rules from SPARCCC training 
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The results presented below are the classification performance on the test dataset. Table 4.9 

below presents the confusion matrix for the predictions made on the test dataset using the 

SPARCCC algorithm. Table 4.10 presents the key evaluation metrics used to assess the 

performance of the model. Similar to the results in CBA, the SPARCCC model generates a 

large number of false positives with 10,822 incorrectly classified values. The number of false 

positives in the SPARCCC model is still significantly lower than the number of false 

positives generated by CBA which is reflected in a higher precision and F1-score. The 

SPARCCC model performs worse than the CBA model in classifying the minority class, this 

is reflected in a lower recall value for SPARCCC of 44.4% vs. 61.3% for CBA.  

 

 
Actual 

Predicted 1 0 

1 480 10,822 

0 602 84,030 

 

Table 4.9: Confusion Matrix for SPARCCC 

 

Recall 44.4% 

Precision 4.2% 

F1–score 7.8% 

Accuracy Class 1 (Recall) 44.4% 

Accuracy Class 0 88.6% 

Balanced Accuracy 66.5% 

Accuracy 88.1% 

AUC 66.5% 

 

Table 4.10: Key Evaluation Metrics for SPARCCC 
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A comparison of the models in shown Table 4.11. 

 

Evaluation Metrics CI Trees 
Random 

Forests 
CBA SPARCCCC 

Recall 36.7% 28.8% 61.3% 44.4% 

Precision 6.5% 9.9% 2.7% 4.2% 

F1–score 11.1% 14.7% 5.2% 7.8% 

Accuracy Class 1 

(Recall) 
36.7% 28.8% 61.3% 44.4% 

Accuracy Class 0 93.8% 96.9% 74.3% 88.6% 

Balanced Accuracy 65.3% 62.9% 67.8% 66.5% 

Accuracy 93.1% 96.1% 74.1% 88.1% 

AUC 72.7% 80.5%   66.5% 

 

Table 4.11: Comparison of performance metric across all models 

 

4.6 Conclusion 

 

Chapter 4 has explained in detail how each of the five experiments was implemented and the 

results of each experiment. For each of the associative classifiers a sample of the top high-

quality rules used for classification has been presented. The confusion matrix, performance 

metrics, variable importance and ROC curve have been provided where applicable.  

 

Chapter 4 provided an initial comparison of the models across the key performance metrics 

and some insights into the positive and negative outcomes evidenced.  

 

In Chapter 5 the models are evaluated in more detail and an assessment is completed as to 

how the results compare to the existing body of research. Chapter 5 also details how the 

results of the experiments support real-world use cases.  
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5. EVALUATION 

 

5.1 Introduction 

 

This chapter evaluates the results of the experiments carried out in Chapter 4. The objective 

of this research is to extend the existing body of research on classification using association 

rules through the completion of a number of experiments and compare the results of the 

experiments with the existing research in the field. This research is unique as the experiments 

have been performed on real-world Irish retail banking mortgage data. This chapter is divided 

into three further sections. 

 

Section 5.2 evaluates in more detail the experiments carried out in Chapter 4, the strengths 

and weaknesses of the experiments and outlines which model would ultimately be chosen for 

use in a production environment. This section compares the results of the experiments 

implemented with previous literature in this area and analyses whether the results of the 

experiments in this research align or not with the existing body of research.  

 

Section 5.3 outlines how these results support real-world experiments and what role 

associative classifiers could play in supporting traditional classification models. This section 

describes additional real-world use cases, for example, supporting data processing activities 

under the new data regulation GDPR.  

 

Section 5.4 gives a brief evaluation of the various software packages used throughout this 

research, detailing some of the positives and negatives of each.  

 

5.2 Evaluation of Experiments 

 

This section evaluates in more detail the experiments carried out in Chapter 4. The existing 

research in this area suggests that given an imbalanced dataset such as the dataset in this 

research experiment, the SPARCCC algorithm should outperform CBA and CMAR and the 

SPARCCC algorithm should compare favourably with traditional tree-based supervised 

learning classification algorithms.  

 



87 
 

Evaluation Metrics CI Trees 
Random 

Forests 
CBA SPARCCCC CMAR 

Recall  36.7% 28.8% 61.3% 44.4%   

Precision 6.5% 9.9% 2.7% 4.2%   

F1–score 11.1% 14.7% 5.2% 7.8%   

Accuracy Class 1 

(Recall) 
36.7% 28.8% 61.3% 44.4%   

Accuracy Class 0 93.8% 96.9% 74.3% 88.6%   

Balanced Accuracy 65.3% 62.9% 67.8% 66.5%   

Accuracy 93.1% 96.1% 74.1% 88.1%   

AUC 72.7% 80.5%   66.5%  53% 

 

Figure 5.1: Top performing model across key performance metrics 

(Highlighted in blue is the top performing algorithm for the particular metric) 

 

On review of the implementation results of the five experiments carried out in Chapter 4, 

Figure 5.1 above, the models that would be implemented in this real-world scenario would be 

the two benchmark models. In particular, the random forests model performed the best of the 

two benchmark models and would be the model used in production, in this scenario for use in 

marketing activities to retail banking customers. Choosing the random forests as the top 

performing model is based on assessing the performance of the models across a number of 

balanced performance measures such as AUC, balanced accuracy and F1-score rather than 

focusing on any single performance evaluation measure. The results of these experiments 

signify that in this real-world mortgage loan sales prediction experiment associative classifier 

models have not been able to perform at least as well as or better than traditional supervised 

learning classification models.  

 

The poor performance in the CBA and SPARCCC algorithms is predominately evidenced by 

the large amount of false positive predictions. In the CBA and SPARCCC experiments, the 

models have predicted a large volume of records to be a sale when in fact no sale occurred 

leading to very low precision values. The rules generated from the associative classifiers are 

not able to adequately identify the relevant patterns in the data. 

 

For CBA, the known weakness with this model as discussed in 2.4, is that the CBA algorithm 

uses only one high quality rule to make class predictions ranked by rule confidence. The 

algorithm ignores other rules that may also be high quality but have slightly slower 
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confidence than the top rule. This single rule approach is a simplified approach and is likely 

to result in high levels of misclassification as the single rule is used to classify all records that 

are covered by that rule.  

 

In Li et al. (2001), the authors developed CMAR and tested the results against CBA and 

C4.5. The authors’ results state that CMAR outperforms both C4.5 and CBA in terms of 

accuracy on 13 or 50% of the 26 UCI11 datasets used for the research. CMAR is expected to 

outperform CBA as it uses voting systems across a number of top quality rules rather than 

simply picking only the top ranked rule. In this research, however, CMAR performed the 

worst of the models across the five experiments. The explanation for this performance can be 

attributed to the rule ranking methodology as part of the CMAR implementation.  

 

A review of the CMAR implementation approach shows a bias towards rules with high 

support as well as high confidence. In the implementation of CBA, although the model is 

simplistic in that it ranks based on confidence only, rules with low support can be still be 

ranked high in terms of the ordering of rules. This means for CBA, rules which cover the 

minority class that have a low support level can still rank highly in the rules ordering process.  

For CMAR, however, the rule ranking procedure, uses both support and confidence. Ranking 

rules by using support biases rules towards the majority class given they appear more often in 

the dataset. This results in the top-ranking rules being dominated by the majority class. This 

rule ranking implementation resulted in a model similar to defaulting all predictions to the 

majority class, in this research that classification is ‘no sale’.  

 

This rule ranking bias is outlined in Figure 5.2 and Figure 5.3 below. Figure 5.2 below shows 

the top priority rules from the CMAR implementation. In line with the discretisation 

approach applied for CMAR described above, Cons {91}, reflects the majority class and 

Cons {92} reflects the minority class. Figure 5.2 shows that the top-ranking rules all have the 

consequent {91}, the majority class. Figure 5.3 shows where the minority class rules begin to 

appear in the rule rank ordering, the first Cons {92} rule appears at rule ranking number 

6,990. For context, the CMAR algorithm has created 14,968 high quality rules. This means 

the first 6,989 rules all default to the majority class. This rule ranking bias is the reason for 

the poor performance of the CMAR algorithm implementation. The CMAR implementation 

                                                           
11 https://archive.ics.uci.edu/ml/datasets.html 
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in this research does not have the flexibility to change the rule ranking process to be driven 

only by confidence and this is, therefore, a limitation of this research.  

 

 

 

Figure 5.2: Top ranking rules from CMAR training 

 

 

 

Figure 5.3: Subset of minority class rules from CMAR implementation 
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The results of CBA and CMAR give weight to the concerns raised in Verhein and Chawla 

(2007) that these models have difficulty dealing with imbalanced datasets. Even following 

oversampling approaches in the training dataset, the model performance is still poor 

particularly for certain performance metrics such as precision. In Verhein and Chawla (2007), 

the authors set out to demonstrate that existing associative classifiers, for example, CBA and 

CMAR perform poorly on imbalanced data and that their newly developed algorithm 

SPARCCC is a more suitable model to accurately classify the minority class on such 

imbalanced datasets.  

 

The authors performed two sets of tests for their classifier SPARCCC. The first test, on 

balanced datasets, compares the performance of the SPARCCC algorithm with other 

classifiers CBA, CMAR and C4.5 and the results show little difference in the accuracy of the 

predictions. The authors state that the benefit of SPARCC for balanced datasets is that the 

SPARCCC model uses a much smaller search space so is, therefore, less computationally 

intensive.  

 

The second test focuses on imbalanced datasets where the authors state that the SPARCCC 

model was 45.8% better than CBA and 26.1% better than CCCS, Complement Class Support, 

(Arunasalam & Chawla, 2006), another associative classification model. For performance 

measurement, the authors have used True Positive Rate or recall. In choosing True Positive 

Rate, the authors recognise that accuracy is not a valid performance metric and instead have 

decided to use True Positive Rate as their evaluation metric of choice. The concern with the 

evaluation approach used by Verhein and Chawla (2007) is the use of a single performance 

metric for evaluation purposes. One metric by itself may not provide the full picture. This is a 

potential weakness in the results presented by Verhein and Chawla (2007). In this research, if 

the chosen metric for evaluation was simply recall the final model chosen as the top 

performing model would have been CBA. Instead in this research evaluation has been carried 

out across a range of metrics to give a more balanced and comprehensive evaluation.  

 

The expectation when designing the experiments, given the claims made in Verhein and 

Chawla (2007), was that the SPARCCC algorithm would be the top performing associative 

classifier and would challenge the performance of the tree based supervised learning 

approaches. What is concerning about the results in Verhein and Chawla (2007), is the 

authors removed the performance of the traditional decision tree method C4.5 when 
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presenting their results on the imbalanced dataset and did not provide any basis behind this 

decision.  

 

In these experiments, the SPARCCC algorithm did perform the best when comparing the 

three associative classifiers across a range of balanced measures, balanced accuracy, AUC 

and F1–score. However, the SPARCCC model is not able to match the performance of the 

traditional classification approaches. One possible explanation for this is the real-world 

nature of this dataset compared to the datasets used in Verhein and Chawla (2007). In order 

to generate imbalanced datasets, the authors undersampled existing UCI datasets and left the 

majority class intact. The authors undersampled the minority class until the minority class 

accounted for 10% of total records in the dataset. The risk with this approach is that by 

removing records useful information may be discarded and undersampling an existing 

balanced data is not the same as applications on real-world imbalanced datasets.  

 

5.3 How these results support real-world experiments 

 

The purpose of this research was to test whether models performing classification using 

association rules, i.e. models converting unsupervised learning rules into class predictions, 

could outperform a number of benchmark supervised learning algorithms. In this research the 

associative classifiers did not perform as well as the traditional supervised learning 

approaches. This research supports the existing claims that associative classifiers do not 

perform well on imbalanced real-world datasets.  

 

The association rules generated during the rule generation phase give intuitive insights into 

how certain variables interact with the target variable. The association rules generated could 

be used as part of the data discovery phase of traditional classification modelling to provide 

insight into the feature engineering process or to identify variables for consideration as 

interaction terms. Association rules may also be useful to explain relationships to business 

users where a more ‘black box’ model has been implemented. For example, if the model 

chosen for a particular use case is a neural network, this model does not easily allow intuitive 

rules or relationships to be pulled out for explanation to the business user. In this case 

association rules could be generated to supplement the neural network and help explain to 

business users some interesting relationships in the data.  
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As described in Chapter 1 there is new data protection regulation GDPR due to go live on 

May 25th, 2018. As part of the new regulation there is increasing oversight being placed on 

automated decision making. One example of automated decision making in a banking context 

includes real time credit decisions i.e. should we give this person a loan or not. In order to 

perform these decisions banks often use sophisticated data mining algorithms. The 

requirements under the new regulation allow the customer to request the underlying rules 

behind an automated decision if the decision has a material legal effect. This may have 

impacts for organisations using black box algorithms such as neural networks to carry out the 

credit scoring. There may be a role under GDPR for association rule learning to complement 

more sophisticated classification algorithms. Where the customer asks for the rules behind 

the decision the bank may be able to provide the association rules as an alternative approach 

as association rules are intuitive and can be easily described to an end customer.  

 

Additional research would be required to test the experiments on Irish retail banking balanced 

datasets, for example, predicting product sales for small business customers tends to be more 

balanced. In Verhein and Chawla (2007), the authors compare the performance of 

SPARCCC, CBA, CMAR and C4.5 and the results show little difference in the accuracy of 

the predictions. 

 

5.4 Software Evaluation 

 

Experiments 1, 2 and 3 were built in the R statistical software. R is an open source software 

requiring the user to program their code using the R language. R has a wide variety of 

statistical and graphical techniques available through R packages to implement, visualise and 

evaluate models. Once the dataset was created the experiment could be designed in R and the 

various parameters of each model tuned to yield the highest of level of predictive accuracy. R 

also has certain limitations. For certain packages the documentation is poor, making it hard to 

decipher exactly what the various parameters are and what values they accept. Certain R 

packages can create memory issues, consuming all memory very quickly causing the 

software to stop functioning and the model needs to be re-run or re-designed to use less 

memory.  
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In summary, although R requires the user to code up the implementation of each algorithm 

and necessary visualisations, it provides the most comprehensive library of statistical 

techniques.  

 

Experiment 4, CMAR, was run using the command prompt. The Java based models12 were 

compiled and run through lines of codes in the command prompt, for example, java 

ClassCMAR_2file_App -Ftrain.txt -Ttest.txt -S5 -C80 -N2. This software had a number of 

limitations in terms of flexibility. There was limited scope to tune the model in terms of the 

rule rank order process, there was limited scope to tune parameters and there was no 

capability to visualise the model performance.   

 

In Experiment 5, SPARCCC, the Java based models were loaded into WEKA. The ability to 

run the model from WEKA provided significantly more flexibility than running the source 

code directly. In WEKA, similar to R, the experiment could be designed easily and there was 

a certain level of flexibility to tune the parameters. WEKA also provides some data 

visualisation components for data discovery.  

 

For data acquisition and data manipulation the majority of the effort was spent using SQL to 

structure the data into the ABT. This exercise was carried out using Teradata Studio an 

interface into the back-end Teradata database. This software proved to be a suitable tool for 

this exercise.  

 

5.5 Conclusion 

 

Chapter 5 details the results of the five experiments completed and evaluates the results in 

more detail. The results of the experiments conclude that the benchmark traditional 

classification models have outperformed the associative classifier models. The random 

forests model has performed the best following a comprehensive performance assessment 

across a number of balanced accuracy metrics such as AUC, F1-score and balanced accuracy.  

 

The Chapter then presents the reasons for the poor performance of the associative classifiers. 

The associative classifier algorithms produced a high volume of type 1 errors or false 

                                                           
12 https://cgi.csc.liv.ac.uk/~frans/KDD/Software/ 
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positives. This indicates that the rules are not sophisticated enough to pick up certain patterns 

in the training data. The results of the CBA and CMAR experiments substantiate the claims 

made by Verhein and Chawla (2007) that these classifiers do not perform well on imbalanced 

datasets as they are biased towards the majority class.  

 

The SPARCCC algorithm was designed to perform well on imbalanced datasets. The results 

of the experiment show that the SPARCCC algorithm outperforms CBA and CMAR but does 

not perform as well as the benchmark algorithms conditional inference trees and random 

forests.  

 

Alternative uses of association rules were presented in this chapter. For example, association 

rules may be useful as part of the data discovery phase to identify hidden relationships which 

could highlight areas of consideration as part of the feature engineering process. Association 

rules could also be used to present patterns in the data where a ‘black box’ modelling 

approach has been applied. The use of association rules to support ‘black box’ algorithms 

may have a very valuable role under GDRP where organisations will be required to be able to 

explain the rules behind ‘automated decision making’.  
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6. CONCLUSION 

 

6.1 Introduction 

 

This chapter concludes the dissertation and outlines how the research has achieved the 

previously stated goals. The research objectives are reiterated together with the results against 

the stated objectives. Any limitations identified as part of the experiments and evaluation are 

clearly stated. How this research extends the existing body of research in classification using 

association rules is presented. Finally, ideas and areas of interest for future work and research 

are highlighted.  

 

6.2 Research Definition and Research Overview 

 

The objective of this research was to assess whether association rule algorithms could 

produce statistically better classifications of mortgage sales than traditional classification 

algorithms in an Irish retail banking context. The state of the art research in the area of 

association learning and classification using association rules was reviewed and this research 

was utilised to design and implement five experiments to test the performance of associative 

classifiers with two traditional classification models. The experiments involved the 

implementation of three associative classifier models to test their accuracy in predicting Irish 

retail mortgage sales and comparing their performance to two benchmark models, random 

forests and conditional inference trees.   

 

The objectives achieved by this research were: 

 

• The state of the art literature was reviewed across knowledge discovery in databases, 

association rule learning, extending association rules to make class predictions and 

model evaluation methods.  

 

• Five experiments were designed to assess whether associative classifier models could 

outperform traditional classification algorithms in predicting Irish retail mortgage 

sales.  
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• An Analytics Base Table was constructed using structured, semi-structured and 

unstructured data sources. The ABT developed formed the basis for model 

development.  

 

• Five algorithmic experiments including two benchmark algorithms and three 

associative classifiers were designed and implemented. 

 

• The five experiments were evaluated and compared to determine their strengths and 

limitations in predicting Irish mortgage sales.  

 

6.3 Experimentation, Evaluation and Results 

 

In order to achieve the objectives of this research a number of experiments were performed 

using various traditional supervised classification models and associative classifiers. Five 

experiments were performed to evaluate the performance of associative classifiers in 

predicting mortgage sales in an Irish retail banking context. The five experiments performed 

included two benchmark experiments for comparison purposes and three associative 

classifiers, CBA, CMAR and SPARCCC. The two benchmark models implemented were 

conditional inference trees and random forests.  

 

The results of the five experiments were comprehensively evaluated across a number of 

accuracy measures. Given the imbalanced nature of the dataset, the straightforward accuracy 

measure was avoided in favour of more balanced metrics including AUC, F1-score and 

balanced accuracy. The results presented from this research show that the benchmark models 

performed better than the associative classifiers. The benchmark models provided the highest 

accuracy when taking a comprehensive view of all the various model performance metrics. 

Of the two benchmark models the random forest model performed best and would therefore 

be the chosen model for implementation into a production environment.  

 

There are a number of limitations to the research: 

 

• The CMAR algorithm implementation in this research was very inflexible in relation 

to the options for rule ranking. This is reflected in the poor results in this experiment 
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(Experiment 4). With more time the source code could be altered to remove the 

support ranking condition from the rule ranking process which is biased towards rules 

with the majority class as the consequent.  

 

• The data used in the experiments is not exhaustive in terms of the data available on 

Bank of Ireland customers. Certain data, for example, granular spending behaviour at 

the store level and certain interaction data such as inbound call data was not used in 

this research. This data has not been included in the ABT as part of this research due 

to time restrictions. Perhaps additional data sources could improve the model 

accuracy in each of the experiments.  

 

• Implementing certain experiments using very low support levels, for example, 0.1%, 

proved too computationally intensive from a memory usage perspective in R. Lower 

support levels can introduce high quality rules for the minority class. This restriction 

may have contributed to the bias towards the majority class.  

 

6.4 Contributions to Body of Knowledge and Achievements 

 

The experiments and results of this research have increased the body of knowledge on 

classification using association rules. The majority of the existing body of research on 

association rule learning focused on association rule learning as an unsupervised learning 

technique. Significant research has been carried out in the area of association rule learning 

primarily focusing on ways to improve the speed of rule generation and reduce the 

computationally expensive nature of generating rules (Han, Pei, & Yin, 2000).  

 

Extending association rules to make predictions has received less research attention. Chapter 

2 above outlines some of the seminal papers in the area of classification using association 

rules. Research such as Liu et al. (1998) and Li et al. (2001) have extended traditional 

association rule learning algorithms such as Apriori (Agrawal et al., 1994) and FP-growth to 

make class predictions. Verhein and Chawla (2007), claimed that existing models such as 

CBA and CMAR did not perform well on imbalanced datasets so the authors developed 

SPARCCC to deal with imbalanced datasets. However, in order to generate imbalanced 
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datasets in the SPARCCC experiments the authors under sampled existing UCI datasets and 

left the majority class intact. 

 

This research has added to the existing body of research on associative classifiers by carrying 

out five experiments on a real world imbalanced dataset which is novel when compared to the 

previously reviewed state of the art research.  

 

In this research, the associative classifiers performed poorly compared to the traditional 

classification models adding to claims in the existing body of research that associative 

classifiers perform poorly on imbalanced datasets.  

 

6.5 Future Work and Research 

 

This research focused on an imbalanced dataset where the minority class represented 1.2% of 

the total records in the dataset. Similar experiments could be carried out on more balanced 

datasets.  In Verhein and Chawla (2007), the authors compare the performance of SPARCCC, 

CBA, CMAR and C4.5 and state that the results in terms of prediction accuracy were very 

similar. These claims could be tested on real world Irish retail banking datasets such as 

business customer datasets.  

 

6.6 Conclusion  

 

Chapter 6 concludes the research and experiments carried out to evaluate whether models 

performing class predictions using association rules could outperform traditional 

classification models in terms of classification accuracy. This chapter provided an overview 

of the research performed, outlined the experiments implemented and the results achieved. 

The evaluation of the research in this chapter also included certain limitations identified. 

Finally, chapter 6 presented some additional areas for future work to build on the experiments 

carried out as part of this research.  
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Appendix 1 

 

Full list of structured variables in the ABT 

 

PER_AGE CLIENT_TYPE 

PER_ISCO_OCCUPATION_CODE PER_CREDIT_GRADE 

PER_B365_REGISTERED PER_B365_ACTIVE 

PER_FLAG_CONSENT PER_FLAG_DECEASED 

PER_FLAG_PREMIER PER_FLAG_PRIVATE 

PER_HOUSE_STATUS ABT_CNT_CLOSED 

PER_FLAG_SEX ABT_CNT_OPEN_JOINT 

PER_FLAG_B365_ONLINE_6MTHS_USE

D ABT_CNT_OPEN_CATEGORY_INVEST 

PER_FLAG_GRADUATE ABT_CNT_OPEN_CATEGORY_CC 

PER_ROI_RESIDENT 

ABT_CNT_CLOSED_CATEGORY_INVE

ST 

ABT_FLAG_OPEN_JOINT ABT_CNT_CLOSED_CATEGORY_CC 

ABT_CNT_TOTAL_JOINT 

ABT_CNT_TOTAL_CATEGORY_INVES

T 

ABT_CNT_OPEN_CATEGORY_LOANS ABT_CNT_TOTAL_CATEGORY_CC 

ABT_CNT_OPEN_CATEGORY_BIL BRANCH_LAST_AC_OPENED 

ABT_CNT_CLOSED_CATEGORY_LOAN

S FNR_CNT_LAST_6MTHS 

ABT_CNT_CLOSED_CATEGORY_BIL FNR_FLAG_PROD_SAVINGS 

ABT_CNT_TOTAL_CATEGORY_LOANS FNR_FLAG_PROD_BIL 

ABT_CNT_TOTAL_CATEGORY_BIL 

CA_AVG_CR_TURNOVER_LAST_3MT

H 

ABT_DATE_AC_FIRST_OPENED TRAN_FLAG_ACTIVE_LST_3MTH 

FNR_CNT_LAST_12MTHS OD_PERM_UTILISED 

FNR_FLAG_PROD_INVEST TRAN_FLAG_ACTIVE_LST_12MTH 

FNR_FLAG_PROD_LOANS OD_FLAG_PERM_LIMIT 

CA_AVG_CR_TURNOVER_LAST_12MT

H CNT_ATM_DEBIT_12MTH 

ABT_CNT_OPEN CNT_ATM_CREDIT_12MTH 

ABT_CNT_TOTAL CNT_DD_DEBIT_12MTH 

ABT_CNT_OPEN_CATEGORY_SAVINGS CNT_DD_CREDIT_12MTH 

ABT_CNT_OPEN_CATEGORY_MTG CNT_SO_DEBIT_12MTH 

ABT_CNT_CLOSED_CATEGORY_SAVIN

GS CNT_SO_CREDIT_12MTH 
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ABT_CNT_CLOSED_CATEGORY_MTG CNT_LODGE_DEBIT_12MTH 

ABT_CNT_TOTAL_CATEGORY_SAVIN

GS CNT_LODGE_CREDIT_12MTH 

ABT_CNT_TOTAL_CATEGORY_MTG CNT_FX_DEBIT_12MTH 

BRANCH_FIRST_AC_OPENED CNT_FX_CREDIT_12MTH 

FNR_CNT_LAST_3MTHS CNT_SO_DEBIT_3MTH 

FNR_FLAG_PROD_MTG CNT_SO_CREDIT_3MTH 

FNR_FLAG_PROD_CC CNT_LODGE_DEBIT_3MTH 

CA_AVG_CR_TURNOVER_LAST_1MTH CNT_LODGE_CREDIT_3MTH 

TRAN_FLAG_ACTIVE_LST_1MTH CNT_FX_DEBIT_3MTH 

OD_PERM_LIMIT CNT_FX_CREDIT_3MTH 

CNT_SO_DEBIT_1MTH CNT_365_DEBIT_1MTH 

CNT_SO_CREDIT_1MTH CNT_365_DEBIT_3MTH 

CNT_LODGE_DEBIT_1MTH CNT_365_DEBIT_MTH 

CNT_LODGE_CREDIT_1MTH CNT_365_DEBIT_12MTH 

AMOUNT_FX_DEBIT_1MTH AMOUNT_FX_CREDIT_1MTH 

AMOUNT_SO_DEBIT_1MTH AMOUNT_365_DEBIT_1MTH 

AMOUNT_SO_CREDIT_1MTH AMOUNT_365_DEBIT_3MTH 

AMOUNT_LODGE_DEBIT_1MTH AMOUNT_365_DEBIT_MTH 

AMOUNT_LODGE_CREDIT_1MTH AMOUNT_365_DEBIT_12MTH 

AMOUNT_FX_DEBIT_1MTH AMOUNT_FX_CREDIT_1MTH 

AMOUNT_ATM_DEBIT_12MTH AMOUNT_DD_DEBIT_6MTH 

AMOUNT_ATM_CREDIT_12MTH AMOUNT_DD_CREDIT_6MTH 

AMOUNT_DD_DEBIT_12MTH AMOUNT_SO_DEBIT_6MTH 

AMOUNT_DD_CREDIT_12MTH AMOUNT_SO_CREDIT_6MTH 

AMOUNT_SO_DEBIT_12MTH AMOUNT_LODGE_DEBIT_6MTH 

AMOUNT_SO_CREDIT_12MTH AMOUNT_LODGE_CREDIT_6MTH 

AMOUNT_LODGE_DEBIT_12MTH AMOUNT_LODGE_DEBIT_3MTH 

AMOUNT_LODGE_CREDIT_12MTH AMOUNT_LODGE_CREDIT_3MTH 

AMOUNT_FX_DEBIT_12MTH AMOUNT_FX_DEBIT_3MTH 

AMOUNT_FX_CREDIT_12MTH AMOUNT_FX_CREDIT_3MTH 

AMOUNT_DD_DEBIT_1MTH AMOUNT_DD_CREDIT_1MTH 

TOTAL_CNT_FX_1MTH TOTAL_CNT_FX_1MTH 

TOTAL_CNT_SO_1MTH TOTAL_CNT_365_1MTH 

TOTAL_CNT_SO_1MTH TOTAL_CNT_365_3MTH 

TOTAL_CNT_LODGE_1MTH TOTAL_CNT_365_MTH 

TOTAL_CNT_LODGE_1MTH TOTAL_CNT_365_12MTH 

TOTAL_CNT_FX_1MTH TOTAL_CNT_FX_1MTH 

TOTAL_CNT_ATM_12MTH TOTAL_CNT_DD_6MTH 

TOTAL_CNT_ATM_12MTH TOTAL_CNT_DD_6MTH 

TOTAL_CNT_DD_12MTH TOTAL_CNT_SO_6MTH 
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TOTAL_CNT_DD_12MTH TOTAL_CNT_SO_6MTH 

TOTAL_CNT_SO_12MTH TOTAL_CNT_LODGE_6MTH 

TOTAL_CNT_SO_12MTH TOTAL_CNT_LODGE_6MTH 

TOTAL_CNT_LODGE_12MTH TOTAL_CNT_LODGE_3MTH 

TOTAL_CNT_LODGE_12MTH TOTAL_CNT_LODGE_3MTH 

TOTAL_CNT_FX_12MTH TOTAL_CNT_FX_3MTH 

TOTAL_CNT_FX_12MTH TOTAL_CNT_FX_3MTH 

TOTAL_CNT_DD_1MTH CNT_FX_CREDIT_6MTH 

PER_NUM_DEPENDENTS CNT_ATM_DEBIT_3MTH 

PER_MARITAL_STATUS CNT_ATM_CREDIT_3MTH 

PER_FLAG_B365_ONLINE_3MTHS_USE

D CNT_DD_DEBIT_3MTH 

PER_FLAG_STUDENT CNT_DD_CREDIT_3MTH 

PER_STAFF CNT_ATM_DEBIT_1MTH 

ABT_FLAG_OPEN_DORMANT CNT_ATM_CREDIT_1MTH 

ABT_CNT_CLOSED_JOINT CNT_DD_DEBIT_1MTH 

ABT_CNT_OPEN_CATEGORY_INS CNT_DD_CREDIT_1MTH 

ABT_CNT_OPEN_CATEGORY_BIF CNT_365_CREDIT_1MTH 

ABT_CNT_CLOSED_CATEGORY_INS CNT_365_CREDIT_3MTH 

ABT_CNT_CLOSED_CATEGORY_BIF CNT_365_CREDIT_MTH 

ABT_CNT_TOTAL_CATEGORY_INS CNT_365_CREDIT_12MTH 

ABT_CNT_TOTAL_CATEGORY_BIF AMOUNT_ATM_DEBIT_6MTH 

ABT_DATE_AC_LAST_OPENED AMOUNT_365_CREDIT_1MTH 

FNR_CNT_LAST_9MTHS AMOUNT_365_CREDIT_3MTH 

FNR_FLAG_PROD_INS AMOUNT_365_CREDIT_MTH 

FNR_FLAG_PROD_BIF AMOUNT_365_CREDIT_12MTH 

CA_AVG_CR_TURNOVER_LAST_6MTH AMOUNT_ATM_CREDIT_6MTH 

TRAN_FLAG_ACTIVE_LST_9MTH AMOUNT_FX_DEBIT_6MTH 

OD_PCT_PERM_UTILISED AMOUNT_FX_CREDIT_6MTH 

CNT_ATM_DEBIT_6MTH AMOUNT_ATM_DEBIT_3MTH 

CNT_ATM_CREDIT_6MTH AMOUNT_ATM_CREDIT_3MTH 

CNT_DD_DEBIT_6MTH AMOUNT_DD_DEBIT_3MTH 

CNT_DD_CREDIT_6MTH AMOUNT_DD_CREDIT_3MTH 

CNT_SO_DEBIT_6MTH AMOUNT_ATM_DEBIT_1MTH 

CNT_SO_CREDIT_6MTH AMOUNT_SO_DEBIT_3MTH 

CNT_LODGE_DEBIT_6MTH AMOUNT_SO_CREDIT_3MTH 

CNT_LODGE_CREDIT_6MTH AMOUNT_ATM_CREDIT_1MTH 

CNT_FX_DEBIT_6MTH TOTAL_CNT_DD_1MTH 

TOTAL_CNT_ATM_3MTH TOTAL_CNT_ATM_6MTH 

TOTAL_CNT_ATM_3MTH TOTAL_CNT_365_1MTH 

TOTAL_CNT_DD_3MTH TOTAL_CNT_365_3MTH 

TOTAL_CNT_DD_3MTH TOTAL_CNT_365_MTH 
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TOTAL_CNT_ATM_1MTH TOTAL_CNT_365_12MTH 

TOTAL_CNT_SO_3MTH TOTAL_CNT_ATM_6MTH 

TOTAL_CNT_SO_3MTH TOTAL_CNT_FX_6MTH 

TOTAL_CNT_ATM_1MTH TOTAL_CNT_FX_6MTH 
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