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ABSTRACT

Bhuiyan, Md Mansurul Ph.D., Purdue University, December 2016. Generic Frame-
works for Interactive Personalized Interesting Pattern Discovery. Major Professor:
Mohammad Al Hasan.

The traditional frequent pattern mining algorithms generate an exponentially

large number of patterns of which a substantial portion are not much significant

for many data analysis endeavors. Due to this, the discovery of a small number of in-

teresting patterns from the exponentially large number of frequent patterns according

to a particular user’s interest is an important task. Existing works on pattern summa-

rization compute a summary that globally represents the entire frequent pattern-set.

Such a representative set solves the interesting pattern discovery problem from a

global perspective which, more often, far from the personalization that is required

to fulfill the pattern discovery criteria of a particular user. In this dissertation, we

propose two interactive pattern discovery frameworks to identify a set of interesting

patterns for a particular user without requiring any prior input on the measure of

interest of patterns from the user. The proposed frameworks are generic to support

discovery of the interesting set, sequence and graph type patterns.

In the first framework, we solve the problem by proposing a novel solution which

is based on Markov Chain Monte Carlo (MCMC) sampling of patterns. Our solution

allows interactive sampling so that the sampled patterns can fulfill the user’s require-

ment effectively. Instead of returning all the patterns for feedback, the proposed

paradigm sends back a small set of randomly selected patterns so that an adversary

will not be able to reconstruct the entire dataset with higher accuracy using the re-

leased set of patterns, hence protecting the confidentiality of the data-set as a whole.
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This feature enables the proposed framework to mine interesting patterns from hidden

datasets.

In the second framework, we develop an interactive pattern discovery framework

called PRIIME that is based on iterative learning of a user’s interestingness func-

tion. The learning process is supervised where the supervision is provided by a user

through feedback on a small set of pattern. Depending on the nature of feedback

i.e. non-negative real valued or discrete, in PRIIME we develop gradient boosted

tree-based regression and softmax classification algorithms that use a limited number

of interactive feedbacks from the user to learn the interestingness profile of the user,

and use this profile for pattern recommendation.

Both the proposed frameworks are generic in nature. First proposed framework

discover patterns by commencing a random walk over a pattern space so the frame-

work is inherently generic. However, in PRIIME, the interactive pattern discovery

is performed by modeling a traditional regression/classification function, for which

we need a vector representation of pattern instances. For vector representation of set

patterns we use bag-of-words based model. However, for graph and sequential pattern

we propose a neural net (NN) based unsupervised feature construction approach.

In an interactive pattern discovery system, effective nomination of patterns for

feedback to train a learning model is an important task. In both the proposed frame-

works, we develop efficient strategy that combine exploration and exploitation to se-

lect patterns for feedback. We show experimental results on several real-life datasets

to validate the performance of the proposed frameworks. We also compare with the

existing methods of interactive pattern discovery to show that our methods are sub-

stantially superior in performance.

Finally, to portray the applicability of the interactive pattern discovery, we build a

new home discovery tool for home buyers called RAVEN. It uses interactive feedback

over a collection of home feature-sets to learn a buyer’s interestingness profile. Then

it recommends a small list of homes that match with the buyer’s interest, eventually

decreasing the time interval between home search initiation and purchase.
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1. INTRODUCTION

Frequent pattern (itemsets, sequences, or graphs) mining [1] has been a core research

task in the data mining domain for over two decades, yet its deployment in real life

data analysis has been moderate due to the following two challenges: (1) the pat-

tern space is combinatorial, so the number of patterns that a mining task produces

is generally too large to process by an end user, (2) for various data analysis tasks,

frequency threshold is not a sufficient filtering criterion for selecting patterns. To

overcome (1), many works have been proposed for pattern summarization and com-

pression [2–6], and to overcome (2), several alternative interestingness metrics, such

as Jaccard index, odds ratio, and lift [1, 7, 8] have been proposed. Nevertheless, the

discovery of interesting patterns remains an unsolved problem due to the subjectivity

in the definition of interestingness. In many cases, off-the-shelf interestingness metrics

does not represent true interestingness for a specific user over the patterns. Pattern

summarization does not help either, as such an approach solves interesting pattern

discovery from a global perspective which is far from personalization that is needed

to meet the pattern discovery demand of a specific user.

There exist few works which target personalized pattern discovery by using users

feedback [9, 10]. The overall methodologies of these works are to build an interac-

tive pattern discovery system, that works as the following—a user provides ratings

on a small collection of patterns, then the system uses these ratings to train a per-

sonalization model, which is later used to isolate user’s preferred patterns from the

remaining ones. The major design choices of an interactive pattern discovery sys-

tem are: (1) learning model that the system uses; (2) pattern selection process for

feedback—whether it is active [11] or non-active; (3) feature representation of pat-

terns for facilitating learning; and (4) genericness, i.e. the kinds of patterns that the

system supports. Existing solutions [9, 10] for interactive pattern discovery are not
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effective for a number of the above design choices. In this dissertation, we address

the challenges associated with each of the above design choices to build an efficient,

personalized pattern discovery system.

1.1 Problem Definition of Interactive Personalized Interesting Pattern

Discovery

Consider a transactional dataset D, where each transaction in D is a combinatorial

object, such as an itemset, a sequence, or a graph. Depending on the objects that it

contains, the dataset D can be an itemset, a sequence or a graph dataset. A user u is

interested in mining interesting patterns from D, where the patterns (denoted by set

O) are sub-objects, say subsets, subsequences, or subgraphs, over the objects in D.

Traditional approaches [12, 13] consider frequency as the interestingness metric and

design frequent pattern mining algorithms which return patterns that exceed mini-

mum support thresholds over the transactions in D. However, due to the fact that

the frequent pattern space is combinatorial [1], existing frequent pattern mining algo-

rithms generally return a large number of patterns, causing an information overload.

Interactive pattern discovery is a framework for negotiating information overload so

that a succinct set of interesting patterns (a small subset of frequent patterns, O) can

be delivered to u, which are personalized by utilizing u’s feedback on a small number

of patterns. We call this framework IPIPD, which stands for Interactive Personalized

Interesting Pattern Discovery.

We assume u possesses an interestingness function (say, f) over the patterns (O).

f maps each pattern in O to a score indicating u’s interest level for the pattern, i.e.,

f : O → Y . Here, Y can be modeled as discrete or non-negative real number. IPIPD

framework learns f through an iterative user’s feedback session. During an iteration

(say i), the system returns a set of l patterns {pt}1≤t≤l to u, which is selected from

O; u sends feedback {yt = f(pt)}1≤t≤l using an interactive console; yt’s are discrete or

non-negative real number reflecting the user’s empathy towards the selected patterns;
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using the feedback the system updates its current model of the user’s interestingness

function, f .

In the following sections, we will explain our contributions addressing the four

design choices: i) interactive learning model, ii) pattern selection process for feedback,

iii) effective feature representation of pattern, and iv) genericness associated with an

efficient personalized interactive interesting pattern discovery system. Contribution

of this dissertation is also demonstrate through a real-life application of interactive

pattern discovery framework.

1.2 Interactive Learning Model

Learning the user’s interestingness criteria (function f) is at the core of per-

sonalized pattern discovery problem. The task of identifying a learning model and

training the model for effective pattern recommendation is the most prioritized job

of an IPIPD system. In this dissertation, we model the learning of a user’s interest-

ingness function, f in two ways. In one, we design it as a sampling mechanism that

interactively modifies the sampling distribution (proportional to the interestingness

function) according to the user’s feedback (yt). In second, we design the problem

as supervised learning where we adopt both regression and classification for learning

the model iteratively while leveraging the user’s feedback. In the following, we first

discuss the user interaction design that we use in this work and then we explain both

of the learning models in details.

1.2.1 User Interaction Design

The applicability of the IPIPD framework in a real life setting depends strongly

on the way a user interacts with the system. Ideally, level of interaction between the

system and the user should be simple and the system should put manageable burden

to the user while collecting feedback. Existing systems fail to provide above feature

in their interactive mechanism. In [9], the user has to provide a complete ordering
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of a set of patterns for feedback. Since the user has to cross check among patterns

in the set to formulate the feedback, the chance of making mistakes is high. This

misinformation directly affects the learning model. In [10], apart from providing the

ordering, the user has to decide whether the system chooses between exploitation

or exploration. Such interaction protocol puts more burden on a user in the sense

that the quality of the learned model is directly influenced by the user’s ability to

provide precise feedback. From the very beginning, we were motivated to design an

interaction mechanism that is simple as well as effective. With that in mind, in our

proposed IPIPD frameworks, a user only considers one pattern at a time when she

formulates a feedback. The user considers a notion of an interestingness score, either

discrete or positive real-valued, to construct a feedback on the patterns quality.

1.2.2 Interactive Pattern Discovery though Sampling

In [14], we propose a novel sampling-based interactive pattern discovery method

where the user interacts with a Metropolis-Hastings (MH) based Markov Chain Monte

Carlo (MCMC) sampling entity. It samples patterns from the data; the target distri-

bution of the sampler is iteratively refined based on binary feedback (discrete yt) from

the user. We model the user’s interestingness function (f) over the patterns using

the target sampling distribution. As an additional feature, this sampling based ap-

proach protects the integrity of a hidden dataset by releasing patterns in a restrictive

manner such that the probability of entire dataset reconstruction using the released

set of patterns with high accuracy is very low [15]. In Chapter 3, we discuss in detail

of the proposed algorithm and show experimental results from several real-life data

sets to validate the capability and usefulness of our solution.

1.2.3 Interactive Pattern Discovery through Supervised Learning

Even though the overall idea is novel, the sampling-based solution has a crucial

drawback. The learning and the sampling are unified, which causes the sampler to
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converge to a sharp distribution prematurely. As a consequence, this sampler may

sample patterns only from a local region of the frequent pattern space while keeping

a significant amount of space unexplored. We solve the drawback by modeling the

interestingness function as a linear predictor function. Depending on the nature of

feedback, we either use a regression (positive real-valued feedback) or a classifica-

tion (discrete values) algorithm.

Classification

In the classification approach, interestingness function f can be defined as f :

O → C; i.e. f maps each pattern in O to a discrete number (class label). We build

a softmax classification based iterative learning algorithm that leverages a limited

number of interactive feedback from the user to learn the interestingness profile of

the user and uses this profile for pattern recommendation. In Chapter 5 we discuss

the model in detail.

Regression

In the regression approach, interestingness function f can be defined as f : O →
R+; i.e. f maps each pattern in O to a non-negative real number. We develop a

gradient boosted regression tree (an ensemble of high bias regression trees) based

iterative learning algorithm that uses a limited number of interactive feedback from

the user to learn her interestingness profile of the patterns and uses this profile for

pattern recommendation. In Chapter 5 we elaborately discuss the model.

1.3 Selecting Patterns for Feedback

For any interactive learning platform, designing a method for selecting a small set

of patterns for which a user’s feedback is sought is critical. Given that the number

of frequent patterns is typically enormous, the performance of interactive learning
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depends critically on the module that selects the patterns for collecting user’s feed-

back. In the sampling-based approach, we combine model learning with the feedback

set selection. First, we [14] adopt a step function to nominate patterns for feedback.

Later in [15], we upgrade the pattern selection process by providing the system a ca-

pability to measure whether the information obtained through feedback is significant

for learning or not. One major flaw with the heavy coupling between the learning

and selection is that the initial sets of feedbacks play a vital role to the model’s

configuration. Hence, the model may risk suffering from the positive reinforcement

phenomenon. It sometimes makes the predictive model representing some areas of

the pattern space, making it sub-optimal over the entire space. To resolve this issue

in the supervised learning setup, we reduce the coupling between the existing state of

the learning model and the feedback pattern selection which yields a much improved

learning model. We effectively combine exploration and exploitation which reduces

the bias that the existing learning model imposes on pattern selection.

1.4 Feature Representation of Patterns and Genericness

The majority of the existing platforms for interactive pattern discovery only sup-

port itemset patterns because they do not have an effective metric embedding for more

complex patterns, say, sequences, or graphs. Metric embedding of patterns is needed

for facilitating the training of a model which discriminates between interesting and

not-so-interesting patterns. For itemset patterns, existing works leverage bag of items

for instrumenting a metric representation. However, no such natural instrumentation

is available for complex patterns, such as a sequence, or a graph. Sometimes, n-grams

are used for metric embedding of sequences [16], and topological measures, such as

centralities, eccentricity, egonet degree, egonet size, and diameter are used for feature

representation of graphs [17]. While the above feature representation may work well

for the task of traditional sequence or graph classification, they do not work well for

frequent patterns which are numerous and much smaller in size.
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In [14], we used a bag of items/edges based technique to find feature representation

of set and graph type patterns. In [15] for graph patterns, we improve the represen-

tation by considering topological information of the graph in the bag in terms of 3

and 4 size induced subgraphs in the pattern. Such crude representation for a complex

pattern like the graph is unable to produce a satisfactory performance. As an alter-

native, we seek a solution to build a generic IPIPD framework using the unsupervised

feature learning in traditional and neural network domain. These methods help an

analyst discover features automatically, thus obviating feature engineering using do-

main knowledge. We develop a technique called “Pattern2Vec” that computes the

metric representation of graph and sequence patterns using traditional single layer

neural network. “Pattern2Vec” map each pattern into a sentence and the pattern ele-

ments (events in a sequence or edges in a graph) into words. Afterward, it leverages a

language model similar to [18] for finding d-dimensional feature vector representation

of the patterns. We experimentally show that such a technique performs better than

the existing ad-hoc metric embedding.

1.5 Real-life Application of Interactive Personalized Interesting Pattern

Discovery

To demonstrate the applicability of interactive personalized interesting pattern

discovery in a real world setting, we perform a case study in the real-estate domain.

Generally, the success of a home searching process depends on a user’s ability to

construct a well-defined search query. It also depends on her patience while going

through the hundreds of houses that are returned by the search engine. This assess-

ment is particularly challenging for new home buyers, who are sometimes not even

familiar with all different home features. The overall process of selecting the right

home takes time; for 40% of first-time home buyers, the lag time between research

and action (buying a home) is around 120 days [19]. Given that home buying is a

significant investment, most home buyers take help from an experienced real estate
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agent who can read the buyer’s mind as soon as possible and show her the home that

is just the right one for her.

Our developed IPIPD system named RAVEN in this setup works just like a

virtual real estate agent for the home buyers, where each house can be thought of

as a set type transaction and house features as the items in the transaction. In each

iteration, RAVEN presents a set of patterns which are a summary set of features

of the houses in the data. By utilizing the feedback over the quality of patterns,

RAVEN gradually learns the user’s interestingness criteria on the house features.

Finally, using the learned model, RAVEN identifies the house summaries (patterns)

as well as the houses that the user will prefer.

1.6 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we

discuss background on traditional frequent pattern mining and related works from

pattern summarization and interactive pattern discovery domain. In Chapter 3, we

discuss the sampling based approach of personalized interesting pattern discovery,

work published in the Information and Knowledge Management (CIKM) conference,

2012 [14]. In Statistical Analysis and Data Mining journal we further published an

extended version of this work [15]. In Chapter 4, we discuss “Pattern2Vec” approach

for computing effective feature vector representation of patterns that we leverage

to build generic interactive pattern discovery framework. In Chapter 5, we discuss

the softmax classification and gradient boosted regression tree based IPIPD system

called PRIIME. We submitted PRIIME in the IEEE Big Data conference, 2016.

In Chapter 6, we present a web-based smart house discovery tool called RAVEN,

that is build upon the concept of personalization interesting pattern discovery. We

submitted RAVEN in Web Search and Data Mining (WSDM) conference, 2017. We

conclude this dissertation with a conclusion and future works (Chapter 7).
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2. BACKGROUND AND RELATED WORKS

In this chapter, we will discuss background of the frequent pattern mining and related

work under four different categories: frequent pattern summarizations, interesting-

ness measure of patterns, interactive knowledge discovery in general, and interactive

pattern mining.

2.1 Background

This section contains background knowledge on frequent pattern mining.
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Fig. 2.1. (a) Graph database with 3 transaction graphs (b) Frequent
subgraph of (a) with minsup = 2
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Fig. 2.2. (a) Itemset database with 5 transaction sets (b) Frequent,
maximal and closed itemsets of (a) with minsup = 3

2.1.1 Frequent Pattern Mining

Let, T = {T1, T2, . . . , Tn} be a database, where each Ti ∈ T , ∀i = {1 . . . n} rep-

resents a transaction. t(p) = {Ti : p ⊆ Ti ∈ T }, ∀i = {1 . . . n}, is the support-set of

pattern p. This set contains all the transactions in T of which pattern p is part of.

The cardinality of the support-set is called the support of p. Pattern p is called fre-

quent if support(p) ≥ πmin, where πmin is predefined/user-specified minimum support

(minsup) threshold. A closed frequent pattern is defined as a pattern that does not

have a super-pattern (super-set) that is frequent with the same support count. The

pattern is maximal if it is not a sub-pattern of any existing frequent pattern. if F , C
and M are the set of all frequent, closed and maximal itemset patterns, respectively

then M ⊆ C ⊆ F is true.

Note that, if we divide the support of a pattern by the total number of transaction,

we got normalized support. There can be different types of pattern i.e. set, graph,

sequence and tree. In case of set, each transaction Ti is a set of items whereas for

graph, its a labeled, undirected and connected graph.

Example: Figure 2.4(a) shows a database with 3 graphs (G1, G2 and G3). With

πmin = 2, there are thirteen frequent subgraphs as shown in Figure 2.4(b). Fig-

ure 2.2(a) shows a toy itemset transaction data-set with 5 transactions and Fig-

ure 2.2(b) shows all frequent, closed and maximal itemset patterns for πmin = 3.
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2.1.2 Frequent Pattern Space

Candidate generation and test is the most common form of frequent pattern min-

ing algorithms. In each iteration of mining, the algorithm first generates candidate

pattern(s) and then it compares each of these patterns against the transactions in

the dataset to compute frequency and test if the frequency falls below of a minimum

frequency threshold. Depending on the type of patterns i.e. set, sequence or graph,

work procedures inside these two steps differs. For itemset pattern, if I is the set of all

items in the dataset, each iteration of candidate generation enumerates all possible

itemset patterns p ⊆ I as candidates for being frequent patterns. The size of the

candidate search space is exponential, since there are 2|I| potential frequent itemset

patterns. Large candidate space if true for sequence and graph type patterns. For

sequence, the set I contains events and a candidate pattern is an ordered list of repet-

itive events i.e sequence. For graph, the set I is a collection of edges and a candidate

pattern is a graph induced by the edges from set I. It is informative to mention that

the structure of the candidate patterns space forms a lattice, where any two patterns

p1 and p2 is connected by a link if and only if p1 ⊂ p2 and |p2| = |p1|+ 1.

Example: In Figure 2.3, we show the lattice structure of the candidate space for

itemset patterns for the toy data mentioned in Figure 2.2. As we can see, candidate

generation step performs a bottom up exploration from the null set using BFS or DFS

over the lattice. A candidate can have multiple generation steps, but prefix-based

enumeration ensures to use only one path for candidate generation. For example,

pattern AB can be generated from A (shown in solid line) or B (shown in dotted

line). Prefix-based enumeration generates AB only from A. We also mention the

support of each candidate and for minimum support 1 all the candidates qualify as

frequent patterns, hence produces exponentially large output set for further analysis.

For minimum support 2, significant amount of candidate patterns qualify as frequent

as well. We use red ink to mark the frequent patterns for support 3 in the Figure.
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Fig. 2.3. Candidate space lattice of the toy itemset dataset

In Figure 2.4, we show the frequent (minimum support 3) pattern space for the toy

graph data mentioned above.

2.2 Related Works

In this Section, we discuss related works of frequent pattern mining.

2.2.1 Frequent Pattern Summarization

To confront the challenge of managing exponentially large mined frequent patterns

i.e. solve “information overload” problem researchers develop several pattern sum-

marization algorithms. All of this works have a common goal of producing a smaller

number of patterns that globally represent the entire dataset. In the following, we

discuss several of these works.
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Fig. 2.4. Frequent subgraph patterns lattice for minimum support 2

Mining frequent maximal patterns [20] is one of the early attempts for pattern

summarization. A frequent pattern is called maximal, if it does not have any super-

pattern. Maximal patterns have the ability to regenerate all frequent patterns but

due to support information loss, sometimes this approach become unacceptable. Next

attempts for pattern summarization came along with the closed patterns [21]. A

pattern is called closed, if it has no super-pattern with the same support. Closed

patterns store support information successfully but the number of closed patterns

can be very high in number.

Mining top-k patterns is another popular strategy for pattern summarization.

This techniques only applicable when the user has a predetermined number of pat-

terns to work with. Han et.al propose one of the earliest work [22] in this direction

where they mine k-most frequent closed patterns with a user-specified specific min-

imum length. In [23], authors design a top-k pattern mining algorithm with high
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compressibility and maximal coverage as summarization criteria. Authors in [24], de-

velop an algorithm to mine top-k patterns that collectively offers the best significance

with minimal redundancy. They compute significance by the degree of usefulness of

a pattern and redundancy between a pair of patterns by considering their similarity.

Following the foot-steps of the research work mentioned above, scientist have

invested their time to develop several pattern summarization algorithms from differ-

ent perspective, notable among them are the profile-based techniques [4, 5], support

distance-based methods [6] and maximum entropy-based models [2,3]. Yan et.al in [4]

summarizes a set of frequent itemset set pattern using a small number of represen-

tative patterns those can be easily usable by a user. The proposed algorithm finds

such representative set that has maximum coverage over the entire patterns set as

well as capable to approximate supports of any frequent patterns. The authors design

a generative model to identify and create profile of these representatives to recom-

pute supports of the patterns without the help of original dataset. Cp-Summary

by [5] extends the pattern-profile designed by [4] and propose a new profile called

“Cp-summary” which is essentially a list of pattern-profile. Cp-summary allows en-

coding of several frequent patterns into a single profile, hence enable easy analyze

of the summary in the profile independently. In [6], authors claim to produce min-

imum pattern summarization set possible in practice along with a theoretical error

guarantee. Authors investigate the computational deficiency for finding a small rep-

resentative pattern set and propose an algorithm with reduced execution time and

less usage of memory. Specifically, the proposed method uses a tree structure called

CFP-tree [25] that saves frequent pattern in a compact efficient manner.

Mampaey et.al developed a probabilistic maximum entropy-based model [2] that

can iteratively identifies patterns that carry most novel information. This model

operates by looking for patterns whose frequency in the data will surprise the user

most and in turn updates the model accordingly. The proposed algorithm is called

“MTV”. “MTV” is capable of extracting top-k most informative itemsets. At the

same time “MTV” can be used to identify a representative set of itemset patterns
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that summarizes the original data using the Bayesian Information Criterion (BIC) or

the Minimum Description Length (MDL). “MTV” is a one-phase algorithm that can

mine patterns and their supports on-the-fly. Vreeken et.al propose an algorithm called

krimp [3], that uses minimum description length (MDL) to identify the best set of

patterns that compress the database best. None of the above pattern summarization

techniques can be helpful for personalized pattern discovery because such approaches

solve interesting pattern discovery from a global perspective which is far from per-

sonalization what is needed to meet the pattern discovery demand of a specific user.

2.2.2 Interactive Knowledge Discovery

There are some recent works in interactive knowledge discovery, which are not

necessarily frequent pattern mining. Examples include mining geospatial redescrip-

tions [26, 27], and subgroup discovery [28–31]. Broadly speaking these works fall in

the category of interactive pattern discovery, but the problem definition and the scope

of these works are very specific.

In the work on mining geospatial redescriptions [26, 27], the authors propose a

system called SIREN, in which a user builds queries based on her interests and the

system answers the queries through visualization of redescriptions (different ways of

characterizing the same things). The interaction in SIREN divided into two stages:

i) interact with the algorithm and ii) interact with the visualized result. The user of

SIREN moves back-and-forth between executing commands to discover new results

and analyzing the discovered ones.

In [28], authors proposed an interactive solution for subgroup discovery. The de-

veloped method begins from a set of top subgroups as per an arbitrary objective

measure and attempts to learn a ranking function that can used to rank subgroups.

The learned ranking function can later be used to discover novel interesting sub-

groups. In [30] the authors proposed an Interactive Diverse Subgroup Discovery

(IDSD) framework leveraging the diverse beam search. In the proposed framework,



16

the selection of beam is interactive: on each level of the search, a user interacts

with the system to influence the beam by providing feedback in-terms of liking and

disliking the subgroups.

In [31], authors develop an interactive framework for subgroup discovery. At each

step of the proposed method, first a user visualizes group members then optionally

perform an operation on the group either by adding or deleting members, then, the

user choose an operation either exploitation or exploration to discover more groups

i.e more users. Each discovery action results in k-most relevant and diverse groups.

Authors formalize the group exploitation and exploration as and optimization problem

and devise a greedy algorithms for efficient group discovery.

2.2.3 Interactive Pattern Mining

Surprisingly, existing works on interactive pattern mining (IPM) is sparse [32–34].

One of the main techniques that the existing works follow is constraint-based mining,

where a user can include additional constraints as an interactive input. The mining

system considers these constraints to filter the output set to tailor it according to the

user’s requirements. In [32], authors present an algorithm called “DualMiner” that

efficiently prunes its search space using both monotone and antimonotone constraints.

This is the first work that claims to handle both types of constraints i.e. monotone

and antimonotone simultaneously. [33] introduces “ExAnte”, a pre-processing data

reduction based approach which reduces the search space dramatically. ExAnte can

leverage succinct monotone constraints as well as convertible monotone constraints

that reduces the mining computation. Authors also show that ExAnte can be coupled

with any constrained pattern mining algorithm, and claim it is always favorable to

start any constrained patterns mining with an ExAnte preprocess. In [34], authors

present an interactive visual pattern mining framework called “MIME”. “MIME”

lets a user to browse through the data and patterns easily and intuitively. It provides

a toolbox consisting of several interestingness measures, mining and post-processing
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algorithms that can be used to identify interesting patterns. Interactive mining allows

a user to add their background knowledge with their subjective interestingness criteria

to efficiently discover most interesting patterns.

All of the above constrained based pattern mining has following drawbacks. Set-

ting constraints is effective for some mining problems, but for many others, applying

hard constraints may yield sub-optimal results. Furthermore, designing constraints

to guide mining is not easy; an analyst first needs to explore some example pat-

terns before she can think about the constraints that would work optimally for her

specific applications. This can best be described as “I don’t know what I am look-

ing for, but I would definitely know if I see it.” Additionally, in the scenario of an

inter-disciplinary research, a domain expert may find it difficult to set constraints

for pattern mining—in particular; a constraint must be well-formed according to its

formatting specification, which may require significant time from the domain expert.

Few methods of interactive mining exist that are not constraint-guided—probably

the most similar to our work are [9,10]. However, our method differs from [9] in various

ways. First, [9] requires to have a complete set of frequent patterns up-front, whereas

our method unifies the exploration and selection of the frequent patterns using MCMC

based random walk—thus for many data-sets, our method may not explore all the

frequent patterns. Second, our method uses binary feedback instead of rank order

feedback that the above method adopts—the latter puts more burden on the user,

and in the case of a hidden data-set, the user may have little information to rank the

patterns properly. Boley et al.’s [10] work also considers learning a ranking function

of a user over the frequent patterns’ space. They do overcome the constraint of

mining all frequent patterns up-front, but this work also requires the user to provide a

complete ordering among released patterns. There also exist a few notable works [35,

36], that mine a small set of interesting patterns by defining novel interestingness

metrics for frequent patterns. For instance, Mampaey et al. [35] summarizes the

frequent pattern set and Blei et. al. [36] defines subjective interestingness, both using

maximum entropy model.
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2.2.4 Interestingness Measures of Patterns

As discussed earlier, for years frequency has been heavily used as a interestingness

measure of patterns. But for various data mining task, frequency alone is not a suf-

ficient criterion. To address the shortcoming of frequency, over the years researchers

have proposed several interestingness measures [37] mostly to assess the quality of

association rules. In [38], authors propose “lift” that compares the conditional prob-

ability of an association rule’s precedent to its unconditional probability. A lift score

higher than one denotes positive correlation between the antecedent and precedent

of an association rule and a value smaller than one shows negative correlation. Brin

et.al in [39], introduces “Multi-way” χ2 test to measure interestingness of an itemset

directly. In [8], Heikinheimo et al. propose to mine low-entropy itemsets using the

entropy measure. Webb et al. introduces the measure of leverage [7] that computes

the difference between observed and expected joint probability of an association rule.

In many cases, for a specific user, none of these interestingness metrics represent true

interestingness over the patterns, hence the motivation of incorporating the user in

the discovery pipeline to capture true interestingness of a particular user.
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3. INTERACTIVE PATTERN MINING ON HIDDEN

DATA: A SAMPLING-BASED SOLUTION

3.1 Introduction

Frequent pattern mining plays a key role in exploratory data analysis. Over the

last two decades, researchers invented various efficient algorithms for mining patterns

of varying degrees of complexity–such as, sets [12, 40], sequences [41], trees [42] and

graphs [43, 44]. All these algorithms assume that the entire data-set is available to

the analyst before the mining task is commenced. This assumption holds if the data

owner and the data analyst are the same entity. However, for the case of hidden

data, data is owned by an enterprise and an analyst who mines the data in the

quest for interesting patterns is an outsider who does not have full access. The data

owner, though interested in maintaining the ownership of the data by prohibiting full

duplication, wants to help the analyst by providing a curated set of frequent patterns

that would benefit her the most. We call this task frequent pattern mining from

hidden data. A real-life example of such a knowledge discovery setup is given below.

User session data, which contains a collection of related queries that a user ex-

ecutes in a browsing session, is a valuable data source for an eCommerce market-

place. It helps the marketplace to build features, such as query suggestion [45], query

segmentation [46], and product recommendation [47]. To maintain the competitive

advantage, the data manager of the marketplace keeps the user session data inac-

cessible (hidden to public). However, the marketplace also has incentives to make a

summary of the user session data, say, a subset of interesting itemsets of user queries

available to its sellers so that the sellers are aware of the demand trends in the mar-

ketplace. Availability of interesting itemsets of user session queries also helps the

sellers in choosing an informative title for their product to facilitate effective match-
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ing of seller’s product with the buyer’s query—eventually, boosting the marketplace’s

revenue. Since different sellers may be interested in distinctive sets of queries, the

key challenge for the marketplace in this task is to find a mechanism to assist a seller

by providing interesting itemsets of queries that would benefit that specific seller the

most—all without disclosing the user-session data.

Frequent pattern mining from hidden data that is manifested in the above example

is different from the existing works on privacy preserving pattern mining [48]. In the

case of former, the data owner’s main concern during pattern mining is to maintain

the dataset’s privacy as a whole, such that an approximate reconstruction of the

hidden data from the released patterns is impossible. Another concern is that the

patterns that the data owner releases are maximally beneficial to an analyst’s specific

knowledge discovery endeavor in that session. On the other hand, privacy-preserving

pattern mining methodologies proposed in the existing works safeguard a subset of

data entities so that their attributes cannot be inferred by observing the association

of those entities with others in the released patterns.

Our proposed setup of frequent pattern mining from hidden data is as follows.

For a given analyst, the data owner creates a sampling object, which samples fre-

quent patterns from the data-set in an iterative manner. The sampling distribution

from which the samples are obtained is computed dynamically based on the analyst’s

feedback on the selected samples, which makes the mining process user-interactive.

The sampling object uses Markov Chain Monte Carlo (MCMC) sampling, an indirect

sampling strategy so that the samples can be obtained without a complete instan-

tiation of the desired sampling distribution. The sampling object also computes a

global measure of data disclosure as it releases patterns, which guarantees that the

analyst will not be able to reconstruct the dataset by using the released patterns.

Note that, an approximate reconstruction of a transaction dataset from the list of

itemsets and their corresponding support is NP-complete [49, 50], which provides

further assurance regarding the viability of the proposed setup.
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Our solution for frequent pattern mining from hidden data utilizes sampling of

patterns from the frequent pattern space. In literature, there exist several pattern

sampling algorithms [51–55], but they do not fulfill the purpose of our task. The

major difference of these algorithms with ours is that the sampling distribution of

our method changes through user’s interaction, whereas in the above-cited works

the sampling distribution remains fixed throughout the sampling session. Such an

interactive update of sampling distribution specifically suits the task of pattern mining

from hidden data, because for a hidden dataset the analyst only has a vague idea

about the data-set’s content and she is unable to provide a precise definition of the

patterns that will best serve her interest. Our system enables the analyst to provide

feedback on the quality of the patterns that she receives. The sampling mechanism

uses these feedbacks to bias the sampling towards the preferences of the analyst so

that the patterns obtained from subsequent samples are more relevant. In this work,

we consider a simple binary feedback mechanism, where a user of the system specifies

whether the pattern she receives from the system is of her liking or not. Nevertheless,

the method can be easily adapted to a complex feedback mechanism.

Even if the data is not hidden, the interactive sampling of frequent patterns is

useful on its own merit. For example, in an interdisciplinary research, the data

may not be hidden to the domain expert. However, the expert has little knowledge

about the quality of the patterns that he obtains by mining those data. Effective

discovery of useful patterns requires domain knowledge; on the other hand, efficient

incorporation of domain knowledge requires an interactive console. Existing pattern

mining algorithms are not interactive, and they generate an enormous list of frequent

patterns, in which; a high degree of redundancy prevails. Such a tool is hardly

helpful for a domain scientist. An interactive pattern mining approach that enables

the domain scientist to sample a small set of relevant frequent patterns is a better

alternative.

Figure 3.1 illustrates the framework that we devise to mine patterns from a hidden

data-set. In this figure, we show a set of k analysts, u1, u2, . . . , uk, that are simulta-



22

Hidden

Dataset

S1

S2

S3

Sk

Interactive Feedback

Patterns Features

Interactive Feedback

Release Features

Interactive Feedback

Release Features

Interactive Feedback

Release Features

(U1)

(U2)

(U3)

(Uk)

Fig. 3.1. Sampling-based interactive pattern mining on a hidden dataset

neously accessing frequent patterns from a hidden data-set. For a specific user, ui, a

dedicated MCMC sampler, si is assigned to facilitate the interactive mining session.

Based on ui’s feedback (binary) on the sampled patterns, si updates the sampling

distribution so that the analyst ui is served in the most fruitful way. For a mathe-

matical representation of the sampling distribution, we use a vector space model [56]

of unit-size patterns. By appropriately defining the unit-size pattern, our solution

can easily be applied for sampling patterns of various complexity, such as itemsets,

trees, sequences, and graphs. The contributions of this work are summarized as below:

• We propose an interactive pattern mining system for mining frequent patterns

from a hidden dataset. The system uses an MCMC sampler for selecting a

small set of frequent patterns from a sampling distribution, which is updated

iteratively through user’s feedback on the sampled patterns. Thus, the proposed

system overcomes the information overload problem, which is caused by a large
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number of frequent patterns returned by a traditional frequent pattern mining

algorithm.

• We show that our proposed pattern mining system protects the integrity of

a hidden dataset by releasing frequent patterns in a restrictive manner such

that the probability of entire data-set reconstruction using the released set of

patterns with high accuracy is very low.

• We show experimental results on several real-life itemset and graph datasets

to prove the effectiveness of our proposed method on two aspects: pattern

selectivity, and dataset privacy disclosure.

The remainder of this chapter is organized as follows. In Section 3.2, we dis-

cuss related works in the area of interactive pattern mining and pattern sampling.

In Section 3.3 we formally define the problem. In Section 3.4, we discuss the key

concepts that are important to understand the proposed method. In Section 3.5,

we discuss technical details of the proposed MCMC sampling based system; also

include discussion of interestingness function design for set and graph pattern (Sub-

section 3.5.1, 3.5.2 and 3.5.3), feedback mechanisms (Subsection 3.5.4), convergence

of the MCMC walk (Subsection 3.5.5), pseudo-code and parameter sensitivity 3.5.6.

In Section 3.6, we present extensive empirical evaluation including pattern selectivity

performance (Subsection 3.6.3), execution time (Subsection 3.6.7) and privacy disclo-

sure (Subsection 3.6.8) based analysis of the proposed system on various real-world

data-sets. We conclude this chapter with two real-world case studies in Section 3.6.9,

and future research direction in Section 3.7.
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3.2 Related Works

We discuss the related works under three different categories.

3.2.1 Data Analytics over Hidden Databases

Data analytics over hidden databases is an active research direction; typically,

these hidden databases are part of the deep web that can be accessed only by a form-

like query interface. Along this research direction, various tasks are considered, such

as, crawling the hidden web [57], obtaining a random tuple from a hidden database [58,

59], retrieving top-k records by sampling [60], and estimating the size and other

aggregates over a hidden database [61]. These works are related to our work in

the sense that we consider frequent pattern mining, also over the hidden databases.

However, we do not assume a form-like interface to access the database, rather we

assume that the data owner provides a random sampler to interact with the database,

and the sampler is guided by the data analyst through interactive feedback.

3.2.2 Privacy Preserving Pattern Mining

In existing literature, different privacy assumptions have been used for the task

of privacy preserving pattern mining. For instance, several works [62–64] design the

task of privacy preserving pattern mining with an assumption that a list of sensitive

frequent patterns are known to the data owner, who sanitizes the dataset before its

disclosure so that the sensitive patterns remain hidden (by being infrequent) on the

sanitized dataset. In another setup [65], it is assumed that each of the transactions in

the input dataset belongs to a distinct data owner who due to privacy concern modifies

the transaction before sending it to a mediator that runs the frequent itemsets mining

methodologies. In both the above setups the data owner reveals the dataset after

making random modifications on it. Frequent pattern mining over vertically [66],

and horizontally [67] partitioned datasets are also solved; these setups assume the
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existence of multiple parties, where each of the parties owns a data partition, and the

parties want to find globally frequent patterns without revealing any local information.

Secure multi-party computation over encrypted data are generally used for solving

the above problems. Our problem setup is clearly different from the above works as

we consider the dataset to be hidden and during the mining phase, the entity(user)

does not receive any part of the transaction data irrespective of its encryption status.

3.2.3 Frequent Pattern Sampling

For mining frequent patterns from a hidden data-set, we use an MCMC based

random walk on the frequent pattern space. In recent years, various other works

also follow a similar approach—notable among these are [51, 52, 54, 55]. In [51], the

authors propose a Markov Chain Monte Carlo based randomized algorithm to count

the number of frequent sets for a given minimum frequency threshold. Such a method

is useful for finding an approximate count of frequent patterns—approximate count is

useful for a dense data-set or for a low frequency threshold scenario, for which exhaus-

tive counting algorithms fail to complete. In another work [54], the authors develop

direct sampling methodologies for sampling patterns from various distributions, such

as frequency, area, and squared frequency. For frequency based sampling, the pro-

posed algorithm first samples a data record from the input data-set randomly with

a probability proportional to the size of its power set. Then it returns a uniformly

sampled subset of that data record. For other desired distributions, the method finds

an effective approach for sampling from these distributions. An improved sampling

framework is proposed in [55], which uses coupling from the past (CFTP) technique.

CFTP helps to avoid super-linear preprocessing and memory requirements, and it

can simulate more complex distributions.

In [52], Hasan et al. propose a mining framework, that they call output space

sampling, which samples frequent patterns using a user-defined distribution. The

sampling framework that we devise in this work is similar to the work in [52]. How-
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ever, similar to other existing pattern sampling works, [52] also uses a fixed sampling

distribution throughout the mining session, whereas in our work, the sampling distri-

bution updates in response to the user’s feedback. Moreover, in [52], the random walk

is performed over the edge of the Partial Order Graph (POG) (defined formally in

Section 3.4); our work deviates from this by performing a random walk over a state-

transition graph in which a random graph is overlaid on top of the POG graph—the

above modification improves the convergence of an MCMC walk significantly.

3.3 Problem Statement

In this section, we formally define the problem of interactive pattern mining from

hidden data. Given a hidden data-set1 D, and a user u, an interactive pattern mining

system (IPM) returns a sequence of randomly selected frequent patterns p1, p2, . . . pt

from D to u; optionally u can send feedback f1, f2, . . . ft to the IPM regarding the

quality of the patterns; in response to the feedback, IPM iteratively updates its

sampling distribution so that the randomly selected patterns that it returns to u in

subsequent iterations align better with u’s interest. In the following paragraphs, we

will detail the followings: (1) how does the IPM system find a pattern? (2) How

does the user u form a feedback on a pattern? And (3) how does the feedback from

u is incorporated in the mining process to obtain a better pattern in subsequent

iterations?

Given that user u has no access to the data-set, and the data owner has no inten-

tion to share all the frequent patterns, traditional frequent pattern mining algorithms

are of no use in this scenario. We also assume that the data-set is large; therefore,

the complete enumeration of all the frequent patterns may be infeasible. So, the

IPM adopts the output space sampling (OSS)-like [52] paradigm to obtain a frequent

pattern and share it with the user u. However, OSS does not provide an option for

interactive pattern mining; it merely allows the user to mine from a user-defined sam-

1the words data-set, and database are used synonymously this this document



27

pling distribution. So, to accommodate an interactive mining setup, IPM adapts the

sampling distribution using u’s feedback, so that it respects u’s interest progressively.

If we assume that u has an underlying interestingness function, γ, that maps each

frequent pattern to a non-negative real value (higher value stands for more interest-

ing), the adaptation of sampling distribution by using the feedback translates to the

inverse problem of learning the γ function.

An important question that is yet to be answered is what is the composition of u’s

feedback on a pattern. In this work, we consider a simple feedback mode, where the

response of the user u on a pattern p is purely binary: interesting and non-interesting.

One can always consider a more complex feedback mechanism, may be in the form of

a profile vector, in which the user u represents the pattern p as a composition of a set

of sub-patterns and uses a probabilistic vector to define her interest in each of these

parts; however, we do not explore this option in this work. Now, under the scope of

a binary response, the set of frequent patterns can be divided into two groups: useful

and non-useful, and it is left to the IPM to deduce the underlying discriminating

function by which the user u is building her opinion.

We like to clarify that our problem formulation is generic, and it considers the

task of mining all kinds of patterns, such as sets, sequences, trees or graphs. In most

of our discussion in this chapter, we will refer to the term “pattern” and will dictate

the discussion considering a graph or an itemset pattern, but with minor or almost no

adjustment, the discussion will fit for different kinds of patterns. Experiment section

also shows results involving both itemset and graph patterns.

3.4 Background

In this section, we define several key concepts that will be useful to understand

our research work.
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3.4.1 Frequent Partial Order Graph

Based on the sub-graph relationship, the set of all frequent patterns (F) forms a

partial order called Subgraph partial order. The lowest pattern in this partial order is

the null (∅) pattern. The partial order can be represented as a graph, called partial

order graph (POG). Every node in the POG corresponds to a distinct frequent pattern.

Every edge in POG represents a possible extension of a frequent pattern to a larger

(by one unit) frequent pattern. Algorithms for enumerating all frequent patterns

typically traverse the POG in either depth-first or breadth-first manner, starting

from the lowest pattern. Figure 3.2(a) shows the frequent subgraph partial order for

the graph mining task shown in Figure 2.4. It is easy to see that for the case of

mining other patterns, such as sets, sequences and trees, a similar POG can be built,

using the subset, subsequence, or subtree relationship, respectively.

3.4.2 Markov Chains, Random Walk and Metropolis-Hastings (MH) Al-

gorithm

A Markov chain is the sequence of Markov process over the state space S. The

state-transition event is guided by a matrix T , called transition probability matrix.

A Markov chain is said to reach a stationary distribution π when the probability of

being in any particular state is independent of the initial condition. Markov chain is

reversible if it satisfies the reversibility condition π(i)T (i, j) = π(j)T (j, i), ∀i, j ∈ S.

A Markov chain is ergodic if it has a stationary distribution. If the state space (S)

of a Markov chain is the vertices of a POG, and the state transition happens only

between adjacent nodes in POG, then this Markov process simulates a random walk

on the frequent pattern space (F).

The main goal of the Metropolis-Hastings algorithm is to draw samples from some

distribution π(x), called the target distribution, where, π(x) = f(x)/K; here K is a

normalizing constant which may not be known and difficult to compute and f(x)

is the likelihood function that we know how to compute. MH algorithm can be
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Fig. 3.2. (a) Partial Order Graph (POG) (b) State-transition graph

used together with a random walk to perform Markov Chain Monte Carlo (MCMC)

sampling. For this, the MH algorithm draws a sequence of samples from the target

distribution as follows:

i. It picks an initial state (say, x) satisfying f(x) > 0.

ii. From current state x, it samples a point y using a distribution q(x, y), referred as

proposal distribution.

iii. Then, it calculates the acceptance probability,

α(x, y) = min

(

π(y)q(y, x)

π(x)q(x, y)
, 1

)

= min

(

f(y)q(y, x)

f(x)q(x, y)
, 1

)

(3.1)

and accepts the proposal move to y with probability α(x, y). The process continues

until the Markov chain reaches to a stationary distribution.

As shown in [52], a Metropolis-Hastings (MH) based MCMC algorithm can be

used for sampling frequent pattern with the desired sampling distribution. In such a

method, the set of frequent patterns (F) is the state space of the random walk, and

the edges of the POG define the possible state transitions. Importantly, the POG is

generated locally as needed. For instance, when the random walk resides on a pattern

x, the local neighborhood of the pattern x, which consists of all frequent super pat-

terns (whose sizes are larger by one than the size of x), and all frequent sub-patterns

(whose sizes are smaller by one than the size of x), is constructed. The random walk
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then jumps to one of its neighbors using the acceptance probability (Equation 3.1)

of the MH algorithm. The MH requires to choose a proposal distribution (q), which

can simply be the uniform distribution, i.e., each of the neighbors of the pattern x in

the POG is equally likely to be chosen. If y is a neighbor of the pattern x, dx and dy

are the degrees of the pattern x and y in the POG, and γ is the target distribution,

following equation 3.1, the acceptance probability for choosing the proposal move is

as below:

α(x, y) = min

(

γ(y) · (1/dy)
γ(x) · (1/dx)

, 1

)

= min

(

γ(y)dx
γ(x)dy

, 1

)

(3.2)

The following Lemma holds:

Lemma 1 The random walk on POG converges to a stationary distribution which is

equal to the desired target distribution, γ.

Proof: See [52]

3.5 Interactive Sampling Algorithm

We also use MH as the underlying sampling algorithm to mine patterns from

the hidden database, D. Each sampler si in Figure 3.1 (b) runs an instance of the

MH sampling with the objective that the MH’s target sampling distribution (γ in

Equation 3.2) matches the desired sampling distribution of the user ui. Achieving

the above objective is challenging because the sampler has no knowledge of the desired

sampling distribution. To overcome this difficulty, we sample patterns using the MH

with a default sampling distribution, and update the distribution using each of the

user feedback so that the effective distribution converges towards γ with the updates.

3.5.1 User’s Scoring Function

We represent the user’s desired distribution as a scoring function, f : F → R+; f

maps each pattern in F (frequent pattern-set) to a non-negative real number. From

this scoring function, we can obtain user’s desired distribution by f(P )∑
q∈F

f(q)
, i.e. the
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probability of a pattern in the desired distribution is directly proportional to the f(·)
(f -score) of that pattern 2.

For the sake of learning, we must impose a bias on γ and assume that γ is taken

from some family of functions 3. For this, we use the similarity between interactive

pattern mining (IPM) and the task of Query by Example in information retrieval

(QEIR) [68]—given a set of documents that a user has liked, retrieve other documents

that he is likely to like; for IPM, the set of patterns for which the user provides a

positive feedback plays a role which is similar to the role of the given phrases to

construct user’s preference profile. Similarly, to model γ, we also adopt a vector

space model of unit-size patterns. For example, unit-size patterns for a graph are its

edges; for an itemset, they are the items. In this vector space model, each unit-size

pattern has a weight, expressed as bi where b ∈ (1,+∞) and |i| ∈ 0, 1, . . . , |F|. The

γ-score of a pattern is simply the multiplication of these weights 4. If P is a pattern

of size k and Pj are the unit-size patterns that compose the pattern P , we have:

γ(P ) =
k∏

j=1

w[Pj ] ∀Pj ∈ P and |P | = k (3.3)

Note that, if two patterns x and y are structurally similar, there will be higher overlap

between their constituting unit-size patterns; hence, under the above assumption,

they will have similar γ-score.

4 Node Induced Subgraphs

g1 g5g3 g6g2 g7g4 g8

3 Node Induced Subgraphs

Fig. 3.3. Set of undirected graphical structures with 3 and 4 vertices.

2In this chapter, we will use the phrases scoring function and the corresponding sampling distribution

synonymously.
3this argument is known as No Free Lunch Theorem in the machine learning literature
4An additive γ function may also be considered, but we notice that such a function has slow con-
vergence compared to multiplicative functions.
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To assign a weight on each unit-size pattern, we assume that the set of frequent

patterns are partitioned into two sets: interesting (I) and non-interesting (N ); so,

F = I ∪ N . Furthermore, assume that F1 is the set of all unit-size frequent pat-

terns. Now, consider a weight vector w of size |F1|; each entry w[·], in this vector

corresponds to one of the unit-size frequent patterns; for a unit-size pattern p, w[p]

is equal to bu−v, where u, v ∈ [0, 1, . . . , |F|], and they are, respectively, the number

of interesting and non-interesting patterns (according to a user) in which p is embed-

ded. In this way, if a unit-size pattern is part of x interesting (from the set I) and y

non-interesting (from the set N ) patterns, its weight will be bx−y.

Example: In Figure 2.4 (b), if I = {g1, g2, g7, g12} and N = {g3, g4, g5, g6, g8,
g9, g10, g11, g13}. Suppose b = 2, then, w[A-B] = 23−1 as the unit-size pattern A-B

is part of three (g1, g7, g12) interesting and one (g8) non-interesting patterns. On the

other hand, w[B-D] = 21−6, as this edge appears in 1 interesting and 6 non-interesting

patterns. Also, γ(g7) = 24, which we obtain by multiplying the weights of each of its

edges (unit-size patterns).

3.5.2 Updated Scoring Function(γ) for Graph Patterns

The scoring function (Equation 3.3) that we discuss in the previous subsection

works for all different kinds of patterns, including, graphs and itemsets. In this

scoring function, the γ-score of a pattern p is computed from a weight vector of unit

size patterns. In the case of a graph pattern, we consider the edges to be the unit size

pattern, so the scoring function of a graph pattern is influenced by the vertex and edge

labels of its constituting edges. However, although the edges are the building block

of a graph pattern, the above scoring function considers each edge independently,

ignoring higher order topological structures, such as a triangle, a star, or a rectangle

(see Figure 3.3). Hence, the presence or absence of some higher-order topologies in

a graph pattern has no consequence on the γ-score of that pattern. Nevertheless,
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from the user’s perception of a graph pattern, interestingness of a graph pattern may

be influenced by the fact, whether the pattern includes or excludes some specific

graphical structure. To address this, we modify the earlier scoring function as below.

The scoring function for graph patterns incorporates the influence of higher-order

topologies through an additional weight vector (wg) of appropriate size; every entry

in this vector corresponds to one of the higher-order topologies. In this work, we

consider eight topologies as shown in Figure 3.3 which are all undirected topologies

that have 3 or 4 vertices. However, depending on the domain of the data-set, one can

always add or discard entries in the wg vector for other topologies. Now, each entry

of wg is equal to bu−v, where u, v ∈ [0, 1, · · · , |F |] are the number of interesting and

non-interesting patterns in which the corresponding graphical topology is an induced

subgraph. Update and usage of wg is similar to the weight vector of frequent edges.

Each entry of wg has an initial value of 1. Depending on the feedback’s nature,

sampler updates the weight of each induced subgraph by multiplying or dividing by

b. Thus for a graph pattern P we will have two weight vectors containing weights of

unit length patterns and weights on higher-order topologies, respectively. We denote

this newly formulated score for graph pattern as γg-score; for the pattern P , it can

be represented by the following equation:

γg(P ) =
1

2

(
k∏

j=1

w[Pj] +
∏

g∈G

wg[g]

)

=
1

2

(

γ(P ) +
∏

g∈G

wg[g]

)

, ∀Pj ∈ P, ∀gi ∈ P |P | = k and G is the set of all topologies (3.4)

As we can see, γg is simply the average of the scores of unit-length patterns, and

higher-order topologies. Any other linear combination of these factors can also be

used based on the domain knowledge to balance the influence of vertex/edge labels

and higher-order topologies. For our data-set, we found average to be a good choice,

and it improves the performance of interactive mining substantially.
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3.5.3 User Interaction Design

The objective of interactive pattern mining is to sample each pattern such that

their sampling probability is proportional to their score, where the score is defined

by γ (or γg, for the case of a graph pattern). The normalized form of the score

vector is the target probability distribution; as it was mentioned earlier, we use the

same symbol (γ or γg) to denote both the scoring function and the target probability

distribution. Unfortunately, the scoring function is unknown to the sampler. Rather

the sampler (si) uses a proxy distribution (say β) as the effective target distribution,

which the sampler updates with each of the feedback. If β0, β1, . . . , βk are sequences

of β’s along with the updates, the limiting value of β converges to the actual scoring

function. For simplicity, we will first use γ in the following discussion. Later, we will

show that the discussion holds for γg as well.

The proxy distribution, β requires to converge to γ, i. e., Limk→∞βk = γ, so we

ensure that each of the βk distributions also belongs to the same family of distribution

as of γ. Thus, the β(·) (β-score) of a pattern is computed as the multiplication of

the weight of its constituting unit-size patterns, identically as it is computed for the

γ-score (see Equation 3.3).

At initialization, all unit-size patterns have a weight of 1, and sampling using such

a β (let’s name it β0) as the target distribution yields a random initial distribution.

The sampler starts sampling from the initial distribution by using the MCMC based

random walk; suppose, at some step of the walk, it (the sampler) picks a pattern P of

length k for user’s feedback. If the pattern P has already been used for feedback, the

pattern is discarded and the process continues until another pattern is found for which

the feedback has not been sought yet. Then, for the selected pattern, the user provides

her feedback by indicating whether she likes the pattern P or not. If the feedback is

positive, the sampler increases the weight of each of k length-one sub-patterns of P

exponentially, i.e. it multiplies the current weight of those length-one sub-patterns

by b. On the other hand, if the feedback is negative, the sampler decreases the weight
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of those length-one sub-patterns by dividing the current weight by b. This weight

modification updates the existing sampling distribution β. The sampling step and

the interaction step are repeated intermittently as the β function iteratively moves

closer to the user’s desired distribution γ. The above weight updates also ensure that

in every βk, there exists a positive probability of visiting any frequent pattern from

any other frequent pattern; which maintains the ergodicity of the random walk.

Lemma 2 Limt→∞βt = γ.

Proof: βt is the updated sampling distribution after t iterations; in each of these

iterations, exactly one pattern is sent for user’s feedback; hence, total number of

patterns for which feedback is sought is t.

Now, consider, any unit-size pattern p, and assume that it appears in r(≤ t)

patterns out of those t patterns. Now, let’s partition the r patterns into two set,

based on their feedback status, interesting or non-interesting. If the sizes of these

sets are ri and rn, respectively, according to the weight update mechanism, in βt the

weight of the pattern p, w[p], is equal to bri−rn.

Now, in all sampling distributions, βk : 0 ≤ k ≤ ∞, every interesting/non-

interesting pattern in I and N has a non-zero probability to be visited; hence, as t

goes to infinity, all the patterns in the set I and N will be sent to the user (at least

once) for feedback; Also, for each pattern, we consider its feedback exactly once. So,

the weight of p in the limiting distribution β∞ is exactly equal to bx−y, where x and y

are the count of interesting and non-interesting patterns of which p is part-of, which

is identical to w[p] of γ. Hence, β∞ = γ .

The above proof easily extends to the case of γg. If βg
t is the proxy distribution

for γg, and we use the identical update mechanism in βg same as β, except that for

the earlier, we also update the weights on the topology vector wg based on the fact

whether a topology is an induced subgraph of a given pattern or not.
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The following lemma holds.

Lemma 3 Limt→∞βg
t = γg.

Proof: From Lemma 2, the unit pattern weight component (w) of βg converges

to γ. For the remaining part, let’s consider, a graph topology p and assume that it

is an induced subgraph of m(≤ t) patterns out of the t patterns that are sent for

feedback. Now, based on their feedback status, let’s partition the m patterns into

two sets: interesting and non-interesting and assume that the sizes of these sets are

mi and mn, respectively. According to the weight update mechanism of βg
t, wg[p]

is equal to bmi−mn . As t approaches infinity, bmi−mn converges to bx−y, where, x and

y are the count of interesting and non-interesting patterns (over the entire frequent

pattern space), in which p is an induced subgraph. βg multiplies the weights of all

the topologies that we consider. Hence, βg
∞ = 1

2

(

γ +
∏

p∈G wg[p]
)

= γg

Lemma 2 and Lemma 3 proves that the user interaction that we design works

perfectly when the γ and γg function is constructed as was shown in Equation 3.3

and Equation 3.4. While this is a reasonable assumption about γ and γg, in real

life an interestingness function can be different. Nevertheless, any interestingness

function that a user use should have some structure; alternatively, it should be non-

random, where the structural similarity between a pair of patterns should have a

strong influence on the possible γ and γg-scores of these patterns. As a result, the

above proxy distribution β and βg should work reasonably well.

3.5.4 Feedback Mechanism

As the sampler walks over the frequent pattern space randomly, it sends a subset

of patterns that it visits, to the user for feedback. Using feedback, it updates its

sampling distribution of the objective that the active distribution converges to user’s

desired distribution. In this section, we will discuss two mechanisms for choosing the

subset of patterns for which sampler seeks feedback.
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Periodic Feedback. In this mechanism, the user sets a parameter called miniter,

and the sampler chooses one pattern for feedback periodically after it performsminiter

count of steps in its random walk over the frequent pattern space. With this approach,

the sampler does not estimate the quality of the pattern for which it seeks feedback;

however, it ensures uniqueness, i.e. it does not seek feedback for the same pattern

more than once. The process stops once a desired number of feedback are collected.

This method is fast as the only selection criteria is to maintain uniqueness, which can

be done by computing a singular key for each frequent pattern.

Conditional Periodic Feedback. For an effective learning of user’s desired dis-

tribution, diversity among the selected patterns is important while nominating them

for feedback. Periodic feedback mechanism does not ensure diversity as the sam-

pler does not perform any similarity computation over the visited patterns. As a

result, it is possible that the sampler receives feedback for a set of patterns, which

are similar to one another. This severely impedes the convergence towards the user’s

desired distribution. However, direct similarity computation is costly, especially for

graph patterns. In this feedback mechanism, we devise an alternative method for

promoting diversity.

In this method, the sampler computes whether the feedback (positive or negative)

of a pattern alters the existing distribution significantly. It still uses miniter as one

of the pattern selection criteria; nevertheless, before sending the pattern to the user,

the sampler estimates whether feedback (positive/negative) of the chosen pattern

changes the β distribution substantially. If this is true, the pattern will be sent

to the user otherwise, the sampler waits for the next miniter cycle and performs

the same selection test. The process stops once the desired number of patterns are

chosen for feedback. Since β is composed of the product of weights on the unit-

length patterns (see Equation 3.3), the change in weight vector w can be used to

approximate the change in β. To compute the discrepancy between a pair of w’s, we

use KL-Divergence. It is defined as below.
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Suppose Q and P are two distribution, KL-Divergence of Q from P can be written

as

DKL(P ||Q) =
∑

i

P (i)ln

(
P (i)

Q(i)

)

=
∑

i

P (i) ln(P (i))

︸ ︷︷ ︸

EP

−
∑

i

P (i) ln(Q(i))

︸ ︷︷ ︸

EQ

(3.5)

In the last expression of the above equation, the first term is the entropy of the

distribution P , and the second term is the entropy of the distribution Q relative to

P . We use the value EP and EQ to represent these two terms.

Let’s assume w is the existing weight vector when the sampler chooses a pattern p

to get the feedback. Then assuming both types of feedback, i.e. positive and negative

respectively, the sampler computes w+ and w− by updating the score of the unit size

patterns of p appropriately. By normalizing all the vectors w,w+, and w− so that

they become a probability distribution vector, the sampler computes the percentage

of divergences using following equations:

Divergence(w,w+) =

( |Ew − Ew+ |
Ew

)

∗ 100 (3.6)

Divergence(w,w−) =

( |Ew − Ew−|
Ew

)

∗ 100 (3.7)

Finally, the sampler takes the average of above calculated percentage of diver-

gences (Equation 3.6,3.7). If the percentage of divergence is higher than some thresh-

old, say, η, the sampler will send the pattern to the user for feedback. Using empirical

evaluation, we showed that, “Conditional Periodic Feedback” performs better than

“Periodic Feedback”. For graph patterns, sampler applies above technique for both

the edge (w) and topological (wf) weight vectors and takes the average percentage

of divergence to compare against η. The conditional periodic feedback scheme safe-

guards the system from the user(adversary) who tries to gather as many patterns he

can from the system in the name of providing feedback. Even if a user is willing to

provide any number of feedback, the sampler only asks for feedback if the feedback

help over a certain threshold on its current learning, so when the sampler converges
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to a distribution with the help of relatively low number(60− 100) of feedback (More

detail in Section 3.6) it stops asking for feedback.

3.5.5 State-transition Graph and Convergence of MH-based Random Walk

In [52], the authors use partial order graph (POG) as the state-transition graph for

sampling frequent patterns. However, by construction, POG is a multi-stage graph—

the patterns that have the same size belong to the same stage, and a pattern in stage

i has neighbors only from stage i + 1 and stage i − 1. Such a graph has a large

diameter (at least, as large as the size of the largest frequent pattern), which causes

slow mixing for any random walk on it (the graph). If the mixing is slower then the

sampling quality will be worse. In particular, for our task, fast mixing is crucial—we

update the effective distribution (βt) frequently, so we desire that the random walk to

mix well before the effective distribution βt is updated. The mixing time of a random

walk is characterized by the number of steps the walk takes to reach its stationary

distribution. For a known target distribution, the mixing time can be estimated by

computing the spectral gap [69] of the transition probability matrix P . In short, the

higher the spectral gap, the faster the convergence.

Table 3.1
Effect of random edges in POG on spectral gap

Dataset spectral gap (µ)

POG + Random edge POG

Mushroom 0.045 0.020

Chess 0.082 0.040

Connect 0.085 0.047

To achieve fast mixing, we overlay a random graph on POG, by introducing ran-

dom edges in the partial POG in a periodic manner with the exploration of a batch
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of new nodes of the POG. In Figure 3.2, we show two such random edges (shown as

dotted line in the right Figure), between patterns (A-B-C, D-E-F ) and (A-B-C-D,

B-D). The addition of these two edges reduces the diameter of the POG in Fig-

ure 3.2 by 40% (from 5 to 3). The reason for overlaying a random graph is due

to the well-known fact that a random graph exhibits rapid mixing property—for

instance, the mixing time of an MCMC random walk on a Connected Erdos-Renyi

random graph is Θ(log2 n) [70]. In all our experimental data-sets, introducing random

edges increase the spectral gap almost by 100%. Table 3.1 shows the improvement

in the spectral gap for Mushroom, Chess and Connect data-sets after setting the

randomedge factor (explained in Section 3.5.6) to 20%. Importantly, the addition

of random edges maintains the ergodicity of the MCMC walk. This is because the

random edges are symmetric (allow transition along both the directions of the edge),

and the addition of these edges maintains the reversibility condition.

Lemma 4 The random walk on POG with random overlay graph converges to a sta-

tionary distribution which is equal to the desired target distribution, γ.

Proof: In order to achieve a stationary distribution, a random walk needs to be

finite, irreducible, and aperiodic [71]. First, POG with random overlay graph is fi-

nite since the incorporation of random edges does not introduce any new frequent

patterns (states) than it was before in POG. Second, for any two nodes x and y in

POG with random overlay graph, there still exists a positive probability of reach-

ing from one to other because every pattern can reach and can in turn be reached

from the φ pattern. Since at least one path exists between any two patterns via

the φ pattern, the random walk is irreducible. Finally, the walk can be guaranteed

to be aperiodic by allocating a self-loop probability at every vertex of POG with

random overlay graph5. This proves that the random walk over POG with random

overlay graph achieves a unique stationary distribution. Now, consider two adjacent

vertices x, y ∈ POG with random overlay graph. Using equation 3.2 the transition

5This is required only from a theoretical standpoint; in our experiment, we do not allocate any
self-loop probability explicitly
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probability from x to y, P (x, y) = 1
dx

∗ min
(

1, γ(y)dx
γ(x)dy

)

= min
(

1
dx
, γ(y)
γ(x)dy

)

. Assum-

ing that the stationary distribution probability of the node x is π(x) = γ(x), then

π(x)P (x, y) = min
(

γ(x)
dx

, γ(y)
dy

)

. Similarly, the transition probability from y to x,

P (y, x) = min
(

1
dy
, γ(x)
γ(y)dx

)

. Using π(y) = γ(y), π(y)P (y, x) = min
(

γ(y)
dy

, γ(x)
dx

)

. We

have π(x)P (x, y) = π(y)P (y, x). Thus the detail balance condition holds using γ as

the stationary distribution over the POG with random overlay graph.

3.5.6 Algorithm

For an incoming user, the IPM creates a new sampler instance which executes

the subroutine Interactive Sampling shown in Algorithm 1. Besides the database

D, the method also takes four more parameters: (1) a minimum normalized support

(0 ≤ πmin ≤ 1) value, which defines whether a pattern is frequent or not; (2) a

minimum number of walks (miniter) before the sampler returns a pattern to the user

for feedback; (3) Total number of feedback (feedback count) and (4) a value for the

base (b), which is used to update the weight of unit size patterns.

In Line 1 of Algorithm 1, the sampler starts with any arbitrary frequent pattern P ;

a unit-length frequent pattern suffices. Then, it computes all frequent super and sub-

patterns of P (Line 2). The degree of P is the size of the union set of super and sub-

patterns. Then it chooses a pattern (Q) from P ’s neighbors (Line 5) uniformly and

computes the acceptance probability in Line 8. If the move is accepted, Q becomes

the resident state; otherwise, the sampler chooses another neighbor identically and

repeats the whole process. If the user aborts the sampling, the infinite while loop

breaks.

During the MCMC walk, if the condition in Line 13, i.e., the ratio of the number

of nodes in the current POG and the same in the previously marked POG is greater

than 3, the sampler inserts a set of random edges to the current POG. We use a

variable called randomedge factor to control the number of inserted random edges.

The value of randomedge factor is not that important as long as a small fraction of
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Algorithm 1: Interactive Sampling

Input: D, minsup,miniter, feedback count, b

1 P = generate a frequent pattern(D, minsup);

2 dP = compute degree(P );

3 π(P ) = compute β-value(P );

4 while true do

5 choose a neighbor, Q, uniformly from, all possible frequent super and sub

patterns;

6 dQ = compute degree(Q);

7 π(Q) = compute β-value(Q);

8 acceptance probability = min (π(Q)dP
π(P )dQ

, 1);

9 if uniform(0, 1) ≤ acceptance probability then

10 P = Q;

11 iter = iter + 1;

12 end

13 if (#ofNodeInCurrentPOG
#ofNodeInOldPOG

>= 3) then

14 insert random edge();

15 end

16 if iter % miniter == 0 and feedback count ≥ 0 then

17 insert random edge();

18 else

19 goto line 5;

20 end

21 end

edges in the state-transition graph is from the random graph; in all our experiments,

we keep this fraction equal to 0.20.

The condition on Line 16 checks whether the sampler should send the resident

pattern (P ) to the user for feedback. Inside get and process feedback procedure,
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Algorithm 2: compute degree

Input: D, P,minsup

1 super pat = all frequent super pattern(P );

2 sub pat = all sub pattern(P );

3 neighbor list = super pat ∪ sub pat;

4 save the neighbor list in POG data structure;

5 return size(neighbor list);

Algorithm 3: compute β-value

Input: P

1 foreach single length p in pattern P do

2 value = value * w[p];

3 end

4 return value;

Algorithm 4: get and process feedback

Input: P ,b

1 if feedback is positive then

2 foreach single length p in pattern P do

3 w[p] = w[p] * b;

4 end

5 else

6 foreach single length p in pattern P do

7 w[p] = w[p] * 1/b;

8 end

9 end

10 feedback count = feedback count− 1;
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sampler first applies conditional periodic feedback scheme and checks whether getting

feedback for the pattern in hand is advantageous or not. If the sampler finds it

favorable for its learning, then it proceeds with the feedback. After that, if condition

succeeds, depending on the feedback’s status, the sampler updates the weight of each

of the unit-size sub-patterns of P , which forces a change in the target distribution

(β).

The above pseudo-code is generic and can easily be adapted for sampling any kind

of patterns, e.g. itemsets, trees, sequences or graphs.

Example: Assume a random walk on the POG in Figure 3.2(b). At some stage

of this walk, the resident state of the random walk is the pattern g7 (see Figure 2.4).

It has 4 neighbors (dg7 = 4), one super-pattern (g12), two sub-patterns (g1 and

g2), and a random edge. Assume that the existing weights (chosen arbitrarily) of

the unit-size patterns g1, g2, g3, g4, and g5 are 〈2, 1, 2, 1, 1〉 in that order. So, the

weight of the pattern g7 is 2. If the proposal distribution chooses the pattern g12, to

compute acceptance probability, we first compute the followings: β-score(g12) = 4,

dg12 = 4; now the acceptance probability of the proposal move using equation 3.2 is:

min
(

4∗(1/4)
2∗(1/4)

, 1
)

= 1. So, this move will always be accepted. If we send g12 to the

user and the user likes it, the weight of pattern g1, g2, and g3 will be incremented

by the multiple of b and the new weight vector for the unit-size patterns will be

〈2 ∗ b, b, 2 ∗ b, 1, 1〉.

Choosing Feedback Interval (miniter):

The effective sampling distribution βt changes once a feedback on a pattern is

received. So before returning a subsequent sample, the sampler needs to perform a few

walks on the frequent pattern space—the parameter, miniter decides the number of

walks that are interleaved between two successive feedback collections. Now, exactly

how many walks the sampler should perform depends on how fast the random walk

mixes, which we can compute from the spectral gap. Nonetheless, this computation
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requires the knowledge of P , which the user is unaware of. On the other hand, the

sampler can’t pre-compute P as it requires the effective target distribution βt, which

is always changing based on the user’s feedback. Whenminiter is set to a small value,

the random walk exhausts all of its feedbacks before sufficiently exploring the pattern

space which causes the sampler to converge to a distribution pre-maturely which

is far from the true sampling distribution. Such a distribution allows the sampler

to wander around the entire sample space which results in lower precision as many

non-relevant patterns are visited. However, such a walk also covers a larger part of

the search space, so the recall metric is high as the walk visits many of the relevant

patterns as well. Similar phenomenon occurs for a large miniter also. In this case,

the sampler spends more time on exploring between feedbacks and convergence of

the true sampling distribution occurs slowly. Between two consecutive feedbacks, the

sampler explores a large part of the frequent pattern space in which many patterns

are non-relevant, which yields low precision. For this case, the walk covers a large

part of the search space, so recall metric is high. It is hard to find an optimal value

for miniter. We found that miniter in the range of (20, 30) works well for most of

the data-sets. We use miniter=25 for all of our experiments. In experiment section,

we will show how the choice of miniter value affects the precision and recall.

Choosing Base (b):

The base (b) has a substantial significance in regard to learning the user’s desired

distribution, γ. A large value of b sharply increases (or decreases) the weight of a

unit-length pattern in response to a positive (or negative) feedback. If we consider

the learning of γ as a multi-arm bandit problem, each unit-length pattern can be

considered as an arm, and we are trying to find a weight for each arm so that using

this weight in equation 3.3, we can approximate the user’s desired distribution γ.

Under this assumption, the parameter b is simply the exploration-exploitation trade-

off parameter. Choosing the high value of b imposes higher weights on unit-length
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patterns that are part of some of the interesting patterns, which have already been ex-

plored; as a result, the sampler is biased to choose patterns that are composed of these

items. However, this bias restricts the sampler to explore other yet-to-be-explored

patterns that may be interesting but are not composed of unit-length patterns that

have already been explored. For this reason, a higher value for b increases the sam-

pler’s precision since the sampler will traverse patterns that are composed of (already

known) interesting unit-length patterns; however, this yields poor recall as many other

interesting patterns may remain unexplored. It is hard to choose a good operation

point on the precision-recall curve because in a hidden data-set the user has no idea

of the number of interesting patterns that exist in the hidden data-set—a value that

is needed to compute the recall. We found that b in the range of (1, 2] works well for

most of the data-sets. We use b=1.75 for all our experiments.

Choosing Threshold for Percentage of Divergence(η):

Choosing a proper η is challenging. To set the divergence parameter we adopt the

trial-and-error approach. We perform numerous empirical tests on different threshold

values ranging from 5% to 50% over different data-sets. We found that percentage of

divergence(η) set to 20% works for all data-sets.

3.5.7 Mining Patterns from Hidden Datasets

To mine a pattern from a hidden data-set, a user interface is used through which

the user provides her feedback. At the initiation of an interactive mining session with

a user ui, the interactive system creates a new sampler process (say, si) that runs on

the host machine (that stores the data-set) for managing dedicated communication

between ui and si (see Figure 3.1(b)). The sampler executes the interactive mining

algorithm that is shown in Figure 1; the parameters of this algorithm, such as minsup

can be obtained from the user. Through the user interface, the sampler sends a

pattern to the user, gathers her feedback and updates the sampling distribution by
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executing the method in Line 15 of Figure 1. The infinite loop terminates once the

Connection is closed by the user. The above setup enables interactive pattern mining

by considering a semi-honest model [72], where each party obeys the protocol and the

user of the system cannot be whimsical, i.e. change interest over patterns during an

execution.

3.6 Experiments & Results

We conduct several experiments to manifest the main purpose of interactive pat-

tern sampling, which is to mine a set of interesting patterns by utilizing the binary

feedback from the user. Our experiments show results both from graph and itemset

mining.

3.6.1 Experiment Setup

For our experiment, we require defining an interestingness function (γ) by which

the user makes an opinion about a pattern. We mark m% randomly selected unit-size

patterns among all the frequent (for a given minsup) unit-size patterns as interesting

according to a user. With these m% patterns, we build a set called Ip. We assume

that the user is interested in patterns where the majority of the single length sub-

patterns are from the set Ip. Thus, the scoring function, γ for a pattern P is defined

as, γ(P ) =
∑k

i=1
I(pi)

k
∗ 100

Here, p1, p2, . . . , pk are the unit-length sub-patterns of P , and I is an indicator

random variable that defines whether a pattern pi is from the set Ip or not. The γ-

score of a pattern varies between 0 and 100, and the patterns that have γ-score more

than 50 are interesting to the user, for which the user provides a positive feedback;

for the remaining patterns, the user provides a negative feedback. We set m = 30%

in all of our experiments, unless specified otherwise.

Using the similar notion of defining an interestingness function (γg) explained

above, for graph data, we mark L% randomly selected induced subgraph of size 3
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and 4 as interesting according to the user and called it Igp. We assume a user will

be interested in those graph patterns that have majority induced subgraphs from Igp.

For graph pattern, final γg-score will be the average of γ(P ) computed from Ip and

Igp. In all our experiments, we set L = 50%.

Table 3.2
Dataset statistics

Dataset # of Avg. πmin |F| |F1|
transactions transaction size

Chess 3196 37 2100 99262 29

Mushroom 8124 22 1200 53628 45

Connect 67557 43 58000 109664 24

eBay Query 10000 27 30 41130 3368

HIV-1 9 474.4 6 58154 39

Mutagenicity-II 687 14 20 2935 13

Biodegradability 328 11 16 1820 8

3.6.2 Dataset

We show experimental results on seven real-life data-sets displayed in Table 3.2.

The first five among them are itemset data-sets, and the remaining two are graph

data-sets. We obtain Mushroom, Chess and Connect data-set from the UCI Machine

Learning repository6. eBay Query is the remaining itemset data-set that we generate

by scrapping queries from the “Related Searches”7 a feature of eBay. We build a

query-graph where related queries are neighbours. Afterwards, we populate the row

of an itemset data-set by performing short random walks of this graph; In this way,

6http://archive.ics.uci.edu/ml/
7When a user searches for an item in www.ebay.com with a query phrase, the search result page
shows (at most) 10 keywords related to the original query.
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Fig. 3.4. Scatter-plot with a fitted straight line showing the relation-
ship between the sampler’s precision and the number of feedback in
(a) Mushroom (b) Chess (c) eBay (d) Connect (e) HIV (f) Biodegrad-
ability (g) Mutagenicity-II with Periodic Feedback.

the list of the queries that such a walk visit makes a transaction in the eBay Query

data-set. Since related search suggestion is built by using user session data [45], this

data-set is a metaphorical user session data, where a transaction can be regarded as

the set of queries that a user executes in a user session.

We also build a real-life transaction data-set from a life science domain. For this,

we have collected HIV-1, human protein interaction data from HIV-1, Human-protein
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interaction Database8. This data-set contains the information of nine HIV-1 proteins

interacting with proteins in the host(Human). Each record in this data represents an

interaction of an HIV-1 protein and a Human protein. There are 9 HIV-1 proteins

and 3450 Human proteins. We convert this data into transactional itemset data. We

assume each HIV-1 protein as a transaction and all interacting human proteins as

items in the transaction.

The remaining two data-sets, Biodegradability and Mutagenicity-II are chemical

(graph) data-sets that we obtained from the authors of [73].

Table 3.2 also shows some statistics of the data-sets. The second and third column

shows the number of transactions and average size of each transaction. The fifth

column shows the number of frequent patterns, considering the minimum support

value listed on the fourth column. The sixth column shows the total number of

distinct unit-size frequent patterns.

3.6.3 Analysis of Sampler’s Performance

The objective of this set of experiments is to show the dependency of sampler’s

convergence with various parameters of the interactive sampling. We first show that

with the increasing number of feedback, the sampler converges to a distribution, where

the interesting patterns are more likely to be sampled. For this, we run the sampler

for a large number of iterations and compute the percentage of iterations in which

the sampler visits an interesting pattern; we call this percentage samplers precision

(SP). We compute SP from many independent runs, each using a different value for

the feedback count. Then we find the correlation between the number of feedback

and SP. Since the process is randomized, SP value for each feedback count is also

computed by averaging over 10 runs.

We show our results in Figure 3.4. As we can see, the number of feedback and

the sampler’s precision are highly correlated—SP increases along with the feedback

8http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/
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Fig. 3.5. Scatter-plot with a fitted straight line showing the relation-
ship between the sampler’s precision and the number of feedback in
(a) Mushroom (b) Chess (c) eBay (d) Connect (e) HIV (f) Biodegrad-
ability and (g) Mutagenicity-II with “Conditional Periodic” Feedback
scheme.

count. Note that, the strength of correlation differs across data-sets—specifically, the

correlations are poor for graph data-sets, and good for itemset data-sets. This is

expected because, in this experiment, we use γ as our scoring function, which treats
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a graph as if it is simply a multiset of labeled edges (unit-pattern)—this assumption

ignores the neighborhood structure of a graph, which may degrade the sampling

quality. Another important observation is that, it does not take much feedback for

the sampler to achieve a fairly good correlation. In all the plots, the maximum

number of feedback that we use is less than 60, which is a negligible fraction of the

entire frequent pattern set—see the fifth column of Table 3.2 for a count of frequent

patterns in each of the data-sets. 60 is also a reasonable number considering the real-

life scenario, where a human inspects the patterns and provides feedback on them.

To show the effect of b, the exploration-exploitation trade-off parameter, we run

our sampling method for several b values and report average samplers precision and

recall. Here the precision is as we defined earlier, and the recall is the fraction of

interesting patterns that the sampler has explored out of all the interesting patterns.

The result is shown in Table 3.3, where the precision and recall are averaged over

10 distinct runs; as we expect, an increment of b increases the sampler’s precision

with a reduction in the recall value. We also show the F-measure value, which is the

harmonic mean of precision and recall. For b = 1.75, this value is the largest among

the four choices that are shown in this Table.

To exhibit the influence of parameter miniter, we run our sampling algorithm for

different miniter values and report average sampler’s precision and recall as we did for

the experimentation with the parameter b. We present the result in Table 3.4,where

the precision and recall are averaged over 10 distinct runs. As discussed earlier in

Section 3.5.6, we can see that both for larger and smaller value ofminiter, the sampler

suffers from low precision but enjoys a high recall. We also show F-Measure value

for different choices of miniter. As we can see the largest F-measure is achieved for

miniter equal to 5, but the precision for that choice is only 46.43%. For a hidden

data-set, a user generally has no idea about the total size of the relevant patterns

in the data-set, so he will not be able to estimate the recall. However, he will be

able to compute the precision from the patterns that the system returns. This is
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the justification for choosing miniter equal to 25 in all of our experiments as a value

around 25 maximize the precision for most of the data-sets.

To show the effects of different values of divergence parameter η, we run our algo-

rithm on Mushroom data-set for several times and report average sampler’s precision

and recall as we did for the experimentation with the parameter b and miniter. In

Table 3.5, we show our results. As we can see, with the increase of the percentage

of divergence, η, sampler’s performance decreases as expected. With higher η, the

sampler will only be able to ask for feedback for a very small number of patterns,

hence performance decrease. On the other hand, as we lower the value of η, sampler

asks feedback for patterns discarding the effect of knowledge gain that comes along

with the feedback, which results in a decrease in the sampler’s performance.

Table 3.3
Effects of parameter b on Mushroom data-set

base(b) Avg sampler’s precision(%) Avg recall (%) F-Measure

1.5 62.43 41.70 50.00

1.75 80.50 36.61 50.33

2 85.61 23.43 36.79

2.5 97.96 9.6 17.48

Table 3.4
Effects of parameter miniter on Mushroom data-set

miniter Avg sampler’s precision(%) Avg recall (%) F-Measure

5 46.43 77.23 57.99

25 80.50 36.61 50.33

50 72.91 41.43 52.83

250 40.53 85.12 54.91
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Table 3.5
Effects of parameter percentage of divergence (η) on Mushroom data-set

percentage of Avg sampler’s Avg. F-Measure

divergence (η) precision(%) recall (%)

5% 70.21 40.13 51.07

10% 75.34 37.32 49.91

20% 80.50 36.61 50.33

40% 35.40 68.15 46.58

50% 30.12 79.22 43.64

We also study, how the sampler’s performance changes, as the fraction of interest-

ing patterns in the frequent pattern set (F) changes. For this, we vary the parameter

m which defines what fraction of unit-size items are interesting to the user. For

this experiment, we use the Mushroom data-set with a support value of 1200. The

number of frequent patterns, i.e., |F| = 53628 and the number of unit-size patterns

(F1) is = 45. For m = 10%, on average, 5 unit-size patterns from the set F1 will

be chosen as interesting, and the number of interesting patterns is 56, on average.

Sampler’s precision for this m value is 5.8%, i.e. out of 1000 sampled patterns, 58

patterns are interesting. This seems to be a low number, but considering the fact

that a uniform sampler will pick one interesting pattern from every thousand sam-

ples (56 ∗ 1000/53628 ∼ 1), the interactive sampler is 58 times more efficient. For

m = 20%, 30%, 40%, and 50%, the average sampler’s precision is 26.5%, 56.7%, 63.2%

and 74%, respectively. Sampler’s precision increases with the increment ofm, as there

are more interesting patterns in the search space (F). Results on other data-sets are

similar, which are not shown due to the page restriction.
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3.6.4 Interactive vs Uniform Sampling

Does user interaction really help? If we let the sampler perform a uniform sam-

pling, will that achieve as a good result as an interactive sampling session? We

somewhat answer the question in the last paragraph of the earlier subsection, here

we answer it in more details. For this, we compare interactive sampling and uniform

sampling. Note that, for uniform sampling, every pattern in F has equal probability

to be sampled, i.e. the γ-score is 1
|F|

for all the patterns. In our implementation

of interactive sampling, we simply turned off the feedback and use the above γ to

obtain a version of MCMC sampling that would obtain a uniform sampling. For

interactive sampling, we fix the feedback count to 60 for the itemset data-sets i.e.

Mushroom, Chess, Connect, eBay and 40 for the graph data-sets, i.e. Biodegrad-

ability and Mutagenicity-II. Our comparison metric in this experiment is sampler’s

precision, which is defined in the description of the previous experiment. The re-

sult is shown in Table 3.6; for all the data-sets the interactive sampling significantly

improves the sampler’s precision. We use Conditional Periodic feedback in this ex-

periment. Hasan et al. [52] propose the uniform sampling of frequent patterns as

a mechanism of frequent pattern summarization. However, the above experiment

shows that while mining patterns from a hidden data, an interactive approach will

provide more rewarding sampling experience. We could not be able to perform any

accuracy experiment of One-click method by [10] because, in the chapter, the authors

did not include any empirical experimentation to measure accuracy/efficiency of their

method.

3.6.5 Analysis of Sampler’s Performance for Conditional Periodic Feed-

back Mechanism

In Section 3.5.4, we explain how the sampler uses KL-Divergence to decide whether,

for a given pattern, it will seek feedback. In this experiment, we want to empirically

show that such scheme of gathering feedback is advantageous. Experiments described
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Table 3.6
Average sampler’s precision measure of uniform and interactive sampling.

Dataset Sampler’s Precision(%)

Uniform Interactive

Mushroom 0.182 80.50

Chess 2.293 96.43

Connect 4.53 98.34

eBay Query 15.23 99.78

HIV-1 2.23 74.10

Mutagenicity-II 1.15 51.27

Biodegradability 1.247 74.64

Table 3.7
Comparisons of average sampler’s precision measure while considering
conditional periodic feedback VS periodic feedback

Dataset Sampler’s Precision(%)

Conditional Periodic Feedback

Periodic Feedback

Mushroom 80.50 56.70

Chess 96.43 95.74

Connect 98.34 94.32

eBay Query 99.78 98.50

HIV-1 74.10 65.23

Mutagenicity-II 51.27 35.00

Biodegradability 74.64 44.05
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in Section 3.6.3, computes the correlation between SP and feedback count in order

to exhibit sampler’s performance of learning the user’s interestingness function. We

also use the same correlation measure to demonstrate the sampler’s performance with

the improved feedback gathering scheme. The setup of the experiment is similar as

in Section 3.6.3, where we run sampler multiple times for a large number of itera-

tions for various feedback count. At the end of one run, we compute SP and find

the final SP by averaging over-all runs. Finally, we compute the correlation between

feedback count and SP . In Table 3.7, we showcase the performance of a sampler

when using the improved feedback gathering scheme against the scheme where the

sampler receives feedback in a periodic manner. In Figure 3.5, we present the scatter

plots of feedback count and SP with a fitted straight line exhibiting correlations for

different data-sets.

Table 3.8
Comparisons of average sampler’s precision measure while considering
topological information in scoring function and not.

Dataset Sampler’s Precision(%)

Topological information No Topological information

Mutagenicity-II 51.27 45.66

Biodegradability 74.64 57.13

3.6.6 Analysis of Sampler’s Performance with Updated Scoring Function

for Graph Data

In this experiment, we show empirically that incorporation of topological infor-

mation while defining a user’s interestingness for graph pattern is favorable for the

sampler. The experimental setup is similar as in Section 3.6.3. We run sampler for

multiple times with different feedback count and compute average SP with graph
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data. Note that, we use Conditional Periodic feedback scheme in every execution. Ta-

ble 3.8 supports the fact that topological information can make a positive impact on

sampling performance when dealing with the graph data. Figure 3.5(f)(g) illustrates

improved correlation because of updated scoring function for graph data.

An important observation for most of the data-sets is, there exist few frequent

graph patterns, those have induced subgraph that are complex in nature, i.e. g7 and

g8 (figure 3.3). Based on such observation, we decide to omit g7 and g8 from the

weight vector of induced subgraphs of size 3 and 4.

3.6.7 Timing Analysis

In this experiment, we analyze the execution time of this algorithm for varying

minimum support and data-set’s size9. We run our algorithm on Mutagenicity-II

data-set with various minimum supports and different database sizes and compute

the total time interval between 20 consecutive positive feedback. We conduct 10

independent runs and take the average value of the total time interval. Figure 3.6(a-

d) shows that, as expected, the time between consecutive positive feedback increases

with an increase in the database size or a decrease in the support value; for example, a

user’s waiting time between successive positive feedback is 9.4 (188/20) seconds for 5%

support, but it is just 4.2 seconds for 10% support for graph data-set(Mutagenicity-

II, Figure 3.6(a,b)). However, the reader should note that, the majority of the time

is spent in computing the state-transition graph for MH-based subgraph sampling,

so for larger data-set, the sampler could pre-compute the state-transition graph (for

typical support threshold) and save it for future use; in that situation, the timing

performance of the interactive sampling will improve substantially. We conduct an

experiment with Mutagenicity-II and Mushroom data-set. Without pre-computation,

the execution of 1 million iterations on Mutagenicity-II data-set takes 1676 seconds,

9This experiment is performed in a 2GHz dual-core machine with a 2 GB physical memory.
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but the same job executes in only 230 seconds if we pre-compute the state-transition

graph.
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Fig. 3.6. Timing performance of IPM w.r.t different database
size and minimum support for Mutagenicity-II(Graph) and Mush-
room(Itemset) data-set

3.6.8 Empirical Evaluation of Disclosure of Hidden Itemset Dataset through

IPM

In this section, we conduct an experiment to show whether the proposed inter-

active pattern Mining (IPM) system discloses sufficient information for an attacker

to reconstruct the hidden itemset data-set. For this experiment, we use Chess and
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Mushroom data-set. Before presenting the experimental results, we first discuss the

attack model that an adversary uses for reconstructing the hidden data-set.

Attack Model: A Generative Process for Transaction Data Reconstruction

In this attack model, we assume that the hidden itemset data-set has a generative

distribution Dist, and an adversary tries to approximate the distribution by using the

released patterns. If the approximate distribution isDist′, the data-set reconstruction

risk can be estimated by the similarity between Dist and Dist′.

In literature, several mixture distributions [74–76] have been proposed to model

binary representation of an itemset data-set. In this work, we use the Bernoulli

mixture model [74] for its simplicity and generality. The Bernoulli mixture model

assumes that there exist latent types that control the distribution of the items in a

transaction, and for a given type, the items in a transaction are independent. If we

have K latent types, the transaction generating distribution can be expressed as a

multinomial distribution with K parameters, (π1, π2, · · · , πK) satisfying,
∑K

k=1 πk =

1. Let, Z = (z1, z2, · · · , zN ) is a type indicator, which represents the type of a

transaction; i.e. zi = k states that the transaction i is of latent type k. Using the

independence among items within a transaction for a given type, the probability of a

transaction, Ti = {I1, I2, · · · , I|I|} is given by the following mixture model.

p(Ti|θ) =
K∑

k=1

πk

|I|
∏

j=1

p(Ij|(zi = k), θ) (3.8)

Here, θ represents all the parameters of the model and |I| is the number of items in

the data-set. Since each transaction is a binary vector, the conditional probability

of appearance of an item Ij given a type k in a transaction Ti follows a Bernoulli

distribution with success probability µkj:

p(Ij|(zi = k), θ) = µ
tj
kj(1− µkj)

1−tj (3.9)
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Here, tj ∈ {0, 1} indicates whether the item Ij exists in the transaction or not.

The Parameters can be easily computed using Expectation-Maximization (EM) [76]

algorithm.

An adversary, who knows that the transaction data follows a mixture of Bernoulli

can attempt to estimate the parameters of the mixture distribution using the released

patterns. Assuming Dist is the original data distribution, andDist′ is the constructed

data distribution using the released set of patterns. In a successful reconstruction,

l2-norm between the parameters of Dist and Dist′ should be close to zero. In this

experiment, we determine whether the probability of the l2-norm between the parame-

ters ofDist and Dist′ (l2-norm(Dist,Dist′)) falls within a non-tolerable interval from

0 is bounded by ρ. We expect this ρ to be very small. Note that, during the execution

of the proposed system the data owner can use this parameter ρ to express the level

of entire data privacy risk he is willing to tolerate. Low and high value of ρ indicates

tighter and relaxed security configuration of the IPM system.

For a set of released patterns by IPM, suppose X is a random variable representing

the l2-norm(Dist,Dist′). µ and σ2 are the mean and variance of X , respectively.

According to the one-sided Chebyshev-Cantelli’s [77] inequality constraint, we can

write

P (X ≤ µ− a) ≤ σ2

σ2 + a2
,where a > 0.

To measure an adversary’s effort on compromising privacy, we compute

P (X ≤ 0) = P (X ≤ µ− µ) ≤ σ2

σ2 + µ2
, assuming a = µ.

In this experiment, we want to show that the exact reconstruction, P (X ≤ 0) ≤ ρ,

where ρ is a small number.

We design two types of attackers here. Attacker-1 considers each released pattern

as a transaction and attempts to reconstruct the true data distribution Dist using

the patterns directly. On the other hand, Attacker-2 knows the distinction between

transaction and pattern space. For each released pattern p, attacker-2 can retrieve top

5 original transactions tis for which coverage(p, ti) >= 0.8, where coverage(p, ti) =
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|p ∩ ti|/|ti| and i ∈ {1 · · ·5}. Attacker 2 attempts reconstruction using the retrieved

original transactions. In the following section, we will discuss the performance of both

types of attackers for Mushroom and Chess data-set.

Table 3.9
Chebyshev-Cantelli’s probability bound on Attacker 2’s data-set exact
reconstruction performance measured by l2-norm. *DP=Data Points

Mushroom Chess

DP* Mean (µ) Var (σ2) P (X ≤ 0) DP* Mean (µ) Var (σ2) P (X ≤ 0)

65 5.18 0.383 0.0054 100 3.89 0.263 0.0045

130 5.12 0.289 0.0031 300 3.46 0.513 0.0215

325 4.86 0.263 0.0029 600 3.00 0.427 0.0197

650 4.81 0.296 0.0037 800 2.69 0.526 0.0368

Estimation of Disclosure Risk

In this experiment, we show an empirical estimation of the two types of attack-

ers (discussed in Section 3.6.8) performance on the disclosure of the hidden itemset

data-set. Specifically, we want to show how an attacker’s ability to disclose the data-

set’s privacy changes as the number of released patterns increase. As discussed in

Section 3.6.8, the data owner has a true mixture of Bernoulli distribution Dist for

the data-set, and the attacker constructs Dist′ from the released patterns. To simu-

late the attack model, we use all the patterns that are released by our method during

feedback, and also the delivered patterns according to the user’s interest in a session.

We use l2-norm between parameter vector of Dist and Dist′ to measure attacker’s

performance on disclosing overall data-set’s privacy. We perform this experiment

using the Mushroom and Chess data-set for the different number of released set of

patterns. We tried several values of K (No. of mixture components in equation 3.8)
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and found that for K = 3, reconstruction performance was comparatively better. In

the x-axis of Figure 3.7(a)(b), we plot the number of released patterns and in the y-

axis, we show the l2-norm(Dist,Dist′) average over 30 runs. We use different colors

to plot attacker 1 and 2’s performance. For both data-sets, attacker-2’s approach is

more effective than attacker-1. As we can see, the l2-norm decreases as we increase

the number of released patterns for attacker-2 but for attacker-1, it remains at the

same level.

In Table 3.9, we show the calculated upper bound of P (X ≤ 0) (Exact reconstruct-

ing), where X is the random variable representing attacker 2’s performance (measured

l2-norm) on different executions of the algorithm. We show separate calculation for

Mushroom and Chess data-set in the Table. In 4th and 8th column of Table 3.9, we

present the calculated bound using P (X ≤ 0) = P (X ≤ µ − µ) ≤ σ2

σ2+µ2 as per

the discussion in Section 3.6.8. As we can see for both the data-sets, P (X ≤ 0) is

significantly lower.
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increasing number of released patterns over (a) Mushroom (b) Chess
data-set
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3.6.9 Real-life Utility of Interactive Mining

Results from eBay Datasets:

In this experiment, the user imitates a seller at the eBay marketplace, who is inter-

ested to find related queries in the smart-phone, tablet, and game console categories.

To accomplish this, the seller performs an interactive pattern mining on the eBay

query data-set by providing positive feedback on frequent patterns that are related

to the above product categories; some of the frequent patterns that she samples from

the hidden user session data-set are shown in Table 3.10.

Table 3.10
Some frequent patterns from eBay query dataset

google tablet, android tablet, tablet pc 10

iPhone 4, iPhone 3gs unlocked, iPhone 5s clean esn

samsung galaxy s, samsung vibrant, samsung captivate

nexus 5 unlocked, nexus 5 rooted, iPhone 5S jailbreak

ASUS Eee Pad, ASUS Transformer Prime

These patterns can educate her about the buyer demand trend at the eBay mar-

ketplace; further, they could assist her in choosing a more rewarding title for her

product, which would boost her chance to market it. At eBay, a seller’s item in

surfaced on the search result page if the title of the item contains all the words in

a user’s query10. If the seller wants to sell a samsung galaxy s smart-phone, the

knowledge of the pattern in the third row of Table 3.10 would encourage her to add

the words vibrant and captivate with the title samsung galaxy s, so that her

product would also surface against the queries like samsung vibrant and samsung

captivate. These two words are chosen by the US cell phone career T-mobile and

AT&T to market the samsung galaxy s phone with their phone plans. Similarly, a

10however, eBay allows 55 characters for the title, so experience sellers always optimize the title of
their product
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title like, google tablet android would match with more user queries than those

that would match with the title google tablet. Equivalently, for a used iPhone-5s

title like iPhone 5s clean esn would attract more buyers since the keyword “clean

esn” establishes the fact that the iPhone has never been reported, lost or stolen.

If a seller wants to sell unlocked iOS or android based smart-phones, she has to

know that for android devices, i.e. nexus 5 keyword rooted is being used equally

to jailbreak for iOS devices, i.e. iPhones. Furthermore, putting only unlocked

does not necessarily mean that the device is rooted or jailbreaked. “Rooting”

gives access to the user of an android phone for altering and installing specialized

applications, whereas “Jail-breaking“ gives iPhone user access to install non-officially

approved applications. Set of patterns presented in the fourth row of Table 3.10

certainly helps seller to add keywords rooted, jailbreaked in their product. Finally,

patterns in the fifth row of Table 3.10 make seller knowledgeable about the fact that,

ASUS Eee Pad is also known as Transformer Prime.

One can argue that, is it possible to discover above-mentioned patterns using ex-

isting off the shelf pattern mining/sampling techniques? The answer is, it is possible,

but with hundreds of other patterns, which might not be as interesting to the user.

Since using our technique, the user can explicitly specify what she likes as the sam-

pling continues; the output patterns she receives will mostly consist of her choice of

patterns. Moreover, the interestingness of the user is adhoc (in this case only likes

smart-phone, tablet, and game console). It will be difficult to come up with an in-

terestingness function satisfying this specific choice of patterns on the fly for existing

pattern mining or sampling algorithm to use. In summary, by educating a seller

through interactive pattern mining on the hidden user session data-set, the market-

place can increase sales transactions and eventually can boost their own revenue.
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Fig. 3.8. Changing of sampling distribution with feedback for HIV-1 dataset

3.6.10 Illustration of Interactiveness over HIV-1 Dataset

In this section, we present another case study of our proposed algorithm using

HIV-1 data-set. The motivation of this case study is to visualize the effect of inter-

activeness of our algorithm. We want to show how the sampling distribution changes
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with feedback. For this, we build a compact version of HIV-1 data-set (mentioned in

Section 3.6.2), where first we pick 33 human proteins out of 3450 that are interact-

ing with nine HIV-1 proteins through regulation, i.e. up-regulation, down-regulation.

Then we remove all other human proteins from each transaction of the original HIV-1

data-set those are not part of these 33 human proteins. At the end of the removal

process, we have a compact version of HIV-1 data-set. To carry out the demonstra-

tion, we select 8 human proteins out of 33 randomly and mark as interesting for a

user. In Figure 3.8, we use blue color text to identify these 8 proteins. Each row in

Figure 3.8 shows the current sampled pattern, its feedback and the updated sampling

distribution. We use X and
√

to denote negative and positive feedback respectively.

The sampling process starts with a uniform distribution where each of the 33

items(human proteins) have the same score (1). As the sampling process continues

and sampler collects feedback for the nominated pattern, the score of each human

protein got updated hence the sampling distribution. Column 3 of Figure 3.8 shows

the distributions. We use “x” mark across the x-axis of each distribution bar plots to

denote the human proteins of the sampled pattern for which sampler asks feedback.

For better visualization, we cluster 8 human proteins on the left of the bar plot and

drawn in blue. Rests are on the right side and drawn in Grey. To decide what should

be the nature of the feedback, i.e. positive or negative, we identify what percentage

of items are from interesting item sets, i.e. 8 human proteins. If the percentage

is more than 50%, we assume feedback to be positive else negative. We can see

in Figure 3.8 that the score of interesting items’ increases as the sampler receives

positive feedback. Even though sampler starts with a negative feedback, it catches

up as the positive feedback comes. Finally, we can see that, with-in few numbers

of the feedback, sampler converges to a distribution, where the scores of interesting

human proteins are comparatively higher than non-interesting proteins.
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3.7 Discussion

This is a novel research problem, and our work is just the beginning, so the

opportunity for future work is abundant. In this section, we will discuss some of the

drawbacks of the proposed system and possible forthcoming works.

3.7.1 Safeguarding the System from Manipulative User

In this work, we have considered a semi-honest model whereas in real-life a ma-

licious model may be needed. Specifically, an interesting follow-up research could be

to understand how to safeguard the interactive mining system from a malicious user

who intends to reconstruct the entire data-set by exploiting the sampling system.

Even more interesting is the scenario when a group of malicious users jointly attack

the system to achieve a similar goal.

3.7.2 Advanced Feedback Mechanism

Our work uses the binary feedback; an important future work is to consider a

richer interaction model between the sampler and the user. One option is that the

sampler returns a set of (random) patterns, and the user provide a preference-based

ranking of those patterns as her feedback. Afterwards the sampler updates the sam-

pling distribution by utilizing this feedback. Another interesting future work on the

user’s feedback can be to handle situation where a user is not sure to provide posi-

tive/negative feedback.

3.7.3 Making Learning and Sampling Phase Independent

In this work, the user interacts with a Markov Chain Monte Carlo (MCMC)

sampling entity that samples frequent patterns from the hidden data. The target

distribution of the sampler is iteratively refined based on binary feedback from the

user. While the overall idea is novel, this solution has a crucial drawback-the learning



69

and the sampling are unified, which causes the sampler to converge to a sub-optimal

distribution prematurely; hence the sampled patterns, sometimes, are obtained from

a distribution which is not close to the true distribution. One possible future work in

this direction would be to make sampling and learning phase independent from one

another.

3.7.4 Robust Data Privacy Model

In this work, our proposed system assumes that the released patterns are not

sensitive. It ensures that the data owner maintains the confidentiality of the data in

the sense that using the released set of patterns a user cannot reconstruct the entire

data-set with a high level of accuracy. In practice, such assumption might not be

compatible to ensure the privacy for all kinds of private data. For example, in financial

or medical data, patterns can contain sensitive information, hence prone to privacy

violation for individuals in the data. As a future work, we want to extend our data

privacy model to ensure both entire data-set’s as well as individuals confidentiality.

3.8 Conclusion

Mining interesting patterns from a hidden data-set is an important research task;

an effective solution to this task brings information to its end-user, thus democratize

the information for its better usages. In this chapter, we show examples from an

eCommerce domain, but such a solution will be useful in many application domains;

for instance, in health informatics research, private mining of patient health record

located at a remote server will enable a large number of researchers to find interesting

patterns involving diseases, and medicines.

To conclude, in this chapter, we introduce a new research problem, i.e., mining

frequent pattern from a hidden data-set through interactive pattern sampling. We

formulate a solution to this problem by adopting interactive pattern sampling frame-

work, where the effective sampling distribution is continuously updated by binary
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feedback from the user. We provide real-life examples to illustrate the usefulness of

this research task and also show experimental results to validate the feasibility and

effectiveness of our solution. Specifically, we show that the number of feedback that

a user is required to provide is practical for a real-life scenario.
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4. PATTERN2VEC: NEURAL-NET BASED FEATURE

REPRESENTATION LEARNING OF COMPLEX

FREQUENT PATTERNS

Feature representation learning is an active line of research now-a-days. Majority of

the works into this direction are motivated by the traditional or deep neural networks.

Researchers were able to achieve superior performance in the domain of text [78],

speech [79], images [80] and graph [81] by designing and developing efficient algorithms

for feature representation learning. While motivating from these works, in this dis-

sertation, we aim to develop an effective feature representation learning for frequent

patterns; specifically for complex type i.e. sequence and graph. Using traditional

single layer neural network we developed an algorithm called “Pattern2Vec” that can

constructs d-dimensional feature vector representation for sequence and graph type

patterns. We show effectiveness of “Pattern2Vec” in transaction (sequence,graph)

and pattern level classification task.

“Pattern2Vec” leverages the neural-net based model similar to text, specifically [18].

The core idea of “Pattern2Vec” is to map a pattern of type sequence or graph into

a sentence and pattern elements (items in a sequence or edges in a graph) as words.

Afterwards, it leverages a language model for finding d-dimensional feature vector

representation of the patterns. We experimentally show that such technique per-

forms better than the existing ad-hoc metric embedding. This “Pattern2Vec” is also

a significant module of IPIPD system, where it helps to achieve genericness of the

discovery system.

The remainder of this Chapter is organized as follow. In Section 4.1, we discuss

couple of recent feature representation learning in the domain of text and graph. In

Section 4.2, we provide detail background on the language based models for words and

paragraphs that we leverage in “Pattern2Vec”. In Section4.3 and 4.4, we discuss in
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detail how we compute feature representation for sequence and graph type patterns.

In Section 4.5, we present empirical evaluation of “Pattern2Vec”. Finally, we end the

chapter with a conclusion( Section4.6).

4.1 Related Works

In recent years, researchers have taken a deep dive into the domain of effective

representation learning of various kinds of data ranging from text, image, graph and

speech. In the section, we will discuss few recent works on representation learning of

text and graph data.

4.1.1 Representation Learning of Text

In NLP domain, effective representation learning is an active line of research.

Researchers have used n-gram based representation for a long period of time. Due

the sparsity issues related with n-gram based techniques and with the advancement

of computational power researchers have concentrate on using traditional or deep

neural-net based approach for text representation. Two of the recent state of the

art method is Word2Vec [78] and Paragraph2Vector [18]. Word2Vec is a traditional

neural-net based algorithm that find d-dimensional feature representation of a word in

the text corpus. Word2Vec train a single layer neural network with objective function

to find the probability of neighboring words given an input word. Paragraph2Vector

is an extension of Word2Vec that finds d-dimensional feature representation of each

text (paragraph) in the corpus.

4.1.2 Representation Learning of Graph

Graph is a complex data structure. Finding effective metric representation of

graph is also an active line of research in representation learning. Majority of the

work done in this direction concentrate on computing feature vector representation of
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nodes or edges of the graph. Recently in [81,82], authors have shown the potential of

neural-net based unsupervised feature representation of the vertices of an input graph

for vertex classification [81] and link prediction [82]. [81] propose an algorithm called

“DeepWalk” for finding neighborhood-based feature representation of a vertex in a

graph. “DeepWalk” essentially performs multiple number of smaller length random

walks originated from randomly chosen vertices of the input graph. It then map

each of these random walk as a paragraph where each vertex in the walk as words

in the paragraph. Then it leverage the Word2Vec model to find representation of

vertices. DeepWalk shows its effectiveness in node classification domain. Mahmudur

et.al. in [?] uses sparse auto-encoder to compute vector representation of edges of

a graph and solve link predicting problem. Very recently, Grover et.al proposed

an algorithm named node2vec [83] that learns continuous feature representation for

nodes in a graph. They proposed a flexible notion of a vertex’s neighborhood in

their representation. They shows applicability of the proposed method in multi-label

classification and link prediction domain. In the same time-frame, Wang et.al also

proposed node representation learning algorithm for graphs [84]. This algorithm is

capable to highly non-linear network structure. Authors of this work [84] shows

applicability of the proposed method in the multi-label classification, link predicting

and graph visualization domain.

4.2 Background

In this section, we discuss several key concepts related to the recent Neural

Network-based unsupervised approach of language modeling. First, we discuss a

model to find effective feature representation of words [78] in a corpus and later, the

extension of the word model to compute feature representation of a paragraph [18].
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Fig. 4.1. Neural network of feature representation of words

4.2.1 Feature Representation of Words

Given a sequence of words W = {w0, w1, · · · , wN}, where wi ∈ V (V is the dictio-

nary), the objective of the word model is to maximize the average log probability:

1

N

N∑

i=1

∑

−c≤j≤c j 6=0

log Pr(wi+j|wi) (4.1)

Here, c can be denoted as the training context window, describing the neighborhood

words of the center word wi. Larger size context (window) introduces more training

sample for the model to use hence increases model accuracy in exchange of expensive

computation. In the word model, the probability Pr(wi+j|wi) is designed by a softmax

function:

Pr(wout|win) =
exp

(

v′wout

Tvwin

)

∑|V|
w=1 exp

(
v′w

Tvwin

) (4.2)

where vw and v′w are the input and output feature vector representations of word

w, and |V| is the size of the dictionary i.e. total number of words. Essentially,
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the language model for word is a simple neural network with a single hidden layer.

One-hot-vector representation of words are fed as input to this neural net, which has

|V| components (one for every word in our dictionary V) with a 1 in the position

corresponding to the input word (wi) in the dictionary and 0 in all other positions.

With the task of maximizing the above probability, the output of the neural net is a

single vector for size |V|. Each index of the output vector will hold the probability

that every word in the dictionary would appear in the context of the input word (wi).

In the process of learning such probabilities, the neural net produces effective feature

vector representation of the word wi in the hidden layer. Number of nodes in the

hidden layers dictates the dimension of the feature vector representation of the input

words.

Example: Suppose, we have a sentence Frequent Pattern Mining is Awasome.

The size of dictionary is 5. Lets assume, word Mining as a center word for which

we are going to compute vector representation and say size of the context win-

dow is 2. So the word model tries to compute Pr(Pattern|Mining), Pr(is|Mining),
Pr(Frequent|Mining), Pr(Awasome|Mining). As discussed earlier, initially each word

is represent using One-hot-vector encoding. For Mining the encoding looks like

[0, 0, 1, 0, 0]. In Figure 4.1, we show the single layer neural net for this task. Note

that, we use two nodes in the hidden layer. Once the model learns all the conditional

probabilities mentioned in the output layer the model produces the 2-dimensional

vector represent of word Mining in the hidden layer.

The motivation of adopting such technique to obtain effective vector representa-

tion of word is following. If two different words share similar context i.e. both of

the words has similar neighboring words, the word model like the above will produce

similar conditional probabilities for these two words. In order to produce close results

i.e. predicting similar context, the vector representation of these two words need to

be similar, that the model learns in the hidden layer. So if any two words share

similar context then the network is encouraged to learn similar vector representation

of these two words.
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Fig. 4.2. Neural network of feature representation of paragraphs

4.2.2 Feature Representation of Paragraphs

Given a sequence of words W = {w0, w1, · · · , wN} distributed into P paragraphs.

V is the vocabulary. The objective of the paragraph model is to maximize the average

log probability:

1

N

P∑

p=1

∑

j∈c

log Pr(wj|p) (4.3)

The paragraph model is an extension of the word model. Paragraph model con-

siders each paragraph as another word in the dictionary and the objective function

maximizes the conditional probability of a context c given the paragraph. Similar to

the above model along with the task of maximizing the conditional probability, it out-

puts d-dimensional feature vector representation of each paragraph, P. The training

of feature vector representation of the text is done using stochastic gradient descent

and the gradient is obtained via back-propagation. Following the above example of

word, suppose we have five paragraphs and size of the dictionary is five and we want
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to find vector representation of 3rd paragraph. In Figure 4.2, we show the modified

neural network to obtain effective vector representation of the 3rd paragraph.

4.3 Feature Representation of Sequence Pattern

In sequence dataset D, each transaction Ti is an ordered list of events. For exam-

ple, ACCGA is sequence and A, C and G are events. Similar to set, One can view

the dataset D as a text corpus and sequence of events in a transaction as a sentence

in a language, where the events are the words. Given a set of sentences, our objective

is to find a language model in which a sequence has a metric embedding in an ap-

propriately chosen vector space. To obtain the language model, we apply Paragraph

Vector [18]. It finds the d-dimensional (d is user defined) feature representation of

all sequences in D.

In Figure 5.2, we illustrate how we compute feature representation of the sequences

in D. As we can see, we treat sequences as sentences in a text corpus (step 1 in

Figure 5.2). In the 2nd step, we pass the corpus in the language model (shown as

a black box in Figure 5.2). As an output (step 3 in Figure 5.2), language model

produces feature representation of a given length (d−dimension) for all transactions,

i.e. sequences (1, 2, · · ·N).

1
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2 b 3c

4 c 5b
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Fig. 4.3. Unsupervised feature construction of graph patterns
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4.4 Feature Representation of Graph Pattern

In graph dataset D, each transaction Ti is a labeled, undirected and connected

graph. In order to use neural network based unsupervised language model, we have

to map the dataset D to a text corpus and the graphs in D to sentences, on which we

apply Paragraph Vector [18]. For converting a graph into sentence(s) we break the

graph into a collection of simple paths, such that edge ordering is maintained in each

path. Each path can then be viewed as a sentence and the edges in the path as words.

To construct these paths from a graph Ti, for each node u in Ti, we perform a dfs-walk

originated from u that traverse all the edges in Ti. The motivation of using dfs-walk

is that it preserves topological information of a graph around the originated vertex;

multiple dfs-walks originated from different vertices capture topological information

of the entire graph. Besides, it provides an ordering of edges in the paths which serves

as sentences. The number of paths that we generate from each graph is exactly equal

to the number of vertices in the graph because each dfs-path is originated from a

distinct vertex in the graph.

Note that, for a set or a sequence dataset, we maintain a one-to-one mapping be-

tween the transactions and the sentences, but for graph, it is a one-to-many mapping.

The primary reason for this is that a complex object like graphs cannot be represented

by only one sequence of vertices. More importantly, the number of transactions for

graph data is usually small (Table 5.1) compared to a dataset of sets and sequences.

So populating one sentence per graph is not an optimal choice. In many of the exist-

ing works on machine learning, specifically in deep learning, artificial random noises

are inserted to create distorted samples [85, 86] which greatly increases the training

set size. In [85], authors proposed a technique called “elastic distortion” to increase

the number of image training data by applying simple distortions such as transla-

tions, rotations, and skewing. However in the existing works, no such mechanism is

available for training data inflation for a graph data. The one-to-many mapping that
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we use is such a mechanism which enables us to create many samples for a graph

instance, thus increasing the learning ability of the model for graph patterns.

In Figure 4.3, we illustrate the entire process. In Step 1, we have a graph (trans-

action) with 6 nodes and 6 edges, where each of the nodes has a label. We assume all

the edges share the same label 1 (not shown in the figure). Step 2 obtains six dfs-walk

edge sequences, on which two are shown in the figure—one dfs-walk originated from

vertex 1 (red ink) and the other originated from vertex 2 (blue ink and dashed). Note

that, it is possible to have dfs-walk with different ordering from a vertex but in this

work, we allow one walk per vertex. Once we have such representation of the entire

data D, we feed the text corpus to the language model (Step 3) and finally for a given

feature length d, it trains the model (Mfeat) and produces feature vectors of all M

dfs-walks in the text corpus. During the classification stage for a pattern graph, we

create only one dfs-walk from a randomly selected vertex and generate feature vector

representation by using Mfeat.

We give some perspective of adapting neural network based unsupervised language

modeler [18] to model and find feature representation of a graph. When we map dfs-

walks as sentences, estimated likelihood can be express as observing the walk dwalk

given all the vertices (v0, v1, · · · , vi) in a walk.

4.5 Experiments

In this Section, we empirically evaluate the performance of “Pattern2Vec” on

several real-world dataset.

4.5.1 Data

The two sequence dataset Reuters1 and Reuters2 is collected according to the pro-

cedure mention in a sequence classification work [87]. These datasets are prepared by

extracting specific keywords from the entries in the Reuters-21578 corpus 1. Reuters1

1http://web.ist.utl.pt/~acardoso/datasets/r8-train-stemmed.txt
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consists of word sequences labeled by either “earn” or “acq”. Reuters2 consists of

sequences labeled by “interest”, “money-fx”, “crude” and “trade”. For more infor-

mation see [87]. Out of the two graph datasets, one is called pdb, which is collected

from predictive toxicology challenge2. The other graph dataset, Mutagenicity-II

is obtained from the authors of [73]. In Table 5.1, we present some basic statistics

about these four datasets; ρmin is the minimum support threshold, and C is the set

of all closed frequent patterns. For each dataset, we choose ρmin in a way so that we

can have a large number of closed frequent patterns for the validation of the system.

In column four, we report the number of transaction class labels for each data.

Table 4.1
Dataset statistics

Type Dataset # of No. of ρmin |C|
transactions class labels

Sequence Reuters1 4335 2 86 54193

Reuters2 900 4 36 48209

Graph PDB 416 2 8 9246

Mutagenicity-II 684 2 8 20771

Table 4.2
Sequence transaction classification

Dataset N-gram Neural-Net

Reuters1 0.80 0.91

Reuters2 0.74 0.82

2http://www.predictive-toxicology.org/ptc/
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Table 4.3
Graph transaction classification

Dataset Topological feature Neural-Net

PDB 0.65 0.88

Mutagenicity-II 0.62 0.80

4.5.2 Experiment Setup

For pattern classification purposes, we need pattern mining algorithm that mines

frequent pattern. Here, we use spmf [88] and CloSpan [89] for mining closed set,

sequence and graph patterns, receptively. A closed frequent pattern is defined as a

pattern that does not have a super-pattern (super-set) that is frequent with the same

support count [1]. The set of closed pattern, C, is a subset of the set of frequent

patterns, O. Redundancy among the patterns in O is substantially reduced in the

patterns in C, so learning a function over the patterns in C is better than learning a

function over the patterns in O.

For performance evaluation, we make 5-folds of the data of which 4 folds are used

for interactive training and 1 fold for testing. We use, regularized softmax classifi-

cation algorithm for both transaction and pattern level classification task. We use a

grid search to tune regularization parameter λ and set it to 1. We run Gensim’s [90]

implementation of Paragraph Vector model with the default parameter settings, ex-

cept for the parameter d (the dimension of feature vector), which we set it to 100

for both sequence and graph after tuning it using grid search. We report the perfor-

mance result using average weighted F-score (calculate F-Score for each label, and

compute their average, weighted by the number of true instances for each label) over

the folds. We implement “Pattern2Vec” in python and run all experiments in 3 GHz

Intel machine with 8GB memory.

The target labels of a pattern is derived from the class label of its predominating

transactions. For example, if a pattern p belongs to t number of transactions among
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which t1 and t2 are the numbers of transactions with label 1 and 2 respectively; then

t = t1+ t2. The corresponding label/feedback of p is measured as 1 if max(t1, t2) = t1

else 2.

4.5.3 Transaction Classification

In this experiment, we evaluate the effectiveness of Pattern2Vec using the task of

transaction classification of type sequence and graph. Four datasets mentioned in Ta-

ble 5.1 have class label associated to each transaction. For example, each transaction

in Reuters1 and Reuters2 is labeled by 2 or 4 class respectively. In this experiment,

first we train Pattern2Vec using the datasets and then get the d-dimension feature

representation of each of the transactions in the dataset and setup a transaction

classification task using softmax classifier. In Table 4.2 and 4.3, we show classifica-

tion performance for sequence and graph data in-terms of weighted f-score. For all

datasets, we have found dimension value 100 provide better transaction classification

performance.

4.5.4 Pattern Classification

In this experiment, we evaluate the effectiveness of the proposed unsupervised

feature construction based approach with alternative feature representation for se-

quence and graph patterns. For sequence pattern, we use n-gram based technique,

where we extract all 2-grams and 3-grams from the data and use those as features.

For graph patterns, we obtain 20 topological metrics compiled by [17] and consider

these metrics as features for graph patterns. After mining the closed pattern from

the datasets mentioned in Table 5.1, we apply Pattern2Vec to extract d-dimensional

feature vectors of all patterns using the model trained on the entire corresponding

dataset. Then we follow five fold cross-validation protocol to test the effectiveness

of Pattern2Vec through a softmax classification algorithm. For all datasets, we have

found dimension value 100 provide better pattern classification performance. In fig-



83

Reuters1 Reuters2 PDB Muta-II
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

W
e
ig
h
te
d
 F
-S
co
re

Performance of Deep Unsupervised Feature Construction

n-gram
NN based
metric

Fig. 4.4. Performance of unsupervised feature construction.

ure 4.4, we show the findings using bar chart. First two groups of the bar chart are

for sequence datasets and the remaining two groups are for graph datasets. As we can

see, Pattern2Vec performs better than the alternative feature representation of both

sequence and graph patterns. Specifically, Feature embedding for graph datasets is

significantly better than that of the competitors’.

4.6 Conclusion

In this work, we design and develop a representation learning algorithm for fre-

quent patterns called “Pattern2Vec”. “Pattern2Vec” is based on traditional single

layer neural network used in NLP domain for language modeling. We show effec-
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tiveness of “Pattern2Vec” in transaction and pattern level classification tasks. This

proposed representation learning algorithm is also an integral part of IPIPD system

proposed throughout this dissertation.
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5. PRIIME: A ROBUST FRAMEWORK FOR

INTERACTIVE PERSONALIZED INTERESTING

PATTERN DISCOVERY

5.1 Introduction

In this work, we propose a generic framework for interactive personalized inter-

esting pattern discovery (IPIPD) called PRIIME1 by incorporating a user in the

discovery pipeline. The proposed method uses preference rating of a small set of

frequent patterns from the user to learn her interestingness criteria and recommend

a set of patterns which incline the most towards her choice. To ensure genericness of

PRIIME, we develop a neural net based unsupervised feature vector representation

scheme for sequence and graph patterns. We propose a pattern selection approach

for feedback to combat the positive reinforcement phenomenon. We also assume that

feedback is given using positive real discrete values, where a higher value stands for

more empathy towards the given pattern. For example, a user can have a three-class

rating system, where 1, 2 and 3 means dislike, not sure and likes the pattern.

PRIIME also provides a robust pattern selection strategy for rating solicitation.

Unlike earlier interactive pattern discovery works [9, 14], for the case of PRIIME,

the coupling between the existing state of the learning model and the training set

selection is significantly reduced which yields a much-improved learning model. In

fact, PRIIME’s strategy is a combination of exploration and exploitation which

enables it to reduce the bias that existing state of the learning model imposes on

pattern selection. Exploitation aspect of the proposed strategy prefers patterns (for

feedback solicitation) that are likely to influence the learning model the most, i.e. have

1PRIIME is an anagram of the bold letters in geneRic fraMwork for Interactive pErsonalized
Interesting Pattern discovery
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the largest impact on model’s parameters. On the other hand, the exploration aspect

ensures that a broader span of the pattern space is covered. PRIIME maximizes

expected gradient length (EGL) [91] (an active learning strategy) for exploitation

and it chooses a diverse set of patterns using k-center [92] search for exploration. We

empirically show that a combination of above two triggers better learning performance

than the existing interactive pattern discovery frameworks.

We claim the following contributions:

• We propose a generic interactive personalized interesting pattern discovery frame-

work called PRIIME that is based on iterative learning of a user’s interestingness

function using the supervised classification and regression models based on the nature

of feedback (discrete and real number) design. The system does not require any prior

knowledge of the user’s interestingness criteria and needs a limited degree of user

engagement.

• PRIIME leverages efficient unsupervised feature construction scheme for sequence

and graph patterns named ”Pattern2Vec” discussed in the Chapter 4 and propose

a pattern selection strategy combining exploitation and exploitation for feedback

collection.

• We perform exhaustive empirical validations of the proposed framework using real-

world set, sequence, and graph datasets. We show that the proposed feature con-

struction and pattern selection performs better than the existing ones.

The reminder of this chapter is organized as follows. In Section 5.2, we dis-

cuss in detail of the proposed framework. In Section 5.3, we talk about the learning

algorithms of the framework including pattern representation (Subsection 5.3.1), clas-

sification model (Subsection 5.4.1) and feedback mechanism (Subsection 5.4.3). In

Section 5.5, we present an extensive empirical evaluation including the performance

of the learning algorithms (Subsection 5.5.7), neural net based unsupervised feature

construction (Subsection 4.5.4) and comparisons with the existing methods (Subsec-

tion 5.5.5). We conclude the chapter a conclusion (Section 6.8).
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Fig. 5.1. Generic interactive personalized interesting pattern discovery framework

5.2 Problem Definition and System Architecture

We assume, u possesses an interestingness function (say, f) over the frequent

patterns, O). f maps each pattern in O to a score (discrete/non-negative real numer)

indicating interestingness criteria of the user u i.e., f : O → Y. Note that, Y ∈ R+ as

well as Y ∈ C is true, where R+ is the set of non-negative real number and C is the

set of class labels. PRIIME learns f through an active learning process over multiple

learning iterations. During an iteration (say i), the system returns a set of patterns

{pt}1≤t≤l to u, which is selected from a partition of O (which constitutes the i’th batch

of pattern-set); u sends feedback {yt = f(pt)}1≤t≤l using an interactive console; yt’s

are interestingness score reflecting the user’s empathy towards the selected patterns;

using the feedback the system updates its current model of the user’s interestingness

function, f . An alternative to our batch learning framework can be to mine all the

frequent patterns and select a relatively smaller subset of patterns for getting a user’s

feedback and use these for learning in one iteration. This approach is not scalable

as the number of frequent patterns in O is typically very large even for a moderate-

size dataset. Besides, if the learning entity receives the frequent patterns as a data
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stream the one-iteration learning becomes infeasible, but a batch learning framework

still works.

The IPIPD framework of PRIIME is partitioned into two main blocks: Learning

and Discovery (Figure 5.1). Learning learns a model for a user; it contains follow-

ing five modules: Frequent Pattern Miner (FPM), Learner, Feature Generator (FG)

and Feedback-Collector (FC), and Model. The FPM works as a bridge between the

Learner and the data. FPM module can be any off-the-shelf pattern mining algorithm

that mines frequent patterns given a normalized minimum support threshold. Any

of the existing off the shelf pattern mining algorithms ranging from sequential [93]

to randomized [52], can be used. The Learner learns u’s interestingness function (f)

over the pattern-set O in multiple stages while utilizing user’s feedback on a small

number of patterns selected from a partition of O in each stage. The Feature Genera-

tor (FG) module is responsible for generating efficient and appropriate feature vector

representation of the incoming patterns for the Feedback Controller and the Model to

use. FG uses the bag of words method for set patterns and NN-based unsupervised

language model for sequence and graph patterns. The Feedback-Collector (FC)’s re-

sponsibility is to identify the patterns using a exploitation-exploitation based strategy

(explained in Section 5.4.3), that are sent to the user for feedback. Note that, pat-

terns are sent to the user for feedback in its original form, not in the feature vector

representation. Discovery delivers personalized interesting patterns to the user using

the learned model.

We like to highlight some important facts about the learning task of the proposed

framework. First, in the learning phase, the interaction between the PM and the

Learner is one-way from PM to the Learner, and the Learner has no influence over

PM’s mining process. This setup works well for large datasets for which the mining

task may take a long time yet the learning task can start as soon as the first batch

of patterns is available. Moreover, if a user wants to end the learning session before

PM finishes, the learner can still provide interesting patterns to the user based on the

current learning model.
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Algorithm 5: PRIIME Learning

Input: D:transaction dataset

1 Mfeat = Train feature generation model(D);

2 Initialize model parameters w;

3 while true do

4 B = Incoming batch of patterns from FPM ;

5 Pfeat = Get feature representation(B,Mfeat);

6 P = Collect feedback(Pfeat);

7 w′ = Train learning model(P,w);

8 if |w′-w| < threshold then

9 break;

10 end

11 w = w′;

12 end

13 return w;

5.3 Learning Method

In PRIIME , the learning of interestingness function f and pattern mining by

FPM proceeds in parallel over a few iterations. In the i’th iteration, PM generates

a partition (Bi) of frequent pattern set O, and Learner selects l patterns {pt}1≤t≤l

from Bi and send them to u for rating. Meanwhile, FG obtains {xt}1≤t≤l, the feature

representation of the patterns {pt}1≤t≤l. Partitioning of frequent pattern enables

model learning to proceed even if all the frequent patterns are not available, which is

better than earlier works [9] where model learning is performed after the entire O is

available. Learner collects u’s rating {yt = f(pt)}1≤t≤l using an interactive console.

Then the Learner updates its current model f using 〈xt, yt〉.
In algorithm 5, we present the pseudo code of PRIIME’s learning phase. PRI-

IME starts by training the unsupervised feature generation model (Pattern2Vec)
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Mfeat using the transaction data D and initializes the learning model w. Afterward

in each iteration, it uses Mfeat to infer the feature representation of each pattern in

the incoming batch B. Then the algorithm selects patterns for feedback and sends

them to the user. Once it receives the feedback, it updates the current learning model.

The algorithm continues until the improvement of the learning model falls below a

user-defined threshold. In the following, we discuss each of the tasks.

5.3.1 Pattern Representation

Say D = (T1, T2, · · · , TN) is a transaction dataset. I is the set of all single length

frequent patterns. I is a set of item, a set of events, or a set of edges depend-

ing on whether D is an itemset, a sequence or a graph dataset, respectively. For a

given support threshold, O is the set of all frequent patterns. For using a machine

learning method for finding interesting patterns, PRIIME first finds a feature vector

representation of these patterns. PRIIME leverages neural net-based effective fea-

ture construction algorithm called ”Pattern2Vec” discussed in Chapter 4. Note that,

training of such language model is computationally expensive and perform training

in each iteration of PRIIME with the incoming batch of patterns is inefficient. As

an alternative, PRIIME trains the model say, Mfeat using the dataset D as training

data (Line 1 in Figure 1). Afterward in each iteration, it populates d-dimensional

feature vector of incoming patterns by using Mfeat. For set type of pattern, PRIIME

does not use “Pattern2Vec”, since empirically we found Bag-of-words based model

performs better for set type patterns. In the following, we discuss representation

technique for set type patterns.

5.4 Feature Representation of Set Patterns

For a set data, each transaction Ti is a collection of non-repetitive items. Consid-

ering the dataset D as a text corpus and each transaction in the corpus as a document,

the set I can be represented as the dictionary of frequent words i.e. items. Following
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the bag of words model, we represent each pattern p ∈ O as a binary vector V of size

|I|, constructed as below:

V (i) =







1, if item i ∈ p

0, otherwise

Such a representation maps each pattern to a data point x ∈ {0, 1}|I| space.
For example, consider a dataset in which A, B, C, and E are frequent items. Thus

I = {A,B,C,E}; A frequent pattern AB will be represented by the vector (1, 1, 0, 0);

a pattern ACE will be represented by the vector (1, 0, 1, 1) and so on.

Sid Sequence

1 aabbcc
2 bcbd
3 abcdab
...

...
N abdabd

Text Document

Step 1

NN-based

Language

Model

Step 2








1 2 · · · d

1 x11 x12 · · · x1d

2 x21 x22 · · · y2d
...

...
...

. . .
...

N zN1 xN2 · · · xNd








Feature Generation Model
(Mfeat)

Step 3

Fig. 5.2. Unsupervised feature construction of sequence Patterns

5.4.1 Classification Model

The PRIIME models the user’s interestingness profile over the patterns as a clas-

sification problem and learns the model parameters through an interactive feedback

mechanism. In each iteration, PRIIME executes a supervised training session of the

classification model using the corresponding data points of the released patterns to

the user. We use multinomial logistic regression as the classification model Hθ, which
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is known as softmax regression in the literature. In multinomial logistic regression,

the probability that a data point xi ∈ Rd belongs to class j can be written as,

Hθ(xi) = p(yi = j|xi; θ) =
exp(θj

Txi)
∑c

l=1 exp(θl
Txi)

(5.1)

where, j ∈ {1, · · · , c} is the set of class labels and θj is the weight vector corresponding

to class j. The prediction of the model can be computed as, ŷi = argmaxj p(yi =

j|xi, θ). Given a set of labeled training data X = {(x1, y1), .., (xm, ym)}, the weight

matrix θ ∈ c × d (c is the number of class and d is the size of a feature vector) is

computed by solving the convex optimization problem as shown in Equation 6.2 using

gradient descent. Note that, each data points xi ∈ Rd in the training set corresponds

to a pattern.

argmin
θ

J(θ) = − 1

m

m∑

i=1

c∑

j=1

1{yi=j} · log p(yi = j|xi; θ) +
λ

2

c∑

j=1

d∑

k=1

θjk (5.2)

Here J(θ) is the notation to represent the cost function in Equation 6.2, 1{yi=j} is

the indicator function indicating that only the output of the classifier corresponding

to the correct class label is included in the cost. λ
2

∑c
j=1

∑d
k=1 θjk is the regular-

ization term to avoid over-fitting. In each iteration, PRIIME applies L-BFGS-B

optimization function implemented in python’s scipy package to train the model.

5.4.2 Regression Model

The proposed algorithm models the user’s interestingness profile over the patterns

set as a regression problem and trains the model through an interactive feedback

mechanism. In each iteration, the algorithm executes a supervised training session of

the regression model using the corresponding data points of the released patterns to

the user. The algorithm uses the non-negative feedback provided by the user as the

target function value for regression task. We use gradient boosted regression tree (an

ensemble of high bias regression trees) as the regression model. In gradient boosted



93

tree regression, for a data point xj ∈ {0, 1}|I|, the predicted score f(xj) ∈ R+ is

computed as,

fm(xj) = fm−1(xj) + γmhm(xj) (5.3)

Here, m is the stage/iteration index used by the regression algorithm. hm is the added

single regression tree in the stage m that minimizes the differentiable loss function

L(yj, fm−1(xj)−hm(xj)). γm, also known as the step length, is the weight associated

with the regression tree hm chosen using line search that minimizes the loss function.

To avoid overfitting of the model, a learning rate α is incorporated in the boosting

update rule as a regularization parameter:

fm(xj) = fm−1(xj) + αγmhm(xj) (5.4)

In this work, we use the trained regression model of iteration i − 1 to initialize the

boosted regression model of iteration i.

5.4.3 Selection of Representative Data-points for Feedback

As discussed in Section 5.1, one of the reasons of the superior performance of our

proposed method over the existing ones is due to the exploitation-exploration based

feedback collection. In each iteration, for an incoming batch, PRIIME exploits the

currently learned model (Mcur) to identify the patterns that will have the largest

impact on the parameters of the learning model. We can identify those patterns by

checking whether these patterns make the maximum change in the objective function.

Since we train softmax classifier using gradient descent, we include the patterns to the

training set if it creates the greatest change in the gradient of the objective function,

▽θjJ(θ) = − 1

m

m∑

i=1

[
xi

(
1{yi=j} − p(yi = j|xi; θ)

)]
+ λθj (5.5)

However, gradient change computation requires the knowledge of the label, which

we don’t have. So, we compute the expected gradient length [91] of xi as shown in

Equation 6.4,

EGL(xi) =
c∑

j=1

p(yi = j|xi; θ)|| ▽θj J(θ)|| (5.6)
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After exploitation step, PRIIME retains the top 50% of patterns (xis) according

to the expected gradient length (EGL) as candidates for feedback. However, Expected

gradient length based approach enables PRIIME to identify patterns that can make

greatest changes in the learning model, but it does not ensure diversity among the

patterns in terms of its composition, i.e. two patterns can be made of similar items,

events or edges. To ensures that a broader span of the pattern space is covered,

PRIIME uses k-center search (exploration) to identify k patterns for feedback from

the candidates set.

k-Center. k-center method finds k data points as centers so that the maximum

distance from each data point to its nearest center is minimized. This k-center prob-

lem is NP-complete, but there exists a fast 2-approximation greedy algorithm that

solves this problem in O(kn) time [92]. We set k to 10 in all our experiments. For

choosing 10 representative patterns, we use the greedy 10-center algorithm consid-

ering the Jaccard distance for set patterns and euclidean distance for sequence and

graph patterns.

5.4.4 Stopping Criteria

The stopping criterion is an important element of our proposed system. The

execution of PRIIME can be halted from the system side as well as the user side.

PRIIME sets a minimum default iteration counts to 10 and after 10th iteration, it

keeps track whether getting additional feedback impact significantly on the learning

model or not. If the improvement falls below to a threshold (1E − 4), the execution

of the feedback session halts.
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5.5 Experiments and Results

5.5.1 Data

We use five set datasets, two sequence datasets, and two graph datasets to val-

idate the performance of PRIIME. Two of the set datasets, Chess and Pumsb and

Mushroom, are real-life datasets collected from FIMI repository2. The third one is an

artificially generated electronic health record (EHR) dataset created by Uri Kartoun

from Harvard University3, which has health record of 10, 000 patients. To generate a

class label for each patient, we identify whether the patient is diagnosed with arthri-

tis, type-I/II diabetics or not 4. The last set dataset is a drug side effects dataset

collected from CIDER repository5. This data contains 996 drugs and associated side

effects. We consider each drug as a transaction and side effects as the items. Each

drug also has a class label based on the primary disease which it cures: cancer, heart

diseases, brain diseases, pain, and others.

The two sequence dataset Reuters1 and Reuters2 is collected according to the pro-

cedure mention in a sequence classification work [87]. These datasets are prepared by

extracting specific keywords from the entries in the Reuters-21578 corpus 6. Reuters1

consists of word sequences labeled by either “earn” or “acq”. Reuters2 consists of

sequences labeled by “interest”, “money-fx”, “crude” and “trade”. For more infor-

mation see [87]. Out of the two graph datasets, one is called pdb, which is collected

from predictive toxicology challenge7. The other graph dataset, Mutagenicity-II

is obtained from the authors of [73]. In Table 5.1, we present some basic statistics

about these four datasets; ρmin is the minimum support threshold, and C is the set

2http://fimi.ua.ac.be/data/
3http://bit.ly/1Db1yHo
4Generally class label is not needed for pattern mining. We use the class labels to simulate user’s
interestingness over the patterns.
5http://sideeffects.embl.de/download/
6http://web.ist.utl.pt/~acardoso/datasets/r8-train-stemmed.txt
7http://www.predictive-toxicology.org/ptc/
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of all closed frequent patterns. For each dataset, we choose ρmin in a way so that we

can have a large number of closed frequent patterns for the validation of the system.

Table 5.1
Dataset statistics

Type Dataset # of Average ρmin |C|
transactions transaction size

Chess 3196 37 2100 99262

Pumsb 49046 73 27000 91453

Set EHR 10000 43 3000 104297

Drug-Side-effects 996 99 220 117544

Mushroom 8124 22 1100 53628

Sequence Reuters1 4335 56 86 54193

Reuters2 900 108 36 48209

Graph PDB 416 15 8 9246

Mutagenicity-II 684 24 8 20771

5.5.2 Experimental Setup

An essential part of PRIIME is a pattern mining algorithm that mines frequent

patterns and send them to the Learner in batches. We use LCM [94], spmf [88] and

CloSpan [89] for mining closed set, sequence and graph patterns, receptively. A closed

frequent pattern is defined as a pattern that does not have a super-pattern (super-set)

that is frequent with the same support count [1]. The set of closed pattern, C, is a

subset of the set of frequent patterns, O. Redundancy among the patterns in O is

substantially reduced in the patterns in C, so learning a function over the patterns in

C is better than learning a function over the patterns in O.

For performance evaluation, we make 5-folds of the data of which 4 folds are used

for interactive training and 1 fold for testing. We use a grid search to tune regulariza-
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tion parameter λ and set it to 1. We run Gensim’s [90] implementation of Paragraph

Vector model with the default parameter settings, except for the parameter d (the

dimension of feature vector), which we set it to 100 for both sequence and graph after

tuning it using grid search. We report the performance result using average weighted

F-score (calculate F-Score for each label, and compute their average, weighted by the

number of true instances for each label) over the folds. In each iteration, we approxi-

mately use 2% of the training data to construct the batch and select 10 patterns from

the batch for feedback. Note that in the first iteration, PRIIME uses the k-center

search to find 10 patterns for feedback. We implement PRIIME in python and run

all experiments in 3 GHz Intel machine with 8GB memory.

5.5.3 Interestingness Criteria

Following earlier works [9, 14], for validating the proposed system we simulate

the interestingness function of a user. In the following, we discuss two categories

of interestingness function i.e. nature of feedback, discrete and non-negative real

number.

Discrete

The interestingness criteria of a pattern is derived from the class label of its

predominating transactions. For example, if a pattern p belongs to t number of

transactions among which t1 and t2 are the numbers of transactions with label 1 and

2 respectively; then t = t1 + t2. The corresponding label/feedback of p is measured

as 1 if max(t1, t2) = t1 else 2.

Non-negative Real Number

The first interestingness score is the normalized representative class score. For

example, if the pattern p belongs to t number of transactions among which t1, and t2
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are the number of transactions with label 0 and 1 respectively; then t = t1 + t2. The

normalized class score is computed as max(t1, t2)/t. Odds ratio and Jaccard index

are used as interestingness criteria of a pattern to reflect the fitness of the pattern as

a feature for predicting a class. If p is a pattern and c is a class label, the Odds ratio

is defined as,

Oddsratio(p → c) =
nsup(p, c) ∗ nsup(¬p,¬c)
nup(p,¬c) ∗ nsup(¬p, c) (5.7)

The Jaccard index can be computed as,

Jacc(p → c) =
nsup(p, c)

nsup(p) + nsup(c)− nsup(p, c)
(5.8)

Here, ¬p is the absence of the pattern p, nsup(p) is the normalized support of p and

nsup(p, c) is the support of p within the transactions of class c.
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Fig. 5.3. Weighted F-Score of the learner across iterations of feedback in set dataset

5.5.4 Experiment on the Learner’s Performance

In this experiment, we evaluate the performance of softmax based learning algo-

rithm using weighted F-Score metric. we show how the performance of the learning
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model improves with the iterations of feedback. As discussed earlier in each itera-

tion, the learner selects ten patterns for feedback and iteratively updates the current
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model. After each iteration, we measure weighted F-Score of our currently learned

model with the test fold. Then we plot F-score of the learner across the number of

iterations executed so far. In Figure 5.3, 5.4 and 5.5, we show the progression of

F-score across iterations for the set, sequence and graph datasets. The performance

on set and sequence datasets is relatively better than that on graph datasets. The

reason behind this is that effective feature vector construction for graph patterns is

comparatively difficult than set and sequence patterns. For all the datasets, within

five to ten iterations of feedback (each iteration has 10 patterns), learning method

converges and stay stable. Compared to the entire (closed) frequent pattern space,

the number of feedback that PRIIME use is almost negligible, yet the performance

of the learning model is satisfactory.

In Figure 5.6, we show the box-plots of weighted F-score for each folds of training

for all set, sequence and graph datasets. As we can see, except Chess and Mutagenicity

data, variance between model predictive performance is comparatively low. In the

plot, we report learner’s performance after 10 sessions of feedback.
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Table 5.2
Comparison on percentage accuracy of our algorithm with the existing ones

Dataset Accuracy PRIIME’s Accuracy ( [9]’s) Accuracy [14]’s

Chess 90.8 % 42.7% 55.5%

Mushroom 84.5% 45.3% 61.4%

EHR 78.8% 46.6% 40.6%

Drug-Side-Effects 71.9% 36.3% 54.50%

Reuters1 91.1% 35.9% NA

Reuters2 76.6% 38.2% NA

PDB 73.1% NA 50.7%

Mutagenicity-II 66.8% NA 44.7%

5.5.5 Comparison with the Existing Algorithms

To compare with the existing works we implement [9]’s interactive learning method

in python and compute the percentage accuracy experiment of their method for the

set and sequence data by following the instructions provided in the chapter [9]. We

also compare with [14]’s sampling algorithm (executable collected from the authors)

for the set and graph data; we pick sampler’s recall metric mentioned in [14] as it

computes the percentage of interesting patterns recovered by the sampler. For all

algorithms, we use 100 feedback and use the percentage of accuracy as a comparative

metric. Table 5.2 shows the comparison, which clearly demonstrates that our algo-

rithm performs substantially better than the existing methods. We validate that this

performance boost can be credited to efficient feature construction for complex pat-

terns and intelligent exploitation-exploration strategy for feedback pattern selection.

We will discuss more on this in the following sections.
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5.5.6 Representative Patterns Selection

As discussed in Section 5.1, our proposed solution is different than the existing

works on how we select patterns for feedback. To show that our approach is more
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scheme in Mutagenicity-II graph dataset

effective, we create four different versions of PRIIME . In one, we solely rely on

exploitation i.e pick top 10 patterns for feedback from a batch according to the ex-

pected gradient length (EGL). In second, we concentrate on exploration and select

10 most diverse patterns for feedback using only k-center from the entire batch. The

third version is the one that we proposed in this work, where we retain top 50% pat-

terns from a batch according to the EGL then apply k-center to find 10 most diverse

patterns for feedback. In fourth, we use only k-center (exploration) in the first 10

interactive sessions, then we use the combination of EGL and k-center (exploitation-

exploration) like third version for the next 10 iterations, and in final 10 iterations, we

only use EGL (exploitation). In Figure 5.7, 5.8 and 5.9, we show the performance of

the above four versions of PRIIME for a set, sequence, and graph data. As we can

see, for all the cases, our proposed exploitation-exploration (Version 3 curve in the

figures) strategy performs better than the other three options. Our’s performance

better than the fourth version (Version 4 in the figures) establish the fact that in

interactive pattern discovery, balancing exploration and exploitation in all iterations
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of learning is beneficial than gradually changing from exploration to exploitation like

the fourth version. More importantly, the performance of the learning methods that

solely depends on the current learning (Version 1 in the Figures) is the lowest among

all three, which suggests that high exploitation of the current model for selecting

patterns for feedback may yield sub-optimal model.

5.5.7 Experimental Results of Gradient Boosted Regression Tree Model

In this section, we will explain empirical evaluations of GBRT based learning

model for first four itemset dataset from Table 5.1.

Experiment Setup

The experimental setup for this version is similar to the classification model. We

make 5-fold of the data of which 4 folds are used for interactive training and 1 fold

for testing. We report the performance as the average of the results of the five folds.

In each iteration, we use 2% of the training data to construct the batch and select 10

patterns from the batch for feedback. In all the experiments, we cross-validate the

learning-rate (α) and number-of-stage (m) using the validation set and fix α = 0.3

andm = 2000. We use the least square as a loss function to train the gradient boosted

regression tree model. We implement the algorithm in python using scikit-learn [95]

package.

Experiment on the Learner’s Performance

In this experiment, we evaluate the performance of gradient boosted regression tree

(GBRT) based learning algorithm using R2 coefficient and Mean absolute error (MAE)

metric over the entire closed frequent pattern set. The objective is to show whether
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Table 5.3
R-squared (R2) and Mean absolute error of our algorithm on Class
score , Jaccard index and Odds ratio based interestingness.

Dataset Class Score Jaccard Odds ratio

R2 MAE R2 MAE R2 MAE

Chess 0.91 0.023 0.97 0.018 0.86 0.145

Pumsb 0.98 0.009 0.99 0.021 0.95 0.192

EHR 0.99 0.001 0.97 0.003 0.64 0.685

Drug-Side-Effects 0.58 0.12 0.85 0.043 0.88 0.062

GBRT is a good learning model for learning the above interesting metrics over the

frequent patterns. We compute R2 using,

R2 = 1−
∑M

i=1(yi − ti)
2

∑M
i=1(yi − ȳ)2

(5.9)

Here, yi, ti and ȳ are the observed, predicted and mean of the observed data,

respectively. M is the number of test instances. R2 coefficient indicates how well the

trained model fits the data. R2 coefficient equals to 1 indicates perfect training, we

want R2 coefficient to be close to 1. Mean absolute error (MAE) is computed as,

MAE =
1

M

M∑

i=1

|yi − ti| (5.10)

We expect MAE to be reasonably small i.e close to zero. In Table 5.3, we report the

average R2 and MAE over 5-fold cross validation. We use all three interestingness

metrics that we have discussed earlier. According to the R2 coefficient, we see that

for all the datasets and all different metrics (except class score in Drug-Side-Effects

and odds ratio in EHR data), GBRT based learner able to model/fit at least 85% of

the data. MAE is also significantly low for almost all the cases.



106

-1.5
-1.25

-1
-0.75

-0.5
-0.25

 0
 0.25
 0.5
 0.8

 1

 0  10  20  30  40  50  60  70

R
-S

qu
ar

ed

Iterations of Feedback

Class Score
Jaccard Index

Odds Ratio

 0.75
 0.8

 0.85
 0.9

 6  10  15  20

Fig. 5.10. R2 of the learner across increasing number of feedback in Chess dataset

Learner’s Performance with the Iterations of Feedback

In this experiment, we show how the performance of the learning model increases

with the number of iterative sessions of feedback. As discussed earlier, in each itera-

tion, the learner selects 10 patterns for feedback and iteratively updates the current

model. After each iteration, we measure R2 of our currently learned model with the

test fold. Then we plot R2 of the learner across the iterations of feedback passed so

far. In Figure 5.10, we show the progression of R2 coefficient with the iterations of

feedback for all the interestingness metrics on Chess data. As we can see, for Jaccard

index and Odds ratio, R2 reaches to 0.8 only after 10 iterations of feedback and for

the class score, it takes around 15 iterations of feedback to reach 0.8. For Pumsb

data (Figure 5.11(a)), R2 reaches to 0.9 and stay stable after 10 iterations for all

three scores. In EHR data (Figure 5.11(a)), R2 reaches to 0.9 and stay stable after 10

iterations for all but Odds ratio score. For Jaccard index and Odds ratio, R2 reaches

to 0.75 after 10 iterations and stay stable after 20-25 iterations in Drug-Side-Effects

data (Figure 5.11(c)).
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Fig. 5.11. R2 of the learner across increasing number of feedback in
(a) Pumsb (b) EHR and (c) Drug dataset

5.5.8 Comparison with Different Regression Algorithms

We compare GBRT based learner with SVM and Linear regression on all four

datasets using odds ratio as interestingness criteria. As we can see in Figure 5.12,

GBRT based learner is able to achieve reasonably good performance within 10 itera-

tions of feedback, whereas it requires almost 25 to 30 iterations of feedback for SVM

and linear regression based learner to catch the performance of GBRT for all datasets

but Pumsb (Figure 5.12(b)). So, GBRT is probably the best choice for regression on

itemset based transaction data with limited input instances.
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Fig. 5.12. Comparison of GBRT based learner with SVM and Linear
regression using odds ratio on (a) Chess (b) Pumsb (c) EHR (d) Drug
dataset

5.6 Conclusion

In this work, we propose a generic framework of interactive personalized interesting

pattern discovery called PRIIME. The proposed method uses user’s rating on a

small collection of patterns for learning a user profile model, which at a later stage

can be used for recommending patterns that best align with user’s interests. Such a

method is highly useful for identifying a small number of interesting patterns where

interestingness is defined through user’s rating.
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6. RAVEN : WEB-BASED SMART HOME

EXPLORATION THROUGH INTERACTIVE PATTERN

DISCOVERY

6.1 Introduction

In recent times, online systems are increasingly being used as an integral part of

a house hunter’s decision-making process. Potential buyers visit various real estate

listing sites; they subscribe in online forums related to home market and also read

blogs for home buying advice. A recent study by Google and the National Association

of Realtors [19] found that nine out of 10 home buyers depend on the Internet as their

primary research source. 52% percent of new home buyers start their adventure of

buying a dream home from the web. So, an Internet-based system (as different from

the listing sites) that actively contributes toward the decision-making process of a

home buyer is of great interest. For the US home market, there exist several online

products for real-estate search, such as trulia.com, zillow.com, and redfin.com.

Each of these products is a home listing resource at their core, augmented with an

interface for the user to search the listing repository. Besides the traditional keyword-

based search through a search textbox, they also provide faceted search option for a

user to apply different filtering criteria, such as zip code, home type, build year, price

range, and size in sqft.

However, existing online home search products are generally not fruitful for most

of the users for several reasons. First, for a simple search query existing systems

produce a long list of potential houses and it is difficult for a buyer to keep patience

as she analyzes all the hundreds of returned houses. The process also includes a mental

optimization exercise as the user weighs various home features one against another

considering her budget. The second issue of existing systems is that for some buyers
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construction of a well-defined search query is difficult because of their non-familiarity

with all different home features—this is mostly true for the first time home buyers,

and certainly true for the immigrant home buyers who, respectively, constitute around

32% and 8% of the home buyers in the USA market [96]. For example, a buyer may

be interested into houses with few or no internal walls or partitions but does not

know the real-estate jargon open concept to express her interest when formulating a

search query. So the overall process of selecting the right home takes time; actually,

for 40% of first-time home buyers, the lag time between research and action (buying

a home) is around 120 days [19].

In recent years, recommendation systems are on the rise to help online buyers

to find the most desired products in e-commerce marketplaces (amazon.com, wal-

mart.com) and video streaming (netflix.com, hulu.com). Such systems utilize user

feedback in the forms of reviews, ratings, previous purchases, views, and browsing

history for learning users’ interest profile and then recommend products that the user

is likely to purchase [97, 98]. However, recommendation systems are effective for

day-to-day consumable items for which an identical product is experienced by many

users, such as, books, movies, and electronics, but such a system is not so effective

for a once-in-lifetime purchase like a home. Apparently, both collaborative filtering

and content-based recommendation fail in the real-estate domain; the former does

not work because a home cannot be experienced by many users; the latter does not

work, because explicit ratings or reviews on a specific home or home features are not

available. In 2013, trulia.com experimented a recommendation system service called

trulia suggests, which never came out of beta [99].

In this work, we present RAVEN
1, an intelligent real-estate discovery system.

RAVEN is superior over the existing products, because existing products work by

using information retrieval principles that rank homes in a database by matching up

the home description against the keywords in the buyer’s query. On the other hand,

RAVEN works as a classifier which learns a discriminative function to distinguish

1
RAVEN is an anagram of the bold letters in Virtual Real Estate AgeNt
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buyer’s preferred home from the remaining homes in the database. To train the

classifier, RAVEN engages with the buyer in an interactive session where the buyer

provides feedback on a collection of home features set, and RAVEN utilizes these

feedbacks as supervised labels for training purpose. The learned model is used for gen-

erating a small list of homes as a recommendation for the buyer. RAVEN overcomes

all the challenges of the existing home discovery products. First, using RAVEN the

buyer does not have to master the art of query construction, and reformulation, he

simply needs to provide binary feedback on a small number of home-feature sets.

Second, RAVEN returns only a small list of highly relevant homes, thus saving the

user from the tedious scavenging of the long list of search results to find the desired

home.

For practical purposes, RAVEN works as a virtual real estate agent for the home

buyers. In real-life for a new buyer, an agent presents an initial set of representative

houses with a mix of different features e.g. interior, exterior, neighborhood, school

location, and crime. The buyer then visits the potential houses and provides feedback

to the agent on the houses; specifically on the features of the houses that she likes or

does not like. Over time, the agent learns which features attract buyer the most and

in subsequent iterations, he presents houses to the buyer that she is most likely to

buy. RAVEN simply mimics the above iterative process. The value proposition of

RAVEN comes from the benefit of discovering preferred homes by using less effort,

reduction of lag time of a home buyer and the buyer’s satisfaction in terms of the

quality of recommendation that she receives.

The contributions of this work are the followings:

• We model efficient home search as an interactive itemset pattern discovery prob-

lem, and show experimental results on real-life home data to validate its effec-

tiveness.

• We propose a novel algorithm for interactive itemset discovery that we use in

RAVEN. The algorithm learns a user’s interestingness function by utilizing her
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feedback on a small set of itemsets. The framework is iterative and the level of

user’s interaction with the system is minimum.

• We build a web-demo2 of RAVEN and perform exhaustive empirical validation

of the proposed framework on real-world housing data that we created from

trulia.com.

The rest of the chapter is organized as follows. In Section 6.2 we discuss the

architecture of RAVEN. In Section 6.3, we discuss the underlying algorithmic detail

of the proposed system. In Section 6.4, we discuss implementation, deployment and

usage details of RAVEN. In Section 6.5, we discuss our methodologies for real-life

real-estate data collection and preparation from trulia.com. In Section 6.6, we pro-

vide empirical evaluation of RAVEN by simulating its effectiveness on three different

population demographics. Section 6.7 provides a detailed discussion of the related

works. Section 6.8 concludes the chapter with a discussion of future directions.

6.2 Problem Formulation and System Architecture

RAVEN models the home exploration task as an interactive itemset pattern dis-

covery problem. Each house is represented as an itemset, where each itemset is a set

of features that the house possesses. RAVEN considers many features for a house,

including those that are extracted from the textual description of a house, so this

dataset is high dimensional and sparse. To discard insignificant or rare features,

RAVEN only considers itemsets that are maximal [1] for a system-defined minimum

support threshold. Then the problem of selecting the features-set of the desired house

becomes a pattern classification problem, where the itemsets representing a desired

home belong to the positive class, and the remaining itemsets belong to the nega-

tive class. RAVEN solves this classification task in an interactive setup. It gives

a user a small collection of itemsets, and she provides a binary feedback on each of

the itemsets (likes or does not like) in the collection. Leveraging the feedback as a

2http://mansurul11.pythonanywhere.com/Raven/
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label, the interactive pattern discovery task learns a classification model to classify

all the itemsets in the search space. The performance of interactive pattern discovery

model is measured by the number of feedback it needs to achieve the expected level

of accuracy in the recommendation. Below, we formalize this problem in the context

of home exploration.

Consider a dataset, D = {T1, T2, . . . , Tn}, where each Ti ∈ D, ∀i = {1 . . . n} rep-

resents a house. Assume, I = {a1, a2, . . . , ak} is a set of items where each item aj is

a feature of a house. 3-Bedrooms, 2-Bathrooms, Open Concept, Walkin Closet

are examples of such features. We represent a house Ti as a subset of home fea-

tures, i.e., ∀i, Ti ⊆ I. Now consider a home buyer u, who has an interestingness

profile over the house feature set I, and based on this interestingness profile, she

makes a decision regarding whether she wants to buy a house or not. The objec-

tive of RAVEN is to learn u’s interestingness profile in an interactive fashion by

assigning more weights over the items that are in her preferred-list compared to the

rest of the items in I which are not in her preferred-list, and eventually, use those

weights for recommending houses that u will like with a higher probability. For ex-

ample, if {3-Bedrooms, 2-Bathrooms, Open Concept, Walkin Closet} is a set of

features of House 1 and {3-Bedroom, 2-Bathrooms, Walkin Closet} is a set of

feature of House 2, and u has an interestingness profile made of the following fea-

tures {3-Bedrooms, 2-Bathrooms, Open Concept}, u will like the House 1 with a

higher probability than the House 2.

In real-life a house have many different features, which are categorical. It is diffi-

cult for a user to analyze such a long list of features of a house and make a decision.

So RAVEN provides the user a compact summary of the house features. For achiev-

ing this, RAVEN considers the dataset D as an itemset dataset where each house is

a transaction and each feature of the house is an item in that transaction. Frequent

pattern mining techniques [1] are effective tool for selecting correlated feature-sets

from such a dataset, which RAVEN uses. There are different variants of frequent

itemset mining methods, known as frequent, closed and maximal patterns. In this
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version of PRIIME, we use the set of maximal itemset patterns (M) as a summary of

the dataset D and present these itemsets to the user for feedback. These summaries

are short in length and easy to analyze to constitute a feedback.

Fig. 6.1. Architecture of RAVEN

We solve the interactive pattern discovery problem as a batch learning task. It

learns an interestingness function f which maps a maximal itemset of features to a

yes/no decision by using a linear predictor utilizing u’s feedback. In our solution,

during a learning iteration (interactive session), say i, the system presents a set of

frequent maximal patterns {Pt}1≤t≤l to u, which it selects from a partition of M (

constitutes the ith batch of a pattern set); u sends feedback yt using an interactive

console; we consider yt’s to be a binary number reflecting the quality of the selected

patterns. RAVEN updates its current model of the user’s interestingness function,

f using the feedback. An alternative to our batch learning framework can be to mine

all the frequent maximal patterns and select a relatively smaller subset of patterns for

getting a user’s feedback and use these for learning in one iteration. This approach is

not scalable as the number of frequent maximal patterns is typically large even for a

moderate-size dataset in a low support setting. Besides, if the learning entity receives
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the frequent patterns as a data stream, the one-iteration learning becomes infeasible,

but a batch learning framework still works.

The framework of RAVEN is same as the PRIIME’s as discussed in Section 5.2

in Chapter 5. For the ease of reader we redraw the framework of RAVEN with real-

estate notation in Figure 6.1 The proposed system has two main blocks: Learning and

Recommendation, which are shown in the upper and lower box of Figure 6.1, respec-

tively. Learning learns a model for a user; it contains the following three modules:

Frequent Maximal Pattern Miner (FMPM), Learner, and Feedback-Collector (FC).

The FMPM module is an off-the-shelf pattern mining algorithm that mines maximal

frequent patterns given a normalized minimum support threshold. Any of the exist-

ing pattern mining algorithms ranging from sequential [94, 100] to randomized [53],

can be used. The Learner learns u’s interestingness function (f) over the maximal

pattern set M (summary of the dataset) in multiple stages such that each stage uses

the user’s feedback on a small number of patterns selected from a partition of M.

The Feedback-Collector (FC)’s responsibility is to identify the patterns that are sent

to the user for feedback. The Recommendation suggests houses to the user using the

learned model.

6.3 Method

The learning model of RAVEN is similar to PRIIME explain in Section 5.3

in Chapter 5. Nevertheless, for better understanding in this section we explain the

learning and feedback collection module of PRIIME along with pattern representa-

tion from the view point of house recommendation.

6.3.1 Data and Pattern Representation

Considering the dataset D (discussed in Section 6.2) as a text corpus and each

transaction in the corpus as a document, the set I can be represented as the dictionary
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of frequent words i.e. items. Following the bag of words model, we represent each

pattern p ∈ O as a binary vector V of size |I|, constructed as below:

V (i) =







1, if item i ∈ p

0, otherwise

Such a representation maps each pattern to a data point x ∈ {0, 1}|I| space. For

example, in a data D, I = {3-Bedrooms, 3-Bathrooms, Open concept, Walkin

Closet}. A pattern {3-Bedrooms,3-Bathrooms} will be represented by the vector

(1, 1, 0, 0), but a pattern {3-Bedrooms,Open concept, Walkin Closet} will be rep-

resented by the vector (1, 0, 1, 1) and so on. For the remaining sections, we will use

x to denote a pattern P .

6.3.2 Classification Model

The RAVEN models the home buyer’s interestingness profile over the house fea-

tures set as a classification problem and learns the model parameters through an

interactive feedback mechanism. In each iteration, RAVEN executes a supervised

training session of the classification model using the corresponding data points of the

released patterns to the user. RAVEN uses the binary feedback (0/1) provided by

the user as the label of the training data. We use logistic regression as the classifi-

cation model Hθ. In logistic regression, the probability that a data point xi ∈ Rd

belongs to class yi, where yi ∈ {0, 1} can be written as,

Hθ(xi) = p(yi|xi; θ) =
1

1 + exp(−θ
Txi)

(6.1)

θ is the weight vector. The prediction of the model is computed as, ŷi = argmaxj p(yi =

j|xi, θ), where j ∈ {0, 1}. Given a set of training instancesX = {(x1, y1), · · · , (xm, ym)},
the weight matrix θ ∈ d (d is the size of a feature vector) is computed by solving the

convex optimization problem as shown in Equation 6.2 using gradient descent. Note

that, each data points xi ∈ Rd in the training set corresponds to a maximal itemset

pattern.
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argmin
θ

J(θ) = − 1

m

m∑

i=1

yi log p(yi|xi; θ)

+ (1− yi) log (1− p(yi|xi; θ)) +
λ

2
θ
T
θ (6.2)

λ
2
θ
T
θ is the regularization term to avoid over-fitting. In each iteration, RAVEN

applies L-BFGS-B optimization function implemented in python’s scipy package to

train the model.

6.3.3 Selection of Representative Data-points for Feedback

As discussed in Section 6.2, the Feedback-Collector (FC) is responsible for selecting

a small set of patterns for feedback. Considering the ease of a user while providing

feedback, we choose to present five patterns to the user at a time. RAVEN uses a

exploitation-exploration based criteia to choose patterns. Exploitation ensures that

the selected patterns have high impact on the training and exploration ensures that

the patterns are diverse. In each iteration, for an incoming batch, RAVEN exploits

the currently learned model to identify the patterns that will have the largest impact

on the parameters of the learning model. We can identify those patterns by checking

whether these patterns make the maximum change in the objective function. Since

we train the logistic classifier using gradient descent, we include the patterns to the

training set if it creates the greatest change in the gradient of the objective function,

▽θJ(θ) = − 1

m

m∑

i=1

[xi (yi − p(yi|xi; θ))] + λθ (6.3)

However, gradient change computation requires the knowledge of the label, which we

don’t have. So, we compute the expected gradient length [91] of xi using Equation 6.4.

EGL(xi) = (p(yi|xi; θ) + (1− p(yi|xi; θ)))|| ▽θ J(θ)|| (6.4)

After exploitation step, RAVEN retains the top 50% of patterns (xis) according to

the expected gradient length (EGL) as candidates for feedback. However, Expected
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gradient length based approach enables RAVEN to identify patterns that can make

greatest changes in the learning model, but it does not ensure diversity among the

patterns in terms of its composition, i.e. two patterns can be made of similar items.

To ensures that a broader span of the pattern space is covered, RAVEN uses k-center

search (exploration) to identify k patterns for feedback from the candidates set.

k-Center. k-center method finds k data points as centers so that the maximum

distance from each data point to its nearest center is minimized. This k-center prob-

lem is NP-complete, but there exists a fast 2-approximation greedy algorithm that

solves this problem in O(kn) time [92]. We set k to 5 in all our experiments. For

choosing 5 representative patterns, we use the greedy 5-center algorithm considering

the Jaccard index as the distance between two patterns.

6.4 RAVEN: The System

To bring our ideas of efficient house exploration into reality, we build an Internet-

based system forRAVEN live at http://mansurul11.pythonanywhere.com/Raven/.

Code and data is available at https://github.com/mansurul11/Raven. Please visit

https://youtu.be/x-5bEXeGtxA for a demo video of the system. The developed

system has three primary modules: first level feedback, second level feedback, and

house recommendation. In the following, we discuss each of these modules.

6.4.1 First Level Feedback Module

First Level Feedback is the most important module of RAVEN. Using this mod-

ule, it models a home buyer’s interestingness profile from the explicit feedback pro-

vided by the buyer. As we can see in Figure 6.2, RAVEN uses HTML checkbox

component to capture the home buyer’s positive (1) feedback on a pattern. To help a

home buyer for constructing appropriate feedback, it also provides the price (Median

and Average) of the houses associated with this pattern. For a new home buyer, it

might be difficult to understand a house feature just from the keyword. we use image
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Fig. 6.2. User interface of first level feedback module of RAVEN.

tool-tip technique to show the corresponding image of the feature. At the end of

pattern list, the system plants another check box (not shown in Figure 6.2) for the

user to specify whether the current feedback session is the last one. Note that in the

first iteration (initialization), RAVEN uses the k-center search to find 5 patterns for

feedback.

The First level feedback session can be halted from the system side as well as

the user side. RAVEN sets a minimum default iteration count to 10. After 10th

iteration, it keeps track whether getting additional feedback impact significantly on

the learning model or not by computing ||θi−θ
i−1||, where θi and θ

i−1 are the trained

model parameter vector of iteration i and i−1, respectively. If ||θi−θ
i−1|| falls below

a threshold (1E− 4), execution of the first level feedback session halts and execution

of the second level feedback session starts. In addition to above criterion, the user

can also signal feedback termination by marking a checkbox in the GUI of RAVEN.



120

Fig. 6.3. Partial user interface of second level feedback module of RAVEN

6.4.2 Second Level Feedback Module

During the first level feedback, RAVEN has no assumption on whether the user

who provides a positive feedback for a pattern likes all the features in that pattern or

not. If a home buyer is strict, then she might give positive feedback for a pattern only

if she likes all the features mentioned in a pattern. On the other hand, the casual home

buyer might give positive feedback for a pattern if she likes some of the features. In

the second level feedback, RAVEN presents a current compiled list of house features

to the user. The user performs a final assessment and decide if she wants to remove

any of the features. It is up to the user if she wishes to proceed without filtering.

In Figure 6.3, we present the UI (User Interface) for second level feedback module.

RAVEN uses drag & drop like component for second level feedback module. The

system reflects the second level feedback by identifying the filtered out house features

from the drop list and set the corresponding learned weights of these features to zero.

That way, the dropped features do not contribute towards selecting the houses for

the recommendation.
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Fig. 6.4. Partial user interface of final house recommendation module of RAVEN

6.4.3 House Recommendation Module

The recommendation is the final module of the system. After the second level

feedback, the system has the final trained model of a user’s interestingness over house

features. RAVEN applies the learned model over the house data and identify top 10

percent houses according to the positive class probability. To present the result, the

system first mentioned what are final features compiled by the algorithm according

to the user’s feedback. After that, it lists top 10 percent houses along with the price,

confidence score (probability) and location. In Figure 6.4, we present the UI for this

module. RAVEN marks the features of a house using red color if that feature is

coming from final features set.

6.4.4 Implementation Detail

RAVEN is built using python’s Django [101] framework. The background learn-

ing algorithm is written in python using numpy and scipy math packages. For

UI design, we use Bootstrap [102]. We use jQuery [103] to implement tooltip

and drag & drop component. To facilitate the live demo, we host RAVEN in
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pythonanywhere.com. In the live demo we set the batch size to 2000 and send 5

patterns to the user for feedback, which are configurable system parameters.

6.5 Data

To validate the effectiveness of RAVEN we crawl trulia.com to build a real-

world housing dataset. In this section, we discuss the data collection, and cleanup

methodologies. We also provide some basic data statistics.

6.5.1 Data Collection

We crawl trulia.com from November 2015 to January 2016 (3 months) for five

major cities: Carmel, Fishers, Indianapolis, Zionsville and Noblesville in the

Central Indiana. The information that we crawl is the basic house information, text

on house detail, school, and crime information. We extract the address of a house

from the URL. We use python to write the data crawler. We choose Central Indiana

home market because of our familiarity with the region.

6.5.2 Data Cleanup

To clean the crawled text data we use standardized data cleaning approach, i.e.

remove stop words, stemming and lemmatization of words. We have manually cleaned

some keywords that are written in unstructured abbreviated form. For example,

keyword fireplace is written as frplc or firplc in many house details. In order to

compile house features set, we use Rake [104] to find the key phrases. Next, we group

the key phrases, where we keep two key phrases together if they share at least one

keyword. That way, we get all the features of a category together. For example, all

the key phrases related to basement are grouped together by using this step. Finally,

we manually investigate these groups and identify specific house features. In the end,

we retain only those house features that appear in at least 25 houses.
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Table 6.1
Number of house in each city

City Number of House

Carmel, IN 597

Fisher, IN 525

Indianapolis, IN 5,485

Zionsville, IN 211

Noblesville, IN 389

6.5.3 Data Statistics

As mentioned earlier, we crawl house data of five major cities in Central Indiana,

USA region. In total, we crawl 7, 216 houses. In Table 6.1, we show the breakdown of

the house count in five cities. The total number of house features we extracted from

the crawled data is 123. The house features are categorized into three groups. The

first group of house features are about the interior and exterior of a house. Interior

features can be divided into several categories, i.e. details of bedrooms, bathrooms,

kitchen, garage, different amenities, etc. Information regarding fence, yard, porch,

etc. are considered as exterior features. The second group consists of neighborhood

features i.e. nearby schools, shopping malls, restaurants, trails, etc. The final group

is the school quality and crime rate information of the house neighborhood.

6.6 Empirical Evaluation on Housing Data

Due to unavailability of the real-estate purchase data by actual buyers, we em-

pirically evaluate RAVEN by demonstrating its performance over three different

demographic groups of home buyers. We identified these groups from a yearly report

of realtor.com [105]. These groups are: (1) young married couple without kids;

(2) median-income couple with kids; and (3) high-income professional couple. We
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also extrapolate the typical home features of these groups from the same information

source. In the following, we provide more details of our selection.

6.6.1 Demographic Group 1

People in this demographic group are of age 34 or younger. According to [105],

80% people in this group prefer Single Family Home and 8% prefer Townhome. So,

we select these two features. 21% of young peoples of age less than 34 prefer to be close

to city/downtown, 29% want their home to be close to restaurants, because of that, we

include Close to Downtown, Nearby Restaurants and Nearby shopping-stops in

the preferred feature set. 58% people of these group want to stay close to their friends

and family. They want features in the house appropriate for hosting parties. We

choose some of the home features that are suitable for this purpose, such as, Kitchen

center island, Granite countertop and island, Breakfast bar and nook, and

Balcony. According to the report [105], 52% of the young peoples prefer to avoid any

kinds of renovation, issues with paint, etc. So we choose Movein ready and Fresh

paint. In general, most home buyers prefer a location with Lowest crime rate.

This group typically have no kids, good-school is not a concern for them.

6.6.2 Demographic Group 2

People in this demographic group are of age between 35 to 49. According to

the report [105], 85% of peoples in this group prefer single family home and 68% of

them prioritize suburb area. 43% of the individuals in this group want good quality,

nearby schools, so we choose Nearby schools, Above Average Quality Primary

School, and Above Average Quality Middle School and Single Family Home as

preferred house features. 24% of families with kids prefer nearby parks, playground,

because of that, we include Neighborhood playground, Trails, and Community

pool in the feature set. 50% of this demography have kids and most likely they pre-

fer houses with open concept design, spacious, easy to maintain, common and work
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area, and large kitchen with necessary amenities. With that in mind, we extend the

feature set by, Open concept, 4 Bedrooms, 3 Bathrooms, 2 car garage, finished

basement, Large master bedroom, Hardwood floor, Open Concept kitchen, Steel

appliance, Granite countertop and island, Dual sink, Many cabinets, Common

area, Work area and Large backyard. Finally, Lowest crime rate location is a

natural choice for this group.
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Fig. 6.7. Performance of the learner with across iterations of feedback
for demographic group 3

6.6.3 Demographic Group 3

In this particular demographic group, we consider wealthy couples, interested to

buy luxurious, high-end houses. Since, for this group luxury is the primary con-

cern, we choose following house features that usually indicate a high-end house.

Large Master Bedroom, Marble floor, Gourmet kitchen, 4 car garage, Walkin

closet, Wood fireplace, Kitchen center island, Bathroom Vanity, Recreation

area, Crown molding, High ceiling, Jacuzzi hot tub, Large backyard, Quartz

countertop and island, Celling windows, Deck, Boat dock, Formal dining, Wet

bar, Walkin pantry, Neighborhood golf course, 5 Bedrooms, 5 Bathrooms, Low

crime rate.

6.6.4 Experimental Setup

After generating features-set associated with a demographic group, we first create

labels for the maximal patterns mined from trulia.com data with 25 support. We

choose support threshold in a way so that RAVEN can leverage a large number of

maximal patterns to learn the user’s choice. Support threshold 25 also allows not

to filter any of the 123 house features. We assign label 1 to a pattern if it contains
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80% or more features from the devised features set. We follow similar label creation

protocol for all groups. Next, we split the pattern set into train and test and execute

RAVEN over the training split. For all cases, we set the batch size to 2000 and

consider 5 patterns for feedback in each iteration. Once training is done, we compute

classification performance of RAVEN in terms of “precision”, “recall” and “F-Score”.
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6.6.5 Observations

For each of the demographic groups, we observe how PRIIME’s performance

changes as more and more feedback comes in. Figure 6.5 shows the observation

for group 1, Figure 6.6 and Figure 6.7 shows the same for group 2 and group 3,

respectively. In each figure, x-axis shows the number of feedback iterations and

the three curves represent precision, recall, and F-Score over test fold for different

iteration count. As we can see, in all cases the performance of the system improves

with the increase in the number of feedback. After 10 interactive sessions, RAVEN

reaches to a reasonable performance; for group 1, 2 and 3, the precision value reaches

approximately 0.7, 0.8, and 0.75, respectively. RAVEN reaches to a stable position

in terms of performance within 10 to 15 iterations of feedback for all three cases. For

group 1, 2 and 3, after 20 iterations of feedback, (recall, F-Score) become (0.69, 0.6),

(0.89, 0.88), and (0.79, 0.73), respectively. When we compare accross demographic

groups, group 2 and 3 produce better performance than group 1. The reason is that

the total number of positive patterns according to the user’s choice is comapartively

low for group 1 than 2 and 3.

To illustrate the training quality of learning module in PRIIME, we create a bar

chart with learned features weights for all the cases. To visually show the distinction
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between weights of the selected features set from weight of the rest of the features,

we divide the plotting area into two regions, in the left region we display weights of

the selected features set in blue ink and in the right region we show weight of the rest

of the features in red ink. In Figure 6.8, 6.9 and 6.10, we show the observation. As

we can see, PRIIME’s learning algorithm puts positive weights on all the features

from the selected set and negative weight to the majority of other features. Few

features in the right side of the plots have positive weight and we investigate this

scenario for the demographic groups. For group 1, top of these features (according to

weight) is Remodeled and renovated, which is related to the selected movein ready

and Fresh paint features. Next for group 2, we found that top two (according to

weight) of these features are many windows and counter space which are related to

the selected open concept and open concept kitchen feature. Finally for group

3, top of these features is boat dock, which is a very common luxurious feature of

houses in Carmel, IN. Note that, the learned features weights used in the bar chart

is collected after 10 iterations of feedback.

6.6.6 Analysis of Recommendation Quality

In this experiment, we analyze the location of top 20 recommended houses for each

of the groups. In Table 6.2, we present our finding. For all groups the majority of the

recommended houses are from Indianapolis area. The reason is that, city-wise our

dataset is highly imbalance where 76% of houses in our dataset are from Indianapolis.

However, if we consider the second most recommend cities we see that for group 2,

recommended houses are from Fishers and Carmel. In central Indiana area, these two

cities have the best school and family environment. For the group 3, we observe that

Carmel is the second most recommend city and Carmel, IN has most of the high-end

houses among the five cities.
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Table 6.2
Recommend city for demographic group 1, demographic group 2, and
demographic group 3 (Indy is the short form in Indianapolis)

Demographic Demographic Demographic

group 1 group 2 group 3

Carmel IN 46032 Carmel IN 46032 Carmel IN 46032

Fishers IN 46037 Carmel IN 46033 Carmel IN 46032

Indy IN 46237 Carmel IN 46074 Carmel IN 46032

Indy IN 46237 Fishers IN 46037 Carmel IN 46033

Indy IN 46222 Fishers IN 46037 Carmel IN 46033

Indy IN 46227 Fishers IN 46038 Carmel IN 46033

Indy IN 46236 Fishers IN 46038 Fishers IN 46037

Indy IN 46220 Indy IN 46201 Indy IN 46203

Indy IN 46268 Indy IN 46203 Indy IN 46203

Indy IN 46256 Indy IN 46203 Indy IN 46208

Indy IN 46218 Indy IN 46203 Indy IN 46218

Indy IN 46208 Indy IN 46208 Indy IN 46219

Indy IN 46208 Indy IN 46208 Indy IN 46220

Indy IN 46201 Indy IN 46217 Indy IN 46229

Indy IN 46203 Indy IN 46219 Indy IN 46231

Indy IN 46202 Indy IN 46227 Indy IN 46236

Indy IN 46208 Indy IN 46234 Indy IN 46237

Indy IN 46202 Indy IN 46239 Indy IN 46260

Indy IN 46280 Indy IN 46241 Noblesville IN 46060

Zionsville IN 46077 Zionsville IN 46077 Noblesville IN 46060

6.7 Related Works

We discuss the related works under three different categories.
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6.7.1 Real Estate Price Modeling

There exist several works on real-estate price modeling. The primary objective

of these works is real estate appraisal, which is the process of estimating the mar-

ket value for an estate or property. Krainer et al. [106] model real estate price by

building metrics which are inspired from financial theory, such as, price to income

ratio, and price to rent ratio. Nagaraja et al. [107] leverage financial time series data

to identify different patterns in estate prices i.e. periodicity, and volatility. Downie

et al. [108] observe that the low investment-valued estates are more volatile than

the high investment-valued estates. Hedonic regression [109] technique is one of the

popular methods for estate appraisal in real-life.

In recent years, there are multiple works [110–112] on real-estate ranking using

investment value index. Fu et al. [110] propose a ranking algorithm called ClusRank-

ing that leverages the characteristics of a neighborhood to estimate the values of its

nearby estates. In another work [112], the authors propose the sparse estate ranking

algorithm which uses opinion about real estates from online reviews and mobility

behaviors (e.g., taxi traces, smart card transactions, check-ins). The most recent

work [111] on estate ranking incorporates the functional diversity of user communi-

ties in a locality. Thus, it leverages different temporal urban functions (when most

people in a community going to work or shop, eat, etc.), and user mobility informa-

tion (public transportation traces, taxi traces) to rank real estates. All the above

methods are beneficial to a person who is in real-estate business i.e. flipping houses3.

However, in their model, they do not use house features, so they are not useful for a

home buyer who wants to buy a house to live in it.

6.7.2 Commercial Real Estate Search Products

realtor.com, trulia.com, zillow.com and redfin.com are the most popular

commercialized online real-estate search products that are available in the US market.

3Buy a house, renovate it and sell at a higher price
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These are basically listing sites, where they provide customize search tools to find

houses for rent, sell or buy. They also provide information on mortgage, real-estate

agent, etc. In all of these sites, a registered user can save homes and get notifications

of any updates on the save homes as well as similar homes. redfin.com can populate

a recommend list of houses for a registered user based on the “save homes” feature.

6.7.3 Real Estate Recommendation

There exist a few works on real estate recommendation [113,114]. In [113], authors

proposed a system called JOURA (short of Journey-Aware) that can recommend

houses solely based on transportation information. For example, using JOURA a

user can specify the locations she requires to commute frequently and the system

finds houses optimizing the commuter time while considering price as a parameter.

In [114], authors developed a case based reasoning house search system that can find

houses based on a user’s wish-list populated on the basis of location. The system also

takes consideration of house price, bedroom, bathroom, size information to narrow

down the search. Both of the methods only consider basic house features i.e price,

size, bedroom, bathroom along with location and transportation based information.

But for a home buyes other housing features i.e. school, neighborhood, entertainment,

house interior/exterior features is important to consider that we do in the RAVEN.

6.8 Future Directions and Conclusion

Future directions of RAVEN are abundant. In the current version, we only

consider the binary form of feedback. In the next version, we want to incorporate

a more elaborate form of feedback, where a home buyer can express her empathy

towards a house summary in multiple levels. For example, a home buyer can choose

feedback from yes, no and maybe for a house summary set. We can add more features

in the user interface of RAVEN. For example, On the recommendation page, we can

present houses with more information i.e. images, text description, additional meta
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data. Currently, we are showing top 10% houses without price filtering. We plan to

introduce a price range selector, that enables the user to select a price range to filter

the recommended houses. We also plan to present houses in a table fashion where

the user can sort the results based on different house features. Mobile application of

RAVEN is another exciting future works.

To conclude, in this chapter we introduce a new house discovery tool called

RAVEN that uses frequent maximal itemset mining and interactive feedback from

the user to learn the user’s interestingness profile over the house features. In the end,

RAVEN recommend houses to the user with a higher probability of liking it.
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7. FUTURE WORKS AND CONCLUSION

Interactive Personalized Interesting Pattern Discovery is a novel research problem,

and our works are just the beginning, so the opportunity for future work is abundant.

In this section, we will discuss possible forthcoming works on the frameworks we

developed.

7.1 Sampling Based Solution

One of the crucial contribution of this framework is that, it can sure entire dataset

reconstruction privacy while allowing personalized patten discovery. From the privacy

point of view followings can be potential future works.

Safeguarding the system from manipulative user: In this work, we have

considered a semi-honest model whereas in real-life a malicious model may be needed.

Specifically, an interesting follow-up research could be to un- derstand how to safe-

guard the interactive mining system from a malicious user who intends to reconstruct

the entire data-set by exploiting the sampling system. Even more interesting is the

scenario when a group of malicious users jointly attack the system to achieve a similar

goal.

Robust data privacy model: In this work, our proposed system assumes that

the released patterns are not sensitive. It ensures that the data owner maintains the

confidentiality of the data in the sense that using the released set of patterns a user

cannot reconstruct the entire data-set with a high level of accuracy. In practice, such

assumption might not be compatible to ensure the privacy for all kinds of private data.

For example, in financial or medical data, patterns can contain sensitive information,

hence prone to privacy violation for individuals in the data. As a future work, we

want to extend our data privacy model to ensure both entire data-sets as well as
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individuals confidentiality and provide a complete theoretical contribution using the

state of the art privacy models i.e. differential privacy.

7.2 Pattern Representation:

In this dissertation, we design the ”Pattern2Vec” model using the existing neural

net-based model from NLP domain. As an imminent future work, we aim to improve

the current model and develop a neural net-based solution while incorporating pat-

tern specific information in the optimization function. We also want to explore the

applicability of such techniques in the graph classification domains.

7.3 RAVEN : The Home Discovery System

In the current version, we only consider the binary form of feedback. In the next

version, we want to incorporate a more elaborate form of feedback, where a home

buyer can express her empathy towards a house summary in multiple levels. For

example, a home buyer can choose feedback from yes, no and maybe for a house

summary set. We can add more features in the user interface of RAVEN. For ex-

ample, On the recommendation page, we can present houses with more information

i.e. images, text description, additional meta data. Currently, we are showing top

10% houses without price filtering. We plan to introduce a price range selector, that

enables the user to select a price range to filter the recommended houses. We also

plan to present houses in a table fashion where the user can sort the results based

on different house features. Mobile application of RAVENis another exciting future

works.

We also want to explore other business domains where IPIPD framework can

be used to solve information overload problem. One of such business domain can

be the auto industry. Similar to home, new car buyer faces the similar dilemma on

deciding what car to buy with their budget, since there are so many options available.

We believe like home industry, buyers in the auto industry will spend their time to
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leverage such interactive system and gather a smaller set of potential cars that they

might bought.

To conclude, in this thesis, we introduce several frameworks for interactive per-

sonalized interesting pattern discovery problem. We developed adopting interactive

pattern sampling framework, where the effective sampling distribution is continuously

updated by binary feedback from the user and allow personalized discovery from hid-

den dataset. We also developed supervised learning based generic framework utilizing

neural net based efficient feature construction scheme of different types of pattern i.e.

sequence, graph. To show real-life application of the proposed framework, we build a

smart house discovery tool called RAVEN that can be helpful to find houses in an

interactive manner.
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[55] M. Boley, S. Moens, and T. Gärtner, “Linear space direct pattern sampling
using coupling from the past,” in Proceedings of the International Conference
on Knowledge Discovery and Data Mining, pp. 69–77, ACM, 2012.



141

[56] S. K. M. Wong and V. V. Raghavan, “Vector space model of information re-
trieval: A reevaluation,” in Proceedings of the International Conference on Re-
search and Development in Information Retrieval, pp. 167–185, 1984.

[57] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” in Proceedings
of the Very Large Sacle DataBases, pp. 129–138, ACM, 2001.

[58] A. Dasgupta, N. Zhang, and G. Das, “Leveraging count information in sam-
pling hidden databases,” in Proceedings of the International Conference on Data
Engineering, pp. 329 –340, IEEE, 2009.

[59] A. Dasgupta, N. Zhang, and G. Das, “Turbo-charging hidden database sam-
plers with overflowing queries and skew reduction,” in Proceedings of the 13th
International Conference on Extending Database Technology, pp. 51–62, ACM,
2010.

[60] N. Bruno, L. Gravano, and A. Marian, “Evaluating top-k queries over web-
accessible databases,” in Proceedings of the International Conference on Data
Engineering, pp. 369–380, IEEE, 2002.

[61] A. Dasgupta, X. Jin, B. Jewell, N. Zhang, and G. Das, “Unbiased estimation
of size and other aggregates over hidden web databases,” in Proceedings of the
International Conference on Management of Data, pp. 855–866, 2010.

[62] V. Verykios, A. Elmagarmid, E. Bertino, Y. Saygin, and E. Dasseni, “Associ-
ation rule hiding,” Transactions on Knowledge and Data Engineering, vol. 16,
no. 4, pp. 434–447, 2004.
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