315 research outputs found

    An Energy Saving Road Sweeper Using Deep Vision for Garbage Detection

    Get PDF
    Road sweepers are ubiquitous machines that help preserve our cities cleanliness and health by collecting road garbage and sweeping out dirt from our streets and sidewalks. They are often very mechanical instruments, needing to operate in harsh conditions dealing with all sorts of abandoned trash and natural garbage. They are usually composed of rotating brushes, collector belts and bins, and sometimes water or air streams. All of these mechanical tools are usually high in power demand and strongly subject to wear and tear. Moreover, due to the simple working logic often implied by these cleaning machines, these tools work in an “always on”/“max power” state, and any further regulation is left to the pilot. Therefore, adding artificial intelligence able to correctly operate these tools in a semi-automatic way would be greatly beneficial. In this paper, we propose an automatic road garbage detection system, able to locate with great precision most types of road waste, and to correctly instruct a road sweeper in order to handle them. With this simple addition to an existing sweeper, we will be able to save more than 80% electrical power currently absorbed by the cleaning systems and reduce by the same amount brush weariness (prolonging their lifetime). This is done by choosing when to use the brushes and when not to, with how much strength, and where. The only hardware components needed by the system will be a camera and a PC board able to read the camera output (and communicate via CanBus). The software of the system will be mainly composed of a deep neural network for semantic segmentation of images, and a real-time software program to control the sweeper actuators with the appropriate timings. To prove the claimed results, we run extensive tests onboard of such a truck, as well as benchmark tests for accuracy, sensitivity, specificity and inference speed of the system

    Importance and applications of robotic and autonomous systems (RAS) in railway maintenance sector: a review

    Get PDF
    Maintenance, which is critical for safe, reliable, quality, and cost-effective service, plays a dominant role in the railway industry. Therefore, this paper examines the importance and applications of Robotic and Autonomous Systems (RAS) in railway maintenance. More than 70 research publications, which are either in practice or under investigation describing RAS developments in the railway maintenance, are analysed. It has been found that the majority of RAS developed are for rolling-stock maintenance, followed by railway track maintenance. Further, it has been found that there is growing interest and demand for robotics and autonomous systems in the railway maintenance sector, which is largely due to the increased competition, rapid expansion and ever-increasing expense

    Identification, assessment and proposing mitigation strategies for the risks involved in operations and maintenance activities on highways - crash data analysis and development of integrated risk management model

    Get PDF
    Mobile operations and highway maintenance work is among the riskiest activities of state highway agencies. Over the past ten years 1,323 fatal-major crashes occurred in Iowa due to the intermittent and moving work zones. Additionally, another 8,234 minor injury crashes, 11,447 possible injury crashes, and 34,038 property damage type of crashes occurred in Iowa in the same time frame (as reported in Iowa DOT crash database). A literature review of research in risk mitigation of mobile operations in other states has indicated that the topic has been addressed, but typically in very narrow areas (e.g. weather or nighttime operations). Few studies have analyzed risk in moving operations and maintenance work using an integrated, system-level analysis. This study provides a broad examination of the different risks that are identified and assessed through expert panel review and analysis of the statewide crash data from 2001 to 2010. A model was developed to identify the significant factors and an analysis of severity and frequency of those factors resulted in the development of the Integrated Risk Management Model. The statistical analysis along with the Integrated Risk Management Model resulted in six factors that bear critical risk potential and catastrophic risk potential for maintenance and mobile operations in highways. They are passenger vehicles, vision not obscured by moving vehicles or frosted windows / wind-shield, region located within or adjacent to the work activity, region located between the advance warning sign and work area, cloudy weather and foggy or misty or partly cloudy weather. Several risk mitigation strategies are recommended in this research study that should be adopted by transportation agencies while planning for a mobile work zone or during the maintenance and operation activities on highway in order to render a safer work zone both for the public and the working crews

    Autonomous space processor for orbital debris

    Get PDF
    This work continues to develop advanced designs toward the ultimate goal of a GETAWAY SPECIAL to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated last year through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subscale model. During this reporting period, several improvements are made in the solar cutter, such as auto track capabilities, better quality reflectors and a more versatile framework. The major advance has been in the design, fabrication and working demonstration of a ROBOTIC ARM that has several degrees of freedom. The functions were specifically tailored for the orbital debris handling. These advances are discussed here. Also a small fraction of the resources were allocated towards research in flame augmentation in SCRAMJETS for the NASP. Here, the fundamental advance was the attainment of Mach numbers up to 0.6 in the flame zone and a vastly improved injection system; the current work is expected to achieve supersonic combustion in the laboratory and an advanced monitoring system

    Guaranteed Road Network Search with Small Unmanned Aircraft

    Get PDF
    The use of teams of small unmanned aircraft in real-world rapid-response missions is fast becoming a reality. One such application is search and detection of an evader in urban areas. This paper draws on results in graph-based pursuit-evasion, developing mappings from these abstractions to primitive motions that may be performed by aircraft, to produce search strategies providing guaranteed capture of road-bound targets. The first such strategy is applicable to evaders of arbitrary speed and agility, offering a conservative solution that is insensitive to motion constraints pursuers may possess. This is built upon to generate two strategies for capture of targets having a known speed bound that require searcher teams of much smaller size. The efficacy of these algorithms is demonstrated by evaluation in extensive simulation using realistic vehicle models across a spectrum of environment classes

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 40)

    Get PDF
    Abstracts are provided for 181 patents and patent applications entered into the NASA scientific and technical information system during the period July 1991 through December 1991. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application

    Sealing Large-Diameter Cast-Iron Pipe Joints Under Live Conditions

    Full text link

    State of the Art Review on Mobile Robots and Manipulators for Humanitarian Demining

    Get PDF
    Robotics solutions properly sized with suitable modularized structure and well adapted to local conditions of dangerous unstructured areas can greatly improve the safety of personnel as well as the work efficiency, productivity and flexibility. In this sense, mobile systems equipped with manipulators for detecting and locating antipersonnel landmines are considered of most importance towards autonomous/semi-autonomous mine location in a proficient, reliable, safer and effective way. This paper reviews the most relevant literature and previous research activity regarding mobile robots and manipulators for humanitarian demining.Robotics solutions properly sized with suitable modularized structure and well adapted to local conditions of dangerous unstructured areas can greatly improve the safety of personnel as well as the work efficiency, productivity and flexibility. In this sense, mobile systems equipped with manipulators for detecting and locating antipersonnel landmines are considered of most importance towards autonomous/semi-autonomous mine location in a proficient, reliable, safer and effective way. This paper reviews the most relevant literature and previous research activity regarding mobile robots and manipulators for humanitarian demining
    corecore