
A Roadmap to Robot
Motion Planning Software
Development

ALEXANDER PÉREZ, JAN ROSELL

Institute of Industrial and Control Engineering (IOC), Technical University of Catalonia (UPC), Av. Diagonal 647,

11th floor, 08028 Barcelona, Spain

ABSTRACT: PhD programs and graduate studies in robotics usually include motion

planning among its main subjects. Students that focus their research in this subject find

themselves trapped in the necessity of programming an environment where to test and

validate their theoretic contributions. The programming of this robot motion planning

environment is a big challenge. It requires on the one hand good programming skills involving

the use of software development tools, programming paradigms, or the knowledge of

computational complexity and efficiency issues. On the other hand it requires coping with

different related issues like the modeling of objects, computational geometry problems and

graphical representations and interfaces. The mastering of all these techniques is good for the

curricula of roboticists with a motion planning profile. Nevertheless, the time and effort

devoted to this end must remain reasonable. Within this framework, the aim of this paper is to

provide the students with a roadmap to help them in the development of the software tools

needed to test and validate their robot motion planners. The proposals are made within the

scope of multi-platform open source code. � 2009 Wiley Periodicals, Inc. Comput Appl Eng Educ;

Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20269

Keywords: robotics; software development; path planning

PROBLEM STATEMENT

One of the main tasks in robotics is to plan collision-

free paths for a robot from a start to a goal

configuration among the obstacles in the workspace.

This problem is known as robot motion planning

[1�3]. The basic approach is a computationally hard

geometric problem that can get much harder if other

issues are to be taken into account like sensor

uncertainties, differential constraints, or the existence

of dynamic obstacles. Robot motion planners must

cope with the modeling of objects and their location,

with collision detection and other computational

geometry problems, with graph representations and

search algorithms, and with graphic rendering and

other graphical user interface issues. Therefore, the

development of a robot motion planner is not an easy

Correspondence to J. Rosell (jan.rosell@upc.edu).
Contract grant sponsor: CICYT; Contract grant numbers:

DPI2007-63665, DPI2008-02448.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/157809586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


task since it involves many different issues ranging

from the use of software development tools to the

knowledge of computational geometry solutions.

There are some open source motion planners

available on the web like An Object-Oriented Pro-

gramming System for Motion Planning [4] (OOPSMP,

www.kavrakilab.org/software), the Motion Planning

Kit (http://ai.stanford.edu/mitul/mpk) or the Motion

Strategy Library (http://msl.cs.uiuc.edu/msl/). The

OOPSMP is a path planner that currently allows

solving problems for free-flying robots moving on a

plane using the basic versions of either probabilistic

roadmaps (PRM, [5]), or rapidly exploring random

trees (RRT, [6]). It has the interesting didactic feature

of allowing to consecutively execute all the steps of

the planning process and showing, for instance, the

robot at each of the sampled configurations. Although

it is conceived to be flexible and modular (it is

implemented using the generic programming para-

digm based on XML descriptions), there is not enough

documentation yet to allow its use for programming

and testing new algorithms or variants. The MSL and

the MPK are, on the other hand, basically conceived

as tools to prove and illustrate the motion planners

developed by their authors, namely the basic RRTs

and all its variants (MSL) and the SBL algorithm, a fast

single-query probabilistic roadmap path planner

(MPK). They also allow dealing with more complex

problems involving robot manipulators (MPK also

includes a multirobot module), or mobile robots with

kinematic constraints (for the case of MSL).

Although all these planners have interesting

features, they do not cover the needs from a teaching

perspective: They are not easy to use and it is hard to

get an insight into their structure in order to adapt and

extend them to the particular needs. This is the reason

why, in order to have an environment where to test and

validate theoretic contributions in motion planning, it

ends up being more efficient to build a planner from

scratch. From the learning point of view, in the scope

of PhD programs and graduate studies in robotics, this

is not a bad issue, since it gives the students the

opportunity to face different problems and to acquire a

global view. Nevertheless, some guidelines are always

welcome in order to keep the effort reasonably

bounded. This paper makes a proposal of some useful

tools (and illustrates how to use them) with the aim of

paving the path towards the development of motion

planning software.

The paper is structured as follows. Tools Section

presents the set of tools with which the students must

get involved in the development of robot motion

planning software. They are building bricks that cover

from general software development tools, operating

systems and compliers to graphics, GUIs and

computational geometry libraries. Certainly many

different alternatives do exist for each of them. The

proposal of this paper is made having in mind an open

source philosophy and a multi-platform approach,

and is currently being used with success at the

Technical University of Catalonia to teach ‘‘Planning

in robotics’’ within the PhD Program ‘‘Automatic

Control, Robotics and Computer Vision (ARV)’’.

After the tools’ overview, Kick-Off Examples Section

presents some kick-off examples to facilitate the

students’ start-up. The examples code can be down-

loaded from http://iocnet.upc.edu/usuaris/JanRosell//

EducationalTools.html.

TOOLS

Software Development Tools

When a new software project begins, it is necessary to

define the tools to be used all along the process.

Which programming techniques will be used? How

will a design be described? How will the development

history and backups of the project be maintained? A

motion planning software is not a small application; it

really is a big software project where many libraries

are working together. For this reason, it is important to

begin with a good task plan covering all the develop-

ment steps.

One of the most published programming para-

digms in the last decade is the Object Oriented

Programming (OOP, [7]). Through the OOP it is

possible to comfortably work with the models

(objects) of all the actors involved in the problem,

like the configuration space, the workspace, the

obstacles and the robots for the case of motion

planning problems. OOP may be seen as a collection

of cooperating objects, as opposed to a traditional

view in which a program may be seen as a group of

procedures. Every type of object in a OOP application

is defined by a class. InOOP, each object is capable of

receiving messages, processing data, and sending

messages to other objects. OOP allows the creation of

modular and reusable code.

Closer to the OOP methodology, grows the

Unified Modeling Language that is a meta language

used to graphically show a software design [8].

Documentation about this meta language is regularly

posted in the Object Group website (www.uml.org).

Using an UML graphic tool like StarUML (www.

staruml.com) it is possible to make an initial global

design at class level, that can later be refined or

modified (Fig. 1). One advantage of using the

2 PÉREZ AND ROSELL



StarUML over other tools is its ability to generate the

source and header files (*.cpp and *.h files, respec-

tively) for all the associated classes in the design.

Furthermore it can, in a process called reverse

engineering, extract a graph of the class hierarchy

from all the project files.

All the steps in a long software developing

process must be stored for tracking and debugging

purposes. A good way of doing this is through a

control version system like Subversion SVN (https://

subversion.tigris.org). These systems provide a good

environment to store and restore any possible version

of each file in the project all along the develop-

ment time, and it is very useful to manage projects

involving several programmers at the same time.

Other tools like CVS (www.nongnu.org/cvs) or a

commercial solution like SafeSource (http://msdn.

microsoft.com/en-us/vs2005/aa718670.aspx), can be

used, but SVN is currently the preferred control

version system in the open source community. It

provides a set of tools for common administrative

server tasks and client operations. For a complete

reference on SVN, see Ref. [9].

An effective and easy solution of the server side is

OpenSVN (https://opensvn.csie.org), it is an open-

source initiative for open-source projects. It provides a

good access and availability and it can store a large

amount of files. For the client side, TortoiseSVN

(http://tortoisesvn.net) is a Windows shell extension

which integrates into Windows Explorer. For Linux

environments, kdesvn (http://kdesvn.alwins-world.de)

is a high integrated application for KDesktop. Similar

tools can be found for other Linux desktops.

These tools can be complemented by many others

like those that allow the comparing of two versions of

the same file to track and revise the changes (e.g.,

winmerge at www.winmerge.org, KDiff3 at http://

kdiff3.sourceforge.net or Meld at http://meld.source

forge.net).

Finally, a good programmer should properly

document the code. This can easily be done using

Doxygen (www.doxygen.org), a multi-platform doc-

umentation system for several languages like Cþþ
and java. By only adding some comments within the

code with a special mark, this software automatically

generates a great documentation.

O.S. and Compilers

Usually, the main programming language used for this

kind of applications is Cþþ. It is desirable that the

software be multi-platform, in other words that it can

either run in Windows or Linux. To achieve this

purpose, it is necessary to use for each platform its

own compiler: the cl compiler can be used on

Windows and gcc (http://gcc.gnu.org) on Linux. The

cl compiler can be obtained from them Microsoft web

Figure 1 The UML model of a motion planner project where the main classes (highlighted in

green) represent the workspace, the configuration space, the configurations and the geometric

elements (implemented in the derived classes representing obstacles and the robot, highlighted in

red). [Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com.]

ROBOT MOTION PLANNING SOFTWARE DEVELOPMENT 3



site when installing any license type of Visual Studio,

including the free license Express Edition (www.mi-

crosoft.com/express/download). Several other Cþþ
compilers can be found on Internet from many other

sources like HP, Borland or Intel and they can be used

in Windows and/or Linux, although the use of system

compliers is preferred.

The gcc and cl compilers are command line, and

the process to build the applications can be a bit

thorny. For this reason, it is useful to use another

program to manage the compilation and linkage

processes. This application in ‘‘nix’’ environments is

called Make; in Windows the analogous application is

called nmake. These two applications do not describe

the process in the same way. The solution to this

problem is CMake (www.cmake.org), an open-source

multi-platform make system. CMake has a GUI

wizard in Windows (Fig. 2) that helps to configure

the process. A complete reference for CMake is

available in Ref. [10]. The CMake utility allows the

user to prepare the project in bothWindows and Linux,

relieving him/her from the task of configuring the

project for each platform. This helps the applications

to be really multi-platform since the projects for

compiling and linking them are easily obtained for

each platform from the instructions coded using a

script language in a text file called CmakeList.txt.

Each programmer has its own preferences for the

Integrated Developer Environment to be used to write

and debug the code in a friendly way. IDEs like Visual

Studio on Windows or KDevelop on Linux offer many

facilities to speed up the programming process

(Fig. 3), but each one has its own particularities in

the project description and management. In Windows,

CMake can configure the project file for a particular

version of Visual Studio or create a descriptive file to

be processed with nmake. In Linux, CMake can create

a descriptive file called Makefile and in a future

version it will configure the project for KDevelop.

Graphic Tools

Graphics. The graphic interface to show three-

dimensional models can be build using Coin3D

(www.coin3d.org). This graphics library is based

on OpenInventor sources delivered from Silicon

Graphics and it is currently the implementation

adopted for all Debian Linux distributions. Coin3D

provides an interface similar to a CAD software. It can

manage either basic models like spheres, cones and

cubes, or general forms modeled with triangular

meshes (Fig. 4). Furthermore it is multi-platform and

therefore it can also compile and run on Windows. It

can be installed from a binary distributions repository

or compiled from the source code. Coin3D must

work together with a GUI library, that can be either

Qt, Motif/Xt, Windows or MacOs APIs. For this

interaction, SoQt or Quater, SoXt, SoWin, and Sc21

libraries are, respectively, required.

Any three-dimensional model can be described as

a text file through Inventor or VRML languages (http://

www.w3.org/MarkUp/VRML). They describe a scene

graph with high level objects like cubes, cylinders,

cones or spheres or any grouping of these, as well as

triangular meshes. Also, property nodes are intro-

duced to affect the way shapes are drawn. Coin3D can

load any scene described with either Inventor or

VRML files.

Figure 2 CMake GUI in Windows. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

4 PÉREZ AND ROSELL



Several other tools could be used to make the

graphical representation of three-dimensional worlds,

like VTK (www.vtk.org) or the sgi OpenInventor

release (oss.sgi.com/projects/inventor); but Coin3D

has been used in many commercial as well as open-

source projects and it has an active and efficient

support list.

GUIs. Usually, any software application has a GUI to

interchange information with the user. Several

libraries can be used to build GUIs, some of them

being platform specific like MFC in Windows.

Nevertheless, if a multi-platform application is

desired, it is necessary to use the same library in all

OS. In this direction, several graphical windows

systems initially born in Linux environments have

migrated to Windows or Mac OS’s, like GTKþ
(www.gtk.org), wxWidgets (www.wxwidgets.org),

FOX (http://www.fox-toolkit.com) or the Qt library

(http://trolltech.com/products/qt).

The Qt library is currently used in a great variety

of open-source projects and commercial applications

Figure 3 Integrated Developer Environment in Linux and Windows and their powerful helps.

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 4 Three-dimensional models described using Coin3D. This figure shows the difference

between primitive solids (cubes and cylinders) and triangular meshes. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]

ROBOT MOTION PLANNING SOFTWARE DEVELOPMENT 5



and it has more than 10 years of developing

experience and it can easily be integrated with

Coin3D. Moreover, Qt has a friendly GUI designer

tool (QtDesigner) based on drag and drop that helps in

this creative process (Fig. 5).

To build a GUI with a Coin3D scene a SoQt

library is required. This library must be properly

compiled for a specific Qt and Coin3D version.

The Qt library is not only a graphic objects set,

but a complete library that cover many topics of the

software developing process, for example, it provides

components for XML processing, string manipula-

tion, file reading and much more.

Qt has one particularity that makes it different

from others GUI frameworks: the signal and slots

technology used for the communication between

objects. It is a safer alternative to the use of the

callback functions technique. The objects do not need

knowledge about each other to communicate; the

signals and the slots allow for a loosely coupled

programming. In the build process, this characteristic

entails an extra process for any object that uses it. Qt

calls this role Meta-Object System and the library

provides the tool called moc for processing any object

that use it. See Blanchette and Summerfield [11] and

online documentation.

Practical Setup. To obtain a GUI with all the

common functionalities like toolbars, menus,

frames, tabs an so on, together with a three

dimensional space, a correct interaction between the

Coin3D and Qt libraries is needed using the small

‘‘glue’’ library SoQt. This library provides all the

necessary elements to show a Coin3D window inside

any Qt container like panels or frames.

These three libraries (Coin3D, Qt, and SoQt)

must be compiled in the same compiler, for example,

gcc or cl. In order to properly configure the

developing environment these steps must be followed:

(a) Create the system variables $(QTDIR) and

$(COIN3D).

(b) Download the Coin3D library and decompress

it in the $(COIN3D) folder.

(c) Go to the build folder in Windows or the src

folder in Linux and build all the libraries

included.

(d) Install the latest build libraries and header files

associated to the $(COIN3D) folder through

‘‘make install’’ in Linux or through bat files in

Windows.

(e) Download the Qt4 open source library and

decompress in $(QTDIR) folder. If the

operating system is Windows you need to

patch it to be used with the cl compiler (See

additional information in http://psi-im.org/

wiki/Compiling_Qt4_on_Windows).

(f) Configure Qt4 library using the qconfigure

utility in Linux or using qconfigure.bat in

Windows.

(g) Build the library using make in Linux or nmake

in Windows.

Figure 5 QtDesigner snapshot. This facility provides every common component used

in a GUI. [Color figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

6 PÉREZ AND ROSELL



(h) Download SoQt and decompress it in a folder.

(i) Go to the build folder in Windows or the src

folder in Linux and build all the libraries

included.

(j) Install the latest build libraries and header files

associated to the $(QTDIR) folder through

‘‘make install’’ in Linux or through bat files

in Windows.

Now the framework has the capabilities to

compile and show a three-dimensional window inside

any QWidget container like the QTabWidget shown in

Figure 6, through invoking the SoQtExaminerViewer

constructor. A data structure Viewer is shown in the

same figure and it groups several Coin3D data types.

Computational Geometry Tools

Collision Detection. An important part of a motion

planner is the collision check process that verifies if

configurations are free or not. Several open-source

libraries are available on the internet. They use

different techniques, like Oriented Bounding Box

[12], Axis-Aligned Bounding Box [13], or Swept

Spheres Volumes [14], each one with its own

advantages and disadvantages. A good alternative is

the Proximity Query Package (www.cs.unc.edu/geom/

SSV) in forward PQP. There are many applications

using it since it is based on quick and reliable

algorithms to find collisions between objects

described by triangular meshes, and also it can be

asked for the separation distances between models.

For rendering purposes PQP must be connected

to a graphics library like Coin3D, since PQP does not

have any graphics components. PQPmodels are based

on triangular meshes. These triangular meshes can be

obtained from VRML or Inventor models using a

conversion procedure provided by the Coin3D library

(Fig. 7).

Motion Planning Tools. Currently, sampling-based

methods are the most commonly used methods in

motion planning problems. These methods consist

in the generation of collision-free samples of

configuration space (Cspace) and in their inter-

connection with free paths, forming either roadmaps

(PRM [5]) or trees (RRT [6]). PRM planners are

conceived as multi-query planners, while RRT

planners are developed to rapidly solve a single-

query problem. Some of the needs to develop a

sampling-based motion planner are: (a) the generation

of samples, (b) the search of nearest neighbors, (c)

graph representations and search algorithms.

Samples can be generated using either a random

or a deterministic sequence. Random samples are

Figure 6 Adding a 3D viewer into a tab control in Qt4.

The most important instructions are showed in dark and they

are used to create the viewer, to push it into the tab container

and bring it to the front.

Figure 7 PQP model graphically represented as a Coin3D

triangular mesh. The PQP model has been obtained from

several Coin3D primitives (cubes and cylinders). [Color

figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]

ROBOT MOTION PLANNING SOFTWARE DEVELOPMENT 7



generated by randomly setting the values of the

configuration coordinates. These values are usually

obtained using a pseudo-random number generator

with long period and good statistical acceptance, like

the one provided by Rabin [15] that gives better

results than the rand function of the standard C

library. Deterministic sequences provide samples

giving a good incremental and uniform coverage

of Cspace. The Halton sequence is one of the best

low-discrepancy sequences (http://people.scs.fsu.edu/

burkardt, [16]). Some of these sequences can also

provide a lattice structure to easily allow the deter-

mination of the neighborhood relations, like the Sdk

sequence [17] that is based on a multi-grid cell

decomposition with an efficient cell coding, and on

the use of the digital construction method.

In order to connect samples to capture the

connectivity of the free configuration space, it is

necessary to find, for each sample, which are its

nearest neighbors. This can be efficiently solved using

the ANN library (www.cs.umd.edu/mount/ANN,

[18]). ANN is a library written in Cþþ, which

supports data structures and algorithms for both exact

and approximate nearest neighbor searching in

arbitrarily high dimensions. A set P of input samples

are preprocessed into a kd-tree data structure so that

given any query sample q, the nearest or generally k-

nearest samples of P to q can be reported efficiently.

The distance between two samples can be defined in

many ways. ANN assumes that distances are measured

using any class of distance functions called Minkow-

ski metrics. These include the well known Euclidean

distance, Manhattan distance, and max distance. An

adaptation of the ANN library to different topologies

of Cspaces, with its corresponding metrics is available

at msl.cs.uiuc.edu/yershova, [19].

To deal with graph data structures, the Boost

Graph Library (www.boost.org/libs/graph, [20]) is a

library implemented using the generic programming

paradigm that provides a standardized generic inter-

face with template search algorithms like Breadth

First, Depth First, or Uniform Cost, and other

algorithms that allows access to a graph’s structure.

These algorithms can easily be tailored to any

particular application. The Boost Graph Library is a

header-only library and does not need to be built to be

used.

Practical Setup

Loading Scenes. Scenes can be defined using

description files in text, XML, VRML, or Inventor

code. Coin3D uses either Inventor or VRML as input

files (these models of robots and obstacles can be

obtained from the Internet or converted from CAD

models). To help the user in defining a scene,

however, the XML language can be very useful. A

good alternative to easy handle XML files is to use the

Simple API for XML (SAX, http://sax.sourceforge.net).

The SAX technique defines a way to write and read

every tag and their parameters in an XML file to be

processed. The other main technique to handle these

files is the Document Type Definition (DTD, http://

www.w3schools.com/dtd), but this is a more complex

technique.

The XML files can contain information of the

robot and of the obstacles (VRML or Inventor files,

names, positions, and scales), and any other aspect

related to the definition of a planning problem, like

the initial and goal configurations. As an example,

Figure 8 shows an XML file that with the following

information: the problem’s type is R6 (meaning that

the Cspace is that of a kinematic chain with six links),

the workspace represented in the Inventor file

columns.iv with a scale factor of 1.8, the robot

described in the Inventor file rtx90.iv with a scale

factor of 0.7, and the start and goal joint values. Any

extra parameter needed can be easily added by

defining the corresponding tags.

Qt has an XML module based on the SAX

technique. It has an abstract class named QXmlDe-

faultHandler that can be quickly tailored to any file

structure. Only two main functions need to be

implemented, called startElement and endElement,

to process each defined element in the input XML file.

Connecting PQP With Coin3D. PQP performs

collision checking using its own models, based on

triangular meshes, that are usually build from the

corresponding Inventor ones. In order to efficiently

use these models, a higher level class can be first

defined to represent the model of any 3D object. This

class is composed by an Inventor model used for

visualization purpose, and a PQP model used for

computational geometry purposes (collision or

distance check). Also, the class must have

Figure 8 XML file describing a scene.

8 PÉREZ AND ROSELL



procedures to convert from one model to the other. As

an example, Figure 9 shows the conversion function

between models of a class of this type, called Element.

This function makes a PQP model from an Inventor

model.

The function shown in Figure 9 uses several tools

offered by Coin3D in order to extract points from any

basic primitive (e.g., cylinders, cubes,. . .) or from any

three-dimensional object, and group them in triangles.

This set of triangles conform the PQP model. Since

collision queries need to be answered as quick as

possible, the best alternative is to make this con-

version of models only once and then, for each query

required, explicitly pass the position and orientation

of the robot as a parameter of the query function. Care

must be taken with Coin3D�PQP spatial trans-

formations, because PQP and Coin3D use a different

mathematical representation for the transformation

matrix and this can give many troubles if not correctly

handled (see the online documentation in www.

coin3d.org).

KICK-OFF EXAMPLES

This section first presents some useful tips to prepare a

project using CMake and then proposes

three examples. The code can be downloaded from

http://iocnet.upc.edu//usuaris/JanRosell/Educational-

Tools.html; it includes a Readme file with instructions

to generate the executable files. These examples

illustrate how to load a scene and show it using

Coin3D, how to convert from Coin3D models to PQP

models and test for collisions, and finally how to

sample a configuration space. All these are basic

needs in the development of a planner. The complete

documentation of the classes used in these examples

can be obtained from the code using the Doxygen

documentation system.

Preparing a Project

The CMake utility allows the user to prepare the

project in both Windows and Linux, relieving him

from the task of configuring the project for each

platform. This helps the applications to be really

multi-platform since the projects for compiling

and linking them are easily obtained for each

platform from the instructions coded in a text file

(CMakeList.txt) using a simple script language. An

example of a CMakeList file that generates an

executable is the following:

The first two lines indicates where to find all

*.cpp and *.h files that have to be included in the

project. The third line makes the executable and the

last five lines link it with Coin3D, SoQt, and Qt

libraries. This linking process depends on the OS and

the CMake provides the convenient tools to choose the

correct modifiers in each situation.

CMake has many modules to search and con-

figure specific libraries like Qt4, to avoid possible

errors during the configuration process:

These modules assume some defaults setup

values in the configuration of these libraries that have

to be kept in mind to avoid passing the wrong values

to the compiler or linker (if different values from the

default ones are desired they have to be explicitly set).

For instance, if the use of the XML processing module

from Qt4 is required, you should add the following

two lines in the CMakeLists file because otherwise it

is turned off by default:

When these modules are not found, like with the

Coin3D library, all the required values must be

explicitly set for the compiler and the linker, although

with some experience it is possible to program a

module to search and configure any library.

One feature of Coin3D is the use of signals and

slots technique. This particularity causes an extra

Figure 9 A possible implementation of a method to obtain

the PQP model from the Inventor one. Shown in dark the

main Coin3D functions used to extract the triangular mesh

from the primitive solids.

ROBOT MOTION PLANNING SOFTWARE DEVELOPMENT 9



processing for any objects that use it, that CMake

handles with the following lines:

The first line preprocesses the Graphical User

Interface created with the QtDesigner, for example,

file myinterface.ui, and creates a header file called

ui_myinterface.h referenced with the variable

QTUI_H_SRC. The second line deals with the extra

step, called moc or Meta-Object Compilation, that

generates, using the file gui.h where the slots are

defined, the source file moc_gui.cxx referenced by the

variable QT_MOC_SRC. At the third line, both

QTUI_H_SRC and QT_MOC_SRC are added to the

source files used to create the executable.

Another useful tip for the Windows environment

is the following. When a GUI application based on Qt

is running on Windows, a command window always

appears. If this is not desired (no output to the

standard output is required), the Qt4 module called

QtMain should be used instead of the API winmain

function. In order to correctly generate a WIN32

executable, be careful to add the following lines to the

CMakeList file.

The CMakeLists.txt files of the following exam-

ples can serve as a first approach to the subject. More

information about how to configure, run and use the

CMake application can be read from the book Master-

ing CMake [10] or directly from the application help.

Loading a Scene

Loading a scene and defining the problem is the first

need to be faced. The robot, the obstacles and the

limits of the workspace are to be introduced to

properly show the problem scene. This information

can be given in an XML file. This example uses a class

named StrucParse to extract and process this infor-

mation. For the modeling, a class named Element is

defined as the abstraction of any tree-dimensional

object to be introduced in the scene. The geometry of

the objects is given in either Inventor or VRML files.

Figure 10 shows the snapshot of the scene loaded,

where an L-shaped free-flying object is located

among two obstacle columns.

Testing PQP

This example shows how to create the PQP models

from Coin3D models and how to make collision

queries. It also serves as example to the generation of

a GUI that includes sliders, buttons, tabs and 3D

scenes. To execute this example it is necessary to first

obtain and compile the PQP library properly.

Figure 11 shows a snapshot of the GUI; it contains

two tabs with Coin3D scenes, the first one with the

original Inventor scene, the other one showing the

PQP model where the triangular mesh is highlighted.

Sampling Cspace

This example illustrates how to sample a d-dimen-

sional hypercube using random and deterministic

Figure 10 GUI of loading scene example. [Color figure

can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Figure 11 GUI of Testing PQP example. [Color figure

can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

10 PÉREZ AND ROSELL



sampling strategies (Halton and sdk). An output text

file can be written with the sample coordinates, and

for d¼ 2 and d¼ 3 the samples are also graphically

shown. Figure 12 shows a snapshot of the example

GUI.

CONCLUSIONS

This paper has introduced a framework for the

implementation of a motion planner under an open-

source multi-platform philosophy. First, some general

development tools are suggested to aid the generation

of a software project. They include the programming

paradigm (OOP), the programming language (Cþþ),

a control version system (OpenSVN), software design

tools (StarUML), a multi-platform project generation

tool (CMake) and a documentation tool (Doxygen).

Then, graphics issues are discusses and Qt is proposed

as a graphical user interface library and Coin3D

as the library for the graphical representation of 3D

worlds. The framework finally includes proposals for

the computational geometry needs: collision detection

software (PQP) and motion planning tools like

sampling (random, Halton, Sdk), nearest neighbor

computation (ANN), and graph representation and

searching (Boost graph library).

As a didactic guide towards the final goal of

implementing a motion planner, the paper ends

providing some kick-off examples that illustrate:

how to load a scene (that represents the workspace

and the robot) described by an XML file and an

Inventor file; how to use the collision detection

package PQP together with the visualization in

Coin3D; and how to saple a configuration space using

both random and deterministic sampling sequences

(Halton and Sdk). These examples aim at facilitating

the students’ start-up.

The framework is currently being used by the

authors as a teaching aid in a post-graduate motion

planning course (some practical exercises to create a

basic motion planner based on a probabilistic road-

map can be downloaded together with the kick-off

examples). The framework has also been used as the

base of the Kautham Planner, a motion planner based

on deterministic sampling and harmonic functions

developed by the authors [21].

ACKNOWLEDGMENTS

This work was partially supported by the CICYT

projects DPI2008-02448 and DPI2007-63665.

REFERENCES

[1] J. C. Latombe, Robot motion planning, Kluwer

Academic Publisher, New York, 1991.

[2] S. M. LaValle, Planning algorithms, Cambridge

University Press, New York, 2006.

[3] L. E. Kavraki and S. M. LaValle, Handbook of

robotics, Springer-Verlag, Berlin Heidelberg, 2008,

pp 109�129.

[4] E. Plaku, K. E. Bekris, and L. E. Kavraki, OOPS

for planning: An online open-source programming

system, IEEE Int Conf Robotics Autom (2007),

3711�3716.

[5] L. Kavraki and J.-C. Latombe, Randomized prepro-

cessing of configuration for fast path planning, IEEE

Int Conf Robotics Autom (1994), 2138�2145.

[6] J. J. Kuffner Jr., and S. M. LaValle, RRT-Connect: An

efficient approach to single-query path planning, IEEE

Int Conf Robotics Autom (2000), 995�1001.

[7] G. Booch, Object-oriented analysis and design with

applications, Addison Wesley Longman Publishing

Co., Inc., Redwood City, CA, 2004.

[8] G. Booch, J. Rumbaugh, and I. Jacobson, The unified

modeling language. Addison Wesley, Massachusetts,

1999.

[9] B. Collins-Sussman, B. Fitzpatrick, and M. Pilato,

Version control with subversion. O’Reilly Media Inc.,

Sebastopol, CA, 2007.

[10] K. Martin and B. Hoffman, Mastering CMake: A

cross-platform build system. Kitware Inc., New York,

2005.

[11] J. Blanchette and M. Summerfield, Cþþ GUI

programming with Qt 4. Prentice Hall PTR, Upper

Saddle River, NJ, 2006.

[12] S. Gottschalk, M. C. Lin and D. Manocha, OBBTree:

A hierarchical structure for rapid interference detec-

tion, Computer Graphics 30 (1996), 171�180.

Figure 12 GUI of sampling space example. [Color figure

can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

ROBOT MOTION PLANNING SOFTWARE DEVELOPMENT 11



[13] G. van den Bergen, Efficient collision detection

of complex deformable models using AABB trees,

J Graph Tools 2 (1997), 1�13.

[14] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha,

Fast proximity queries with swept sphere volumes,

Department of Computer Science, University of North

Carolina, Chapel Hill, 1999.

[15] S. Rabin, AI game programmingn wisdom 2. Charles

River Media Inc., Hingham, Massachusetts, 2003.

[16] J. H. Halton, On the efficiency of certain quasi-random

sequences of points in evaluating multi-dimensional

integrals, Numer Math 2 (1960), 84�90.

[17] J. Rosell, M. Roa, A. Pérez, and F. Garcı́a, A general

deterministic sequence for sampling d-dimensional

configuration spaces, J Intell Robotic Syst 50 (2007),

361�373.

[18] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,

and A. Y. Wu, An optimal algorithm for approximate

nearest neighbor searching fixed dimensions, J ACM

45 (1998), 891�923.

[19] A. Yershova and S. LaValle, Improving motion-

planning algorithms by efficient nearest-neighbor

searching, IEEE Trans Robotics 23 (2007), 151�
157.

[20] L.-Q. Lee, J. G. Siek, and A. Lumsdaine, The

generic graph component library, 14th ACM

SIGPLAN conference on Object-oriented program-

ming, systems, languages, and applications (1999),

399�414.

[21] J. Rosell, C. Vázquez, A. Pérez, and P. Iñiguez, Motion

planning for haptic guidance, J Intell Robotic Syst 53

(2008), 223�245.

BIOGRAPHIES

Alexander Pérez was born in Bogota,

Colombia, in 1975. He is a Mechanical

Engineer from the National University of

Colombia (1999), and MSc in Electronic and

Computer Engineering from Los Andes

University (Bogotá, Colombia) in 2003. He

has worked as Project Engineer and he was

auxiliary professor at the National University

of Colombia and the University New Gran-

ada. Since 2004 he is Assistant professor in the Electronic

Engineering Faculty of the ‘‘Escuela Colombiana de Ingenierı́a

‘‘Julio Garavito’’ placed in Bogotá, Colombia. Presently, He is

researching in the robot motion planning area inside of Institute of

Industrial and Control Engineering.

Jan Rosell received the BS degree in Tele-

comunication Engineering and the PhD

degree in Advanced Automation and

Robotics from the Technical University of

Catalonia, Barcelona, Spain, in 1989 and

1998, respectively. He joined the Institute of

Industrial and Control Engineering in 1992

where he has developed research activities in

robotics. He has been involved in teaching

activities in Automatic Control and Robotics as Assistant Professor

since 1996 and as Associate Professor since 2001. His current

technical areas include robot motion planning, haptics, robotic

assembly and manufacturing automation.

12 PÉREZ AND ROSELL


