61,750 research outputs found

    Design of robotic arm controller based on Internet of Things (IoT)

    Get PDF
    This paper presents the process of developing a controller for a robotic arm that is built through the Internet of Things (IoT).The direction of the robotic arm can be monitored and controlled using internet facilities. The Raspberry Pi board is utilized in this project for the robotic arm controller as well as the web server system.The robotic arm comprises four servo motors and each of the servo motors is assigned with a single pulse width modulation (PWM) output that can be individually controlled.The controller system is implemented on Raspberry Pi board using Python 2.7 programming language.Node-Red is used as a web server in this project to communicate with the web browser through TCP/HTTP.Hence, this allows the user to access the web browser using computer or smartphones.In addition, it enables the monitoring and controlling of the robotic arm direction as well as performing pick and place task similar to the manufacturing industry.The results of this study are verified through practical test implementation

    Recognizing Objects In-the-wild: Where Do We Stand?

    Full text link
    The ability to recognize objects is an essential skill for a robotic system acting in human-populated environments. Despite decades of effort from the robotic and vision research communities, robots are still missing good visual perceptual systems, preventing the use of autonomous agents for real-world applications. The progress is slowed down by the lack of a testbed able to accurately represent the world perceived by the robot in-the-wild. In order to fill this gap, we introduce a large-scale, multi-view object dataset collected with an RGB-D camera mounted on a mobile robot. The dataset embeds the challenges faced by a robot in a real-life application and provides a useful tool for validating object recognition algorithms. Besides describing the characteristics of the dataset, the paper evaluates the performance of a collection of well-established deep convolutional networks on the new dataset and analyzes the transferability of deep representations from Web images to robotic data. Despite the promising results obtained with such representations, the experiments demonstrate that object classification with real-life robotic data is far from being solved. Finally, we provide a comparative study to analyze and highlight the open challenges in robot vision, explaining the discrepancies in the performance

    Visual Localisation of Mobile Devices in an Indoor Environment under Network Delay Conditions

    Get PDF
    Current progresses in home automation and service robotic environment have highlighted the need to develop interoperability mechanisms that allow a standard communication between the two systems. During the development of the DHCompliant protocol, the problem of locating mobile devices in an indoor environment has been investigated. The communication of the device with the location service has been carried out to study the time delay that web services offer in front of the sockets. The importance of obtaining data from real-time location systems portends that a basic tool for interoperability, such as web services, can be ineffective in this scenario because of the delays added in the invocation of services. This paper is focused on introducing a web service to resolve a coordinates request without any significant delay in comparison with the sockets

    Autobed: A Web-Controlled Robotic Bed

    Get PDF
    We (the Healthcare Robotics Lab at Georgia Tech) have developed an additional module for an Invacare fully electric hospital bed (Model 5410IVC) so that the bed can be controlled from a web-based interface. This module can be easily plugged between the hand control and the Invacare bed, without having to modify any existing hardware on the bed. We call a bed so modified an 'Autobed.' With this feature, users who are unable to operate the standard bed controls, but can access a web browser, are able to position the bed by themselves without having to rely on a caregiver (for example, patients with quadriplegia). This page describes how to make the Autobed module using relatively inexpensive, commercially available hardware. This document is a representation of the content provided at http://hsi.gatech.edu/hrl/project_autobed_v2.shtml as of February 15th, 2016, and is intended to create a lasting, citable, and archival copy of this material, which details the design and instructions for building the 'Autobed' device

    In-home and remote use of robotic body surrogates by people with profound motor deficits

    Get PDF
    By controlling robots comparable to the human body, people with profound motor deficits could potentially perform a variety of physical tasks for themselves, improving their quality of life. The extent to which this is achievable has been unclear due to the lack of suitable interfaces by which to control robotic body surrogates and a dearth of studies involving substantial numbers of people with profound motor deficits. We developed a novel, web-based augmented reality interface that enables people with profound motor deficits to remotely control a PR2 mobile manipulator from Willow Garage, which is a human-scale, wheeled robot with two arms. We then conducted two studies to investigate the use of robotic body surrogates. In the first study, 15 novice users with profound motor deficits from across the United States controlled a PR2 in Atlanta, GA to perform a modified Action Research Arm Test (ARAT) and a simulated self-care task. Participants achieved clinically meaningful improvements on the ARAT and 12 of 15 participants (80%) successfully completed the simulated self-care task. Participants agreed that the robotic system was easy to use, was useful, and would provide a meaningful improvement in their lives. In the second study, one expert user with profound motor deficits had free use of a PR2 in his home for seven days. He performed a variety of self-care and household tasks, and also used the robot in novel ways. Taking both studies together, our results suggest that people with profound motor deficits can improve their quality of life using robotic body surrogates, and that they can gain benefit with only low-level robot autonomy and without invasive interfaces. However, methods to reduce the rate of errors and increase operational speed merit further investigation.Comment: 43 Pages, 13 Figure

    Visualization of Simultaneous Localization and Mapping using SVG

    Get PDF
    Robotic system often use simultaneous localization and mapping method in their operations. Most of the calculation stored as a nested array with multiple level and dimension. SLAM data contains robot movement, object detection and relation between them. This system visualize SLAM data into a map containing robot historical position,object position and relation between object and robot that show detections line from each robot position. The visualized so human eye can understand it. This paper describes the process of movement and detection data composition and conversion to prepare the information required to build a map. The map composed by plotting every movements and detections into polar coordinate area. The map stored into a database for flexible future usage. Commonly used web based interface chosen to display the map via web browser. The map generated by server side scripts that transform polar data into full map

    Service-Oriented Architecture for Space Exploration Robotic Rover Systems

    Full text link
    Currently, industrial sectors are transforming their business processes into e-services and component-based architectures to build flexible, robust, and scalable systems, and reduce integration-related maintenance and development costs. Robotics is yet another promising and fast-growing industry that deals with the creation of machines that operate in an autonomous fashion and serve for various applications including space exploration, weaponry, laboratory research, and manufacturing. It is in space exploration that the most common type of robots is the planetary rover which moves across the surface of a planet and conducts a thorough geological study of the celestial surface. This type of rover system is still ad-hoc in that it incorporates its software into its core hardware making the whole system cohesive, tightly-coupled, more susceptible to shortcomings, less flexible, hard to be scaled and maintained, and impossible to be adapted to other purposes. This paper proposes a service-oriented architecture for space exploration robotic rover systems made out of loosely-coupled and distributed web services. The proposed architecture consists of three elementary tiers: the client tier that corresponds to the actual rover; the server tier that corresponds to the web services; and the middleware tier that corresponds to an Enterprise Service Bus which promotes interoperability between the interconnected entities. The niche of this architecture is that rover's software components are decoupled and isolated from the rover's body and possibly deployed at a distant location. A service-oriented architecture promotes integrate-ability, scalability, reusability, maintainability, and interoperability for client-to-server communication.Comment: LACSC - Lebanese Association for Computational Sciences, http://www.lacsc.org/; International Journal of Science & Emerging Technologies (IJSET), Vol. 3, No. 2, February 201
    corecore