7,241 research outputs found
A roadmap to robot motion planning software development
"This is the peer reviewed version of the following article: Pérez, A. and Rosell, J. (2010), A roadmap to robot motion planning software development. Comput. Appl. Eng. Educ., 18: 651-660. doi:doi.org/10.1002/cae.20269, which has been published in final form at https://doi.org/10.1002/cae.20269. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."PhD programs and graduate studies in robotics usually include motion planning among its main subjects. Students that focus their research in this subject find themselves trapped in the necessity of programming an environment where to test and validate their theoretic contributions. The programming of this robot motion planning environment is a big challenge. It requires on the one hand good programming skills involving the use of software development tools, programming paradigms, or the knowledge of computational complexity and efficiency issues. On the other hand it requires coping with different related issues like the modeling of objects, computational geometry problems and graphical representations and interfaces. The mastering of all these techniques is good for the curricula of roboticists with a motion planning profile. Nevertheless, the time and effort devoted to this end must remain reasonable. Within this framework, the aim of this paper is to provide the students with a roadmap to help them in the development of the software tools needed to test and validate their robot motion planners. The proposals are made within the scope of multi-platform open source codePeer ReviewedPostprint (author's final draft
Special issue on smart interactions in cyber-physical systems: Humans, agents, robots, machines, and sensors
In recent years, there has been increasing interaction between humans and non‐human systems as we move further beyond the industrial age, the information age, and as we move into the fourth‐generation society. The ability to distinguish between human and non‐human capabilities has become more difficult to discern. Given this, it is common that cyber‐physical systems (CPSs) are rapidly integrated with human functionality, and humans have become increasingly dependent on CPSs to perform their daily routines.The constant indicators of a future where human and non‐human CPSs relationships consistently interact and where they allow each other to navigate through a set of non‐trivial goals is an interesting and rich area of research, discovery, and practical work area. The evidence of con- vergence has rapidly gained clarity, demonstrating that we can use complex combinations of sensors, artificial intelli- gence, and data to augment human life and knowledge. To expand the knowledge in this area, we should explain how to model, design, validate, implement, and experiment with these complex systems of interaction, communication, and networking, which will be developed and explored in this special issue. This special issue will include ideas of the future that are relevant for understanding, discerning, and developing the relationship between humans and non‐ human CPSs as well as the practical nature of systems that facilitate the integration between humans, agents, robots, machines, and sensors (HARMS).Fil: Kim, Donghan. Kyung Hee University;Fil: Rodriguez, Sebastian Alberto. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Matson, Eric T.. Purdue University; Estados UnidosFil: Kim, Gerard Jounghyun. Korea University
Parallelizing RRT on distributed-memory architectures
This paper addresses the problem of improving the performance of the Rapidly-exploring Random Tree (RRT) algorithm by parallelizing it. For scalability reasons we do so on a distributed-memory architecture, using the message-passing paradigm. We present three parallel versions of RRT along with the technicalities involved in their implementation. We also evaluate the algorithms and study how they behave on different motion planning problems
Sampling-based Algorithms for Optimal Motion Planning
During the last decade, sampling-based path planning algorithms, such as
Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have
been shown to work well in practice and possess theoretical guarantees such as
probabilistic completeness. However, little effort has been devoted to the
formal analysis of the quality of the solution returned by such algorithms,
e.g., as a function of the number of samples. The purpose of this paper is to
fill this gap, by rigorously analyzing the asymptotic behavior of the cost of
the solution returned by stochastic sampling-based algorithms as the number of
samples increases. A number of negative results are provided, characterizing
existing algorithms, e.g., showing that, under mild technical conditions, the
cost of the solution returned by broadly used sampling-based algorithms
converges almost surely to a non-optimal value. The main contribution of the
paper is the introduction of new algorithms, namely, PRM* and RRT*, which are
provably asymptotically optimal, i.e., such that the cost of the returned
solution converges almost surely to the optimum. Moreover, it is shown that the
computational complexity of the new algorithms is within a constant factor of
that of their probabilistically complete (but not asymptotically optimal)
counterparts. The analysis in this paper hinges on novel connections between
stochastic sampling-based path planning algorithms and the theory of random
geometric graphs.Comment: 76 pages, 26 figures, to appear in International Journal of Robotics
Researc
Comparative analysis of firefly algorithm for solving optimization problems
Firefly algorithm was developed by Xin-She Yang [1] by taking inspiration from flash light signals which is the source of attraction among fireflies for potential mates. All the fireflies are unisexual and attract each other according to the intensities of their flash lights. Higher the flash light intensity, higher is the power of attraction and vice versa. For solving optimization problem, the brightness of flash is associated with the fitness function to be optimized. The light intensity I (r) of a firefly at distance r is given by equation (1
Learning to reach and reaching to learn: a unified approach to path planning and reactive control through reinforcement learning
The next generation of intelligent robots will need to be able to plan reaches. Not just ballistic point to point reaches, but reaches around things such as the edge of a table, a nearby human, or any other known object in the robot’s workspace. Planning reaches may seem easy to us humans, because we do it so intuitively, but it has proven to be a challenging problem, which continues to limit the versatility of what robots can do today. In this document, I propose a novel intrinsically motivated RL system that draws on both Path/Motion Planning and Reactive Control. Through Reinforcement Learning, it tightly integrates these two previously disparate approaches to robotics. The RL system is evaluated on a task, which is as yet unsolved by roboticists in practice. That is to put the palm of the iCub humanoid robot on arbitrary target objects in its workspace, start- ing from arbitrary initial configurations. Such motions can be generated by planning, or searching the configuration space, but this typically results in some kind of trajectory, which must then be tracked by a separate controller, and such an approach offers a brit- tle runtime solution because it is inflexible. Purely reactive systems are robust to many problems that render a planned trajectory infeasible, but lacking the capacity to search, they tend to get stuck behind constraints, and therefore do not replace motion planners. The planner/controller proposed here is novel in that it deliberately plans reaches without the need to track trajectories. Instead, reaches are composed of sequences of reactive motion primitives, implemented by my Modular Behavioral Environment (MoBeE), which provides (fictitious) force control with reactive collision avoidance by way of a realtime kinematic/geometric model of the robot and its workspace. Thus, to the best of my knowledge, mine is the first reach planning approach to simultaneously offer the best of both the Path/Motion Planning and Reactive Control approaches. By controlling the real, physical robot directly, and feeling the influence of the con- straints imposed by MoBeE, the proposed system learns a stochastic model of the iCub’s configuration space. Then, the model is exploited as a multiple query path planner to find sensible pre-reach poses, from which to initiate reaching actions. Experiments show that the system can autonomously find practical reaches to target objects in workspace and offers excellent robustness to changes in the workspace configuration as well as noise in the robot’s sensory-motor apparatus
- …
