3,178 research outputs found

    Non-coherent successive relaying and cooperation: principles, designs, and applications

    No full text
    Cooperative communication is capable of forming a virtual antenna array for each node (user) in a network by allowing the nodes (users) to relay the messages of others to the destination. Such a relay aided network may be viewed as a distributed multiple-input multiple-output (MIMO) system relying on the spatially distributed single antennas of the cooperating mobiles, which avoids the correlation of the antenna elements routinely encountered in conventional MIMO systems and hence attains the maximum achievable diversity gain. Therefore, the family of cooperative communication techniques may be regarded as a potential solution for future wireless networks. However, constrained by the half-duplex transmit/receive mode of most practical transceivers, the cooperative networks may impose a severe 50% throughput loss. As a remedy, successive relaying can be employed, which is capable of mimicking a full-duplex relay and thereby recovering much of the 50% throughput loss. Furthermore, for the sake of bypassing power-hungry and potentially excessive-complexity channel estimation, noncoherent detection techniques may be employed for multiple-antenna aided systems, because estimating all the associated channels may become unrealistic. Explicitly, the mobile-stations acting as relays cannot be realistically expected to estimate the source-to-relay channels. In order to motivate further research on noncoherent successive relaying aided systems, a comprehensive review of its basic concepts, fundamental principles, practical transceiver designs and open challenges is provide

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Cooperative Authentication in Underwater Acoustic Sensor Networks

    Full text link
    With the growing use of underwater acoustic communications (UWAC) for both industrial and military operations, there is a need to ensure communication security. A particular challenge is represented by underwater acoustic networks (UWANs), which are often left unattended over long periods of time. Currently, due to physical and performance limitations, UWAC packets rarely include encryption, leaving the UWAN exposed to external attacks faking legitimate messages. In this paper, we propose a new algorithm for message authentication in a UWAN setting. We begin by observing that, due to the strong spatial dependency of the underwater acoustic channel, an attacker can attempt to mimic the channel associated with the legitimate transmitter only for a small set of receivers, typically just for a single one. Taking this into account, our scheme relies on trusted nodes that independently help a sink node in the authentication process. For each incoming packet, the sink fuses beliefs evaluated by the trusted nodes to reach an authentication decision. These beliefs are based on estimated statistical channel parameters, chosen to be the most sensitive to the transmitter-receiver displacement. Our simulation results show accurate identification of an attacker's packet. We also report results from a sea experiment demonstrating the effectiveness of our approach.Comment: Author version of paper accepted for publication in the IEEE Transactions on Wireless Communication

    Smallholder Participation in Agricultural Value Chains: Comparative Evidence from Three Continents

    Get PDF
    Supermarkets, specialized wholesalers, and processors and agro-exporters’ agricultural value chains have begun to transform the marketing channels into which smallholder farmers sell produce in low-income economies. We develop a conceptual framework through which to study contracting between smallholders and a commodity-processing firm. We then conduct an empirical meta-analysis of agricultural value chains in five countries across three continents (Ghana, India, Madagascar, Mozambique, and Nicaragua). We document patterns of participation, the welfare gains associated with participation, reasons for non-participation, the significant extent of contract non-compliance, and the considerable dynamism of these value chains, as farmers and firms enter and exit frequently.

    Decoding by Embedding: Correct Decoding Radius and DMT Optimality

    Get PDF
    The closest vector problem (CVP) and shortest (nonzero) vector problem (SVP) are the core algorithmic problems on Euclidean lattices. They are central to the applications of lattices in many problems of communications and cryptography. Kannan's \emph{embedding technique} is a powerful technique for solving the approximate CVP, yet its remarkable practical performance is not well understood. In this paper, the embedding technique is analyzed from a \emph{bounded distance decoding} (BDD) viewpoint. We present two complementary analyses of the embedding technique: We establish a reduction from BDD to Hermite SVP (via unique SVP), which can be used along with any Hermite SVP solver (including, among others, the Lenstra, Lenstra and Lov\'asz (LLL) algorithm), and show that, in the special case of LLL, it performs at least as well as Babai's nearest plane algorithm (LLL-aided SIC). The former analysis helps to explain the folklore practical observation that unique SVP is easier than standard approximate SVP. It is proven that when the LLL algorithm is employed, the embedding technique can solve the CVP provided that the noise norm is smaller than a decoding radius λ1/(2γ)\lambda_1/(2\gamma), where λ1\lambda_1 is the minimum distance of the lattice, and γO(2n/4)\gamma \approx O(2^{n/4}). This substantially improves the previously best known correct decoding bound γO(2n)\gamma \approx {O}(2^{n}). Focusing on the applications of BDD to decoding of multiple-input multiple-output (MIMO) systems, we also prove that BDD of the regularized lattice is optimal in terms of the diversity-multiplexing gain tradeoff (DMT), and propose practical variants of embedding decoding which require no knowledge of the minimum distance of the lattice and/or further improve the error performance.Comment: To appear in IEEE Transactions on Information Theor

    Smallholder Participation in Agricultural Value Chains: Comparative Evidence from Three Continents

    Get PDF
    Supermarkets, specialized wholesalers, and processors and agro-exporters’ agricultural value chains have begun to transform the marketing channels into which smallholder farmers sell produce in low-income economies. We develop a conceptual framework through which to study contracting between smallholders and a commodity-processing firm. We then conduct an empirical meta-analysis of agricultural value chains in five countries across three continents (Ghana, India, Madagascar, Mozambique, and Nicaragua). We document patterns of participation, the welfare gains associated with participation, reasons for non-participation, the significant extent of contract non-compliance, and the considerable dynamism of these value chains, as farmers and firms enter and exit frequently.Agricultural Value Chains, Contract Farming, Africa, Asia, Latin America
    corecore