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Abstract—The closest vector problem (CVP) and shortest
(nonzero) vector problem (SVP) are the core algorithmic prob-
lems on Euclidean lattices. They are central to the applications of
lattices in many problems of communications and cryptography.
Kannan’s embedding technique is a powerful technique for solving
the approximate CVP, yet its remarkable practical performance
is not well understood. In this paper, the embedding technique is
analyzed from abounded distance decoding (BDD) viewpoint. We
present two complementary analyses of the embedding technique:
We establish a reduction from BDD to Hermite SVP (via unique
SVP), which can be used along with any Hermite SVP solver
(including, among others, the Lenstra, Lenstra and Lov́asz (LLL)
algorithm), and show that, in the special case of LLL, it performs
at least as well as Babai’s nearest plane algorithm (LLL-aided
SIC). The former analysis helps to explain the folklore practical
observation that unique SVP is easier than standard approximate
SVP. It is proven that when the LLL algorithm is employed,
the embedding technique can solve the CVP provided that the
noise norm is smaller than a decoding radiusλ1/(2γ), where
λ1 is the minimum distance of the lattice, andγ ≈ O(2n/4).
This substantially improves the previously best known correct
decoding boundγ ≈ O(2n). Focusing on the applications of BDD
to decoding of multiple-input multiple-output (MIMO) syst ems,
we also prove that BDD of the regularized lattice is optimal
in terms of the diversity-multiplexing gain tradeoff (DMT) , and
propose practical variants of embedding decoding which require
no knowledge of the minimum distance of the lattice and/or
further improve the error performance.

Index Terms—closest vector problem, lattice decoding, lattice
reduction, MIMO systems, shortest vector problem

I. I NTRODUCTION

Lattice decoding for the linear multiple-input multiple-
output (MIMO) channel is a problem of high relevance in
multi-antenna, broadcast, multi-access, cooperative andother
multi-terminal communication systems [1, 2, 3]. Maximum-
likelihood (ML) decoding for finite constellations carved from
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lattices can be realized efficiently by sphere decoding [4],
whose complexity can however grow prohibitively with the
dimensionn [5]. The decoding complexity is especially high
in the case of coded or distributed systems, where the lat-
tice dimension is usually larger [6, 7]. Thus, the practical
implementation of decoders often has to resort to approximate
solutions, which mostly fall under two main strategies. The
first is to reduce the complexity of sphere decoding, notably
by pruning [8]. Another approach, which we investigate in
the present paper, is lattice reduction (LR)-aided decoding [9],
which was used earlier by Babai in [10] and in essence applies
zero-forcing (ZF), successive interference cancellation(SIC)
or other suboptimal receivers to a reduced basis of the lattice.
It was shown in [11] that regularized lattice-reduction aided
decoding can achieve the optimal diversity and multiplexing
tradeoff (DMT) in MIMO fading channels. The proximity
factors that measure the gap between lattice-reduction-aided
decoding and (infinite) lattice decoding were derived in [12].
Thanks to its average polynomial complexity [13, 14, 15], the
Lenstra, Lenstra and Lovász (LLL) reduction [16] is widely
used in lattice decoding.

However, the analysis in [12] revealed that lattice-reduction-
aided decoding exhibits a widening gap to (infinite) lattice
decoding, so there is a strong demand for computationally
efficient suboptimal decoding algorithms that offer improved
performance. Several such approaches are emerging, including
sampling [17] and embedding [18]. It was shown in [17] that
the sampling technique can provide a constant improvement
to the best known upper bound for the signal-to-noise ratio
(SNR) gain with polynomial complexity.

Embedding decoding is especially appealing due to
its excellent performance and polynomial complexity (if
polynomial-complexity lattice reduction algorithms suchas
LLL reduction are used). The core of the embedding technique
is to embed ann-dimensional lattice and the received vector
into an (n + 1)-dimensional lattice. By this means, ann-
dimensional instance of the closest vector problem (CVP) is
converted into an(n+1)-dimensional instance of the shortest
(nonzero) vector problem (SVP). The receiver extracts the
transmitted vector from a reduced basis of the extended lattice.

An “improved lattice reduction” technique that resembles
embedding was used for MIMO decoding in [19], but it is in
fact equivalent to LLL-aided SIC. It was recognized in [18]
that the performance of the embedding technique could be
significantly improved by carefully choosing the embedding
parameter, leading to “augmented lattice reduction” (ALR).
In particular, it was shown [18] that the LLL algorithm can
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recover the transmitted vector when the noise norm is small
compared to the minimum distanceλ1 of the lattice. This
condition corresponds to a variant of the CVP known as
Bounded Distance Decoding(BDD). More precisely,η-BDD
(with η ≤ 1/2) is a special instance of the CVP where the
noise norm (or, equivalently, the distance from the target vector
to the lattice) is less thanR = η · λ1. The radiusR is
referred to as the (correct)decoding radiusof the algorithm.
BDD instances appear both in coding and in cryptography.
In coding theory, BDD is a suboptimal decoding strategy
that enjoys lower complexity compared to ML decoding. For
specific algebraic codes and for specific lattice codes, there are
numerous BDD algorithms that achieve optimalη = 1/2 in
polynomial-time [20, 21, 22]. On the other hand, for general
lattices, polynomial complexity algorithms only solveη-BDD
for much smaller values ofη. The main general-purpose
approaches include: Babai’s ZF [10]; Babai’s SIC [10]; and
the randomized extensions by Klein [23], Lindner and Peik-
ert [24], and Liuet al. [25].

In cryptography, the observed hardness of BDD has been
used as a constructive tool. The so-calledLearning With
Errors (LWE) problem [26] (see also the survey [27]) can
be interpreted as a variant of BDD where the lattice is chosen
uniformly in a specific family of lattices and the noise vector
follows a Gaussian distribution with small standard deviation.
The apparent hardness of LWE in high dimensions has been
exploited to devise a number of cryptographic protocols,
including encryption [26], identification [28] and signature
schemes [29].

The embedding technique is a powerful approach to BDD
for general lattices. Kannan seems to have been the first to
propose this technique [30]. Since then, Micciancio has used
it to reduce the CVP to the SVP to prove certain hardness
results [31], while Nguyen has employed it to break the GGH
cryptosystem for parameters of practical interest [32]. More
recently, in the context of cryptography, Lyubashevsky and
Micciancio revealed a relationship between BDD and variants
of SVP [33]. Of particular relevance to this paper is the
relationship between BDD and unique SVP (uSVP), a special
instance of SVP for lattices whose second minimum is at
least γ times longer than the first minimum. It was shown
in [33] that 1/(2γ)-BDD can be reduced toγ-uSVP. This
relation suggests the following strategy, already used in [18]:
the embedding parameter should be chosen in such a way that
the extended lattice exhibits an exponential gap between the
first and second minimum, ensuring that LLL-reducing the
extended lattice basis successfully solves the uSVP instance.

Contributions:Our contributions are twofold: We improve
the theoretical analysis of the embedding technique, and we
consider questions raised by the specific application of BDD
and embedding to communications.

On the analysis front, we prove that embedding decoding
using the LLL algorithm can solve1/ (2γ)-BDD for γ ≈
O(

√
n2

n
4 ). This is significantly better than the boundγ =

O(2n) proven in [18]. We propose two complementary proofs
for this result. In the first approach, we establish a reduction
from the unique SVP to the Hermite SVP, which consists

in finding a non-zero vector of a given lattice, of small
norm relative to the root determinant. This analysis can be
specialized to LLL by showing that the LLL algorithm can
solve γ-uSVP for γ ≈ O(2

n
4 ). This is stronger than the

commonly used boundγ = O(2
n
2 ) in literature, which in fact

pertains to approximate SVP. The second approach consists in
showing Babai’s SIC achieves this correct decoding radius (by
improving the bound in [12]) and then proving that Kannan’s
embedding with LLL performs at least as well as Babai’s SIC.
For the latter component of this proof, we proceed by explic-
itly following the steps performed by Kannan’s embedding.
The two proofs are of independent interest. The first is not
restricted to LLL but is suited to any algorithm solving the
Hermite SVP, while the second provides a precise description
of how the embedding technique works.

The reduction from the unique SVP to the Hermite SVP
helps to explain the long-standing problem why unique SVP is
easier than standard approximate SVP. It has been known that
uSVP is potentially easier, and there has been experimental
evidence that this is indeed the case in practice [34]. However,
no theoretic justification has been given before.

On the MIMO communications front, we prove that BDD
of the regularized lattice is DMT-optimal over Rayleigh fading
channels. This represents a nontrivial extension of the analysis
in [11] for γ-approximation algorithms of CVP. Indeed, it will
be shown thatγ-approximate algorithms are a special case of
BDD, because any decoding technique which provides aγ-
approximate CVP solution is also able to solve1/(2γ)-BDD.
However, the converse is not necessarily true. In addition to
embedding decoding, this result allows us to establish the
DMT optimality of other BDD algorithms, such as lattice
reduction-aided decoding and sampling decoding.

For practical purposes, we consider the problem of choosing
the main parameter involved in Kannan’s embedding method,
which we refer to as theembedding parameter. We give
an alternative embedding parameter that only assumes the
knowledge ofλ1 while achieving the same decoding radius
as [33]. We also consider the case whenλ1 is not known,
and show that using multiple calls to this embedding decoder
with an estimate ofλ1 achieves essentially the same decoding
radius as ifλ1 were known. On the experimental side, we pro-
pose variants of the embedding technique without knowledge
of λ1 and/or with improved performance and compare them
with state-of-the-art MIMO decoding techniques by numerical
simulations in terms of error performance and complexity,
showing that embedding is nearly optimal in many practical
scenarios.

The paper is organized as follows: Section II presents the
transmission model and a short survey of lattice problems. The
DMT analysis on BDD is given in Section III. In Section IV,
we give the two analyses of the decoding radius of the
embedding technique for solving BDD. In Section V, variants
of the embedding decoder are presented. Section VI evaluates
the performance by computer simulation. Some concluding
remarks are offered in Section VII.

Notation: Matrices and column vectors are denoted by
upper and lowercase boldface letters, and the transpose, in-
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verse, pseudoinverse of a matrixB by BT , B−1, and B†,
respectively.In is the identity matrix of sizen. We let bi,
bi,j and bi respectively denote thei-th column of matrixB,
the entry in thei-th row and j-th column of B, and the
i-th entry in vectorb. Vec(B) stands for the column-by-
column vectorization of the matrixB. The inner product in
the Euclidean space between vectorsu and v is defined as
〈u,v〉 = uTv, and the Euclidean norm‖u‖ =

√
〈u,u〉.

Kronecker product of matrixA andB is written asA ⊗ B.
If x is a real number, we let⌈x⌋ denote its rounding to a
closest integer. Theℜ and ℑ prefixes denote the real and
imaginary parts. We use the standard asymptotic notation
f (x) = O (g (x)) when lim supx→∞ |f(x)/g(x)| < ∞.

II. L ATTICE PROBLEMS IN MIMO D ECODING

A. System Model

Consider annT × nR flat-fading MIMO system model
consisting ofnT transmitters andnR receivers

Y = HX+N, (1)

whereX ∈ CnT×T , Y, N ∈ CnR×T of block lengthT denote
the channel input, output and noise, respectively, andH ∈
C

nR×nT is thenR × nT full-rank channel gain matrix with
nR ≥ nT , whose entries are normalized to unit variance. The
entries ofN are i.i.d. complex Gaussian with varianceσ2

each. The codewordsX satisfy the average power constraint
E[‖X‖2F/T ] = 1. Hence, the signal-to-noise ratio (SNR) at
each receive antenna is1/σ2.

When a lattice space-time block code is employed, the
QAM information vectorx is multiplied by the generator
matrix G of the encoding lattice. ThenT × T codeword
matrix X is defined by column-wise stacking of consecutive
nT -tuples of the vectors = Gx ∈ CnTT . By column-by-
column vectorization of the matricesY and N in (1), i.e.,
y = Vec(Y) and n = Vec(N), the received signal at the
destination can be expressed as

y =(IT ⊗H)Gx+ n. (2)

When T = 1 and G = InT , equation (2) reduces to the
model for uncoded MIMO communicationy = Hx + n.
Furthermore, by separating real and imaginary parts, we obtain
the equivalent2nT × 2nR real-valued model

[
ℜy
ℑy

]
=

[
ℜH −ℑH
ℑH ℜH

] [
ℜx
ℑx

]
+

[
ℜn
ℑn

]
. (3)

An equivalent2nTT×2nRT real model for coded MIMO can
also be obtained in a similar way.

The QAM constellationsC can be interpreted as the shifted
and scaled version of a finite subsetAnT of the integer
latticeZnT , i.e.,C = a(AnT +[1/2, ..., 1/2]T ), where the fac-
tor a arises from energy normalization. For example, we have
AnT = {−

√
M/2, ...,

√
M/2− 1} for M-QAM signalling.

Therefore, with scaling and shifting, we consider the
genericn×m (with m ≥ n) real-valued MIMO system model

y = Bx+ n, (4)

where B ∈ R
m×n, given by the real-valued equivalent of

(IT ⊗H)G, can be interpreted as the basis matrix of the

decoding lattice. We haven = 2nTT andm = 2nRT . The
data vectorx thus belongs to a finite subsetAn ⊂ Zn which
satisfies the average power constraint.

The maximum-likelihood (ML) decodercomputes

x̂ = arg min
x∈An

‖y −Bx‖2. (5)

The ML solution (5) can be found using the sphere decoding
algorithm, whose complexity, however, grows exponentially
with n [5].
A suboptimal alternative technique callednaive lattice de-
coding (or simply lattice decoding) consists in relaxing the
constraint due to the signal constellation as follows:

x̂ = arg min
x∈Zn

‖y −Bx‖2.

A low-complexity approximation of lattice decoding issuc-
cessive interference cancellation (SIC), also known as Babai’s
nearest plane algorithm [10]. It consists in performing theQR
decompositionB = QR, whereQ has orthonormal columns
andR is an upper triangular matrix with nonnegative diagonal
elements [35]. Multiplying (4) on the left byQ†, we have

y′ = Q†y = Rx+ n′. (6)

An estimate ofx is then found by component-wise back-
substitution and rounding:

x̂n =

⌊
y′n
rn,n

⌉
,

x̂i =

⌊
y′i −

∑n
j=i+1 ri,j x̂j

ri,i

⌉
, i = n− 1, . . . , 1.

B. Lattice Basics

We refer the reader to [36, 37] for thorough introductions
to Euclidean lattices. Ann-dimensional lattice in them-
dimensional Euclidean spaceRm (n ≤ m) is the set of
integer linear combinations ofn linearly independent vectors
b1, . . . ,bn ∈ Rm:

L=
{

n∑

i=1

xibi |xi ∈ Z, i = 1, . . . n

}
.

The matrixB = [b1 · · ·bn] is referred to as a basis of the lat-
tice L = L(B). In matrix form, we haveL = {Bx|x ∈ Zn}.
The dual latticeL∗ is defined as the set of those vectors
u, such that the inner product〈u,v〉 belongs toZ, for
all v ∈ L. The dual basis ofB, which is a basis of the
dual latticeL∗, is given byB∗ , (B†)TJ, whereJ is the
column-reversing matrix. IfR andR∗ respectively denote the
R-factors of the QR-decomposition ofB and B∗, then we
haveri,i = 1/r∗n−i+1,n−i+1 for all i [38].

The determinantdetL ,
√
det(BTB) is independent of

the choice of the basis. Ashortest vectorof a latticeL is a
non-zero vector inL with the smallest Euclidean norm. The
norm of any shortest vector ofL, often referred to as the
minimum distance, is denoted byλ1(L) or λ1(B) when a
basisB is given. We also let it be denoted byλ1 if there is
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no ambiguity concerning the lattice. The Hermite constant is
defined as

γn , sup
L

λ2
1(L)

det2/n L
, (7)

where the supremum is taken over all lattices of dimensionn.
There is currently no proof thatγn is an increasing function
of n, although this is very likely to be the case and all known
bounds onγn are increasing. For the sake of convenience, we
define γn , maxni=1 γi. By Minkowski’s theorem [39], we
have the boundγn ≤ n and accordinglyγn ≤ n.

Let B (0,r) denote the closed ball of radiusr centered
at 0. The notion of minimum distance can be generalized, by
defining thei-th successive minimumλi(L) (or λi if there is
no ambiguity on the lattice) as the smallest radiusr such that
B (0,r) contains at leasti linearly independent lattice points.
If λ2 > γλ1 (with γ > 1), we say that the shortest vector in
the lattice isγ-unique.

For any pointy ∈Rm, the distance ofy to the latticeL is
denoted by dist(y,B) = minx∈Zn ‖y −Bx‖.

C. Lattice Problems

We now give precise definitions of the lattice problems that
are central to this work. In all these problems, the input lattice
L is described by an arbitrary basisB.

• Closest Vector Problem (CVP):
Given a latticeL and a vectory ∈ Rm, find a vectorBx̂ ∈
L such that‖y−Bx̂‖ is minimal.

• γ-Approximate CVP (γ-CVP), withγ ≥ 1:
Given a latticeL and a vectory ∈ Rm, find a vectorBx̂ ∈
L such that‖y−Bx̂‖ ≤ γdist(y,B).

• η-Bounded Distance Decoding (η-BDD) with η ≤ 1/2:
Given a latticeL and a vectory such that dist(y,B) < ηλ1,
find the lattice vectorBx̂ ∈ L (B) closest toy.

• Shortest Vector Problem (SVP):
Given a latticeL, find a vectorv ∈ L of normλ1.

• γ-Approximate SVP (γ-SVP), withγ ≥ 1:
Given a latticeL, find a vectorv ∈ L such that0 < ‖v‖ ≤
γλ1.

• Hermite SVP (C-HSVP), withC ≥ 1:
Given a latticeL, find a vectorv ∈ L such that0 < ‖v‖ ≤
C det1/n(L).

• γ-unique SVP (γ-uSVP), withγ ≥ 1:
Given a latticeL such thatλ2(L) > γλ1(L), find a vector
v ∈ L of normλ1.

D. LLL Reduction

A lattice of dimensionn ≥ 2 has infinitely many bases.
In general, if B is a full column rank matrix, then every
matrix B = BU is also a basis ofL (B), when U is a
unimodularmatrix, i.e.,det(U) = ±1 and all elements ofU
are integers. The aim oflattice reductionis to find a “good”

basis for a given lattice. The celebrated LLL algorithm [16]
was the first polynomial-time algorithm that computes a vector
not much longer than the shortest nonzero vector.

For the sake of simplicity of notation, in this paper we
consider the version of the LLL algorithm based on the QR
decomposition [40]B = QR. Let qi be the columns ofQ,
andri,j be the elements ofR. Note thatr1,1 = ‖b1‖.

The basisB is calledLLL-reducedif

|rj,i| ≤
1

2
|rj,j | (8)

for 1 ≤ j < i ≤ n, and

δr2i−1,i−1 ≤ r2i,i + r2i−1,i (9)

for 1 < i ≤ n, where1/4 < δ ≤ 1 is a factor selected to
achieve a good quality-complexity tradeoff.

Let α = 1/ (δ − 1/4). From Equations (8) and (9), an LLL-
reduced basis satisfies the following property:

r2i,i ≥ α−1r2i−1,i−1, i = 2, . . . , n. (10)

The latter implies the following bounds (see [16]):

‖b1‖ ≤ α(n−1)/4det1/nL, (11)

‖b1‖ ≤ α(n−1)/2λ1. (12)

Equation (11) means that LLL solvesC-HSVP with C =
α(n−1)/4, whereas Equation (12) implies that LLL solves
both γ-SVP andγ-uSVP forγ = α(n−1)/2.

Remark 1:As this is the historical choice of [16] and as
it simplifies (10), (11) and (12), one often setsδ = 3/4 and
consequentlyα = 2.

Remark 2:The complex LLL algorithm from [41] handles
a complex-valued lattice directly (without expanding it into
a real-valued lattice). It delivers a similar quality guarantee
with α = 1/ (δ − 1/2). The results of the present work can
be readily extended to complex LLL.

E. Lattice Reduction-Aided Decoding

In order to improve the performance of conventional de-
coders (ZF or SIC), lattice reduction can be used to preprocess
the channel matrixB. Since the reduced channel matrix is
much more likely to be well-conditioned, the effect of noise
amplification upon inverting the system will be moderated.
The channel model (4) can be rewritten as

y = BU−1x+ n = Bx′ + n, x′ = U−1x, (13)

whereB = BU and U is an unimodular matrix. The ZF
or SIC estimatêx′ for the equivalent channel (13) is then
transformed back intôx = Ux̂′. As the resulting estimatêx is
not necessarily inAn, remapping of̂x onto the finite latticeAn

is required.
The correct decoding radius of SIC is given by [12]

RSIC =
1

2
min

1≤i≤n
|ri,i| , (14)

which means that correct decoding is guaranteed if‖n‖ ≤
RSIC. Note that this bound is tight. If the basis is LLL-reduced,
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the gap betweenmin |ri,i| and λ1 is bounded. Therefore,
Babai’s nearest plane algorithm [10], or LLL-SIC, can be
viewed as a basic BDD solver. By using (10) and the fact
that‖b1‖ ≥ λ1, it can be proved that LLL-SIC solvesη-BDD
for η = 1

2α
−(n−1)/2 (see [12]). Consequently, the decoding

radius of LLL-SIC is bounded as follows:

RLLL-SIC ≥ 1

2α(n−1)/2
λ1. (15)

F. Improved bound on the decoding radius of LLL-SIC

Here, we derive an improved bound on the decoding radius,
which is better than (15). To the best of our knowledge, this
is a new result of independent interest.

Lemma 1:The decoding radius of LLL-SIC satisfies

RLLL-SIC ≥ 1

2
√
γnα

(n−1)/4
λ1 ≥ 1

2
√
nα(n−1)/4

λ1. (16)

Proof: Suppose the basisB is LLL-reduced. LetB =
QR denote its QR-decomposition. By using (7) and (10), we
obtain

λ1 ≤ √
γk (detL[b1, · · · ,bk])

1/k

=
√
γk

(
k∏

i=1

ri,i

)1/k

≤ √
γkrk,k

(
k−1∏

i=1

α(k−i)/2

)1/k

=
√
γkα

(k−1)/4rk,k. (17)

Now, by using (14) and the above, we have

RLLL-SIC =
1

2
min

1≤k≤n
{rk,k}

≥ min
1≤k≤n

1

2
√
γkα(k−1)/4

λ1

≥ 1

2
√
γnα

(n−1)/4
λ1. (18)

This completes the proof.

III. DMT ANALYSIS OF BDD

In this section we will prove that any decoding technique for
MIMO systems which provides a solution toη-BDD for some
constantη is optimal from the point of view of the diversity-
multiplexing gain tradeoff or DMT [42], when a suitable left
preprocessing is employed.

In the present discussion, we suppose for the sake of
simplicity that m = n. Following the notation in [11], we
consider the equivalent normalized channel model where the
noise variance is equal to1:

y′ = B′x+ n′,

whereB′ =
√
ρB, n′

i =
√
ρni ∼ N (0, 1), ∀i = 1, . . . , n.

Here ρ = 1
σ2 denotes the SNR. Moreover, we consider the

equivalent regularized system

y1 = Rx+ n1, (19)

where (
B′

In

)
= QR, y1 = Q†

(
y

′

0n×1

)
.

From the point of view of receiver architecture, this amounts
to performing left preprocessing before decoding, by using
a maximum mean square error generalized decision-feedback
equalizer (MMSE-GDFE) [43]. Note thatIn may be replaced
with any positive definite matrixT without hurting DMT
optimality.

In [11], it was shown that when finite constellations are
used, naive lattice decoding of the regularized system (19)
without taking the constellation bounds into account is DMT-
optimal. Moreover, it was proven that any decoding technique
that always provides a solution toγ-CVP in the regularized
lattice for someγ is also DMT-optimal. Since LLL-SIC and
LLL-ZF decoding applied to the regularized system turn out
to solveγ-CVP, this means that MMSE-GDFE preprocessing
followed by lattice-reduction aided decoding is also DMT-
optimal.

It is easy to see that any decoding technique which provides
a γ-CVP solutionx̂ to (19) is also able to solve12γ -BDD. In
fact, suppose thaty1 is such thatdist(y1,R) < 1

2γλ1(R).
Then theγ-CVP solutionx̂ satisfies

‖y1 −Rx̂‖<γ min
x∈Zn

‖y1 −Rx‖ = γdist(y1,R) <
λ1(R)

2
,

so thatx̂ is the optimal solution of (19).
However, the converse is apparently not true, that is, BDD

does not necessarily provideγ-CVP solutions for ally1.
Therefore, the analysis in [11] does not extend in a straightfor-
ward manner to BDD of the regularized lattice. Nevertheless,
we can show that DMT-optimality holds for all instances
of BDD, and not only forγ-CVP, by following the same
reasoning of the original proof in [11].

Theorem 1:For any constantη > 0, any decoding tech-
nique which always provides a solution for the regularized
η-BDD is DMT-optimal.

Proof: Let dML(r) be the optimal diversity gain corre-
sponding to a multiplexing gainr ∈ {0, . . . ,min(nT , nR)}.
Using the same notation as [11], we consider the constellation
Λr ∩ R, where the latticeΛr = ρ−

rT
n Zn is scaled according

to the SNR, andR is a fixed shaping region. LetB ⊂ R be a
ball of fixed radiusR, whereR is chosen in such a way that
d1 + d2 ∈ R, ∀d1,d2 ∈ B. Let

νr = min
d∈B∩Λr

d 6=0

1

4
‖B′d‖2 .

Then Lemma 1 of [11] holds, that is

lim sup
ρ→∞

logP{νr ≤ 1}
log ρ

≤ −dML(r).

Let ζ > 0 and chooseθ such that2ζTn > θ > 0. We have
Λr = ρ

ζT
n Λr+ζ. As in the original proof, there existsρ1 such

that for anyρ ≥ ρ1, we haveR ⊆ 1
2ρ

ζT
n B. As in Theorem 1

from [11], we want to show that the conditions

νr+ζ ≥ 1, ‖n′‖2 ≤ ρθ (20)
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are sufficient for the regularizedη-BDD solver to decode
correctly for sufficiently large SNR. First of all, we establish
a lower bound for the minimum squared norm

d2R = min
x̂∈Λr\{0}

1

4
‖Rx̂‖2 = min

x̂∈Λr\{0}

1

4

(
‖B′x̂‖2 + ‖x̂‖2

)
.

as follows. Letϕ(x̂) = ‖B′x̂‖2 + ‖x̂‖2. Let x̂ ∈ Λr \ {0} be
any lattice point.

• If x̂ /∈ 1
2ρ

ζT
n B, thenϕ(x̂) ≥ ‖x̂‖2 > 1

4R
2ρ

2ζT
n .

• If x̂ ∈ 1
2ρ

ζT
n B ∩ Λr = 1

2ρ
ζT
n B ∩ ρ

ζT
n Λr+ζ , then

x̂ρ−
ζT
n ∈ 1

2B ∩ Λr+ζ and so 1
4

∥∥∥B′x̂ρ−
ζT
n

∥∥∥
2

≥ 1 since
by the hypothesis (20), we haveνr+ζ ≥ 1. Therefore we
obtainϕ(x̂) ≥ ‖B′x̂‖2 ≥ 4ρ

2ζT
n .

In conclusion, there existsk > 0 such thatd2
R
≥ kρ

2ζT
n .

Now consider the transmitted codewordx ∈ Λr ∩ R.
The regularizedη-BDD decoder is able to decode correctly
provided that‖y1 −Rx‖ < ηdR. We have

‖y1 −Rx‖2 = ‖y′ −B′x‖2+‖x‖2 = ‖n′‖2+‖x‖2 ≤ ρθ+c,

where c = maxr∈R ‖r‖2 is a constant. Therefore under
the conditions (20), the regularizedη-BDD decoder is able
to decode correctly provided thatρθ + c < ηkρ

2ζT
n . But

θ < 2ζT
n , so there existsρ such that for anyρ ≥ ρ, we have

ρθ + c < ηkρ
2ζT
n . Then as in Theorem 1 from [11] we can

conclude that

P{x̂η−BDD 6= x} ≤ P{νr+ζ < 1}+ P{‖n′‖2 > ρθ}.

The second term is negligible forρ → ∞. So we can say,
similarly to the original proof, that

lim sup
ρ→∞

logP{x̂η−BDD 6= x}
log ρ

≤ −dML(r + ζ)

and then use the right continuity ofdML(r).

IV. D ECODING RADIUS OF EMBEDDING

In this section we will review Kannan’s embedding tech-
nique [30], show that it provides a BDD-solver, and analyze
its decoding radius.

The principle of this technique is to embed the basis
matrix B and the received vectory into a higher dimensional
lattice. More precisely, we consider the following(m+ 1)×
(n+ 1) basis matrix:

B̃ =

[
B −y

01×n t

]
(21)

wheret > 0 is a parameter to be determined, which we refer
to as the embedding parameter. The strategy is to reduce CVP
to SVP in the following way. For a suitable choice oft and
for sufficiently small noise norm, the vectors±v with v =
[(Bx− y)T t]T are the shortest vectors in the latticeL(B̃).
Thus an SVP algorithm will findv, and the messagex can be
recovered from the coordinates of this vector in the basisB̃:

if v = B̃

(
x′

1

)
=

(
Bx′ − y

t

)
, then x̂ = x′. (22)

The LLL algorithm was used in [18] to find the shortest
vector in the latticeL(B̃), and the correct decoding radius
was shown to be lower bounded by

1

2
√
2αn− 1

2

λ1 (B) . (23)

when the parametert is set to 1
2
√
2αn/2

min1≤i≤n |ri,i|.
In the following sections, we will derive improved bounds

on the decoding radius.

A. Reducing BDD to uSVP

In [33], it is proven that by choosingt = dist(y,B),
the embedding technique allows one to reduce1/ (2γ)-BDD
to γ-uSVP. We show that one can achieve the same correct
decoding radius by settingt = 1

2γλ1(B), thus bypassing the
assumption from [33] thatdist(y,B) is known. In Section V
we will show how to use an estimate ofλ1(B) to achieve
almost the same decoding radius.

Theorem 2 (Decoding Radius of Embedding):Applying γ-
uSVP (γ ≥ 1) to the extended lattice (21) with parametert
(0 < t < λ1(B)/γ) guarantees a correct decoding radius

RuSVP-Emb≥
√

t

γ
λ1(B)− t2. (24)

Settingt = 1
2γλ1(B) maximizes this lower bound. This gives:

RuSVP-Emb≥
1

2γ
λ1(B). (25)

Remark 3: If the SVP itself is solved, then the correct
decoding radius satisfiesRuSVP-Emb≥ 1

2λ1(B). This result im-
plies that embedding is more powerful than lattice reduction-
aided SIC-decoding, since the latter still exhibits a widening
gap to 1

2λ1(B), which is at least polynomial inn for Korkin-
Zolotarev reduction and for dual Korkin-Zolotarev reduction
(which require to solve SVP instances) [12].

Theorem 2 is a direct consequence of the following lemma.
Lemma 2:Let B̃ be the matrix defined in (21), and let0 <

t < λ1(B)/γ, with γ ≥ 1. Suppose that

‖y −Bx‖ <

√
t

γ
λ1(B)− t2.

Thenv =

(
Bx− y

t

)
is a γ-unique shortest vector ofL(B̃).

Proof: Let w be an arbitrary nonzero vector inL (B).
Any vector inL(B̃) that is not a multiple ofv is of the form

w′ =

(
w

0

)
+ qv,

with q ∈ Z andw ∈ L(B) \ 0. We will show that‖w′‖ >
γ‖v‖. The norm ofw′ can be written as

‖w′‖ =

√
‖w − qn‖2 + (qt)

2
,

wheren = y − Bx. If ‖qn‖ ≤ λ1(B), using the triangular
inequality, we have‖w−qn‖ ≥ ‖w‖−q‖n‖ ≥ λ1(B)−q‖n‖.
Thus we have the lower bound

‖w′‖ ≥
√
(λ1(B)− q ‖n‖)2 + (qt)

2
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=

√
λ1(B)2 − 2qλ1(B) ‖n‖+ q2 ‖n‖2 + q2t2

=

√√√√(‖n‖2 + t2
)(

q − λ1(B) ‖n‖
‖n‖2 + t2

)2

+
λ1(B)2t2

‖n‖2 + t2

≥ λ1(B)t√
‖n‖2 + t2

. (26)

If ‖qn‖ > λ1(B), we can also obtain the same bound because

‖w′‖ ≥ qt >
λ1(B)t

‖n‖ ≥ λ1(B)t√
‖n‖2 + t2

.

To prove that‖w′‖ > γ ‖v‖, it suffices to ensure that

λ1(B)t√
‖n‖2 + t2

> γ

√
‖n‖2 + t2.

This is implied by the assumption that

‖n‖2 = ‖Bx− y‖2 <
t

γ
λ1(B)− t2.

As the LLL algorithm can solveγ-uSVP withγ = α
n
2 for

the basis (21) of dimensionn+1 (see Equation (12)), one can
obtain that if using LLL, the correct decoding radius satisfies

RuSVP-Emb≥
1

2α
n
2
λ1(B) (27)

by choosingt = 1

2α
n
2
λ1(B). This decoding radius improves

the bound (23) from [18]. However, it can still be improved.
The reason is that the estimateγ = α

n
2 is pessimistic forγ-

uSVP. In fact, the quantityα
n
2 is just the approximation factor

for the Approximate SVP achieved by LLL. Any algorithm
solvingγ-SVP necessarily solvesγ-uSVP, while the converse
is not true.

We now give two complementary approaches for improving
the lower bound onRuSVP-Emb obtained by Kannan’s em-
bedding based on LLL. In the first approach, described in
Subsection IV-B, we provide a new reduction from HSVP
to uSVP. This implies improved lower bounds on the correct
decoding radius for Kannan’s embedding based on any HSVP
solver.

For the second approach, we start by giving a new bound
on the performance of LLL-SIC in Subsection II-F, which
is of independent interest. We then follow the execution of
LLL within Kannan’s embedding to show that it performs at
least as well as LLL-SIC (Subsection IV-C), which leads to an
improved lower bound on the correct decoding radius achieved
by Kannan’s embedding with LLL. This bound is slightly
better (by a small constant factor) than the bound obtained by
instantiating the first approach with LLL. The first approach
is more general, whereas the second approach gives further
insight on the relationship between Kannan’s embedding and
LLL-SIC.

B. Reducing uSVP to HSVP

We describe a reduction from solvingγ-uSVP to solvingC-
HSVP for γ ≈ √

nC. We will illustrate the usefulness of

this approach by considering several reduction algorithms
solvingC-HSVP with diverse time/quality trade-offs.

Theorem 3 (Reduction from uSVP to HSVP):Suppose that
the sequence{Ck} is such that(Ck)

k/(k−1) increases withk.
Then for any γ ≥ √

γn−1(Cn)
n/(n−1), γ-uSVP reduces

to Cn-HSVP.
Proof: Assume we have access to aCn-HSVP ora-

cle. Let L be ann-dimensional lattice such thatλ2(L) >√
γn−1(Cn)

n/(n−1)λ1(L). Assume we are given a basisB
of L. We use the HSVP oracle in the following way:

• Use the oracle on the dual latticeL∗ = L(B∗), to find
a short vectorc∗1 ∈ L∗ in the dual lattice; Compute
the largest integerk such thatc∗1 belongs tokL∗ and
dividec∗1 by k; Extendc∗1 into a complete basisC∗ of L∗.
This can be done in polynomial time by considering the
unimodularn×n matrixV such that(c∗1)

tV is in Hermite
Normal Form; the firstn− 1 rows ofV −1 complete the
basis (see for example [44], Section 4).

• For i = 2, · · · , n: Project the vectorsc∗i , · · · , c∗n
to the orthogonal complement of the space generated
by c∗1, . . . , c

∗
i−1. Let c̄∗i , . . . , c̄

∗
n be the projected vec-

tors. Note that the determinant of the projected lattice
L([c̄∗i , . . . , c̄∗n]) is equal to

det(L∗)

det([c∗1, . . . , c
∗
i−1])

=
det(L∗)
∏i−1

j=1 r
∗
j,j

=

n∏

j=i

r∗j,j ,

whereC∗ = Q∗R∗ is the QR decomposition ofC∗.
Apply the HSVP oracle again to find a short vector

v̄∗
i =

n∑

k=i

xkc̄
∗
k

in the projected latticeL([c̄∗i , . . . , c̄∗n]); Lift it to a vector
v∗
i in L([c∗i , . . . , c∗n]) given by

v∗
i =

n∑

k=i

xkc
∗
k.

Then replacec∗i by v∗
i and complete the dual basis. Since

lifting doesn’t affect the orthogonal projections nor the
r∗i,i =< q∗

i ,v
∗
i >, the new basis satisfies

r∗i,i ≤ ‖v∗
i ‖ ≤ Cn−i+1




n∏

j=i

r∗j,j




1
n−i+1

and consequently

r∗i,i ≤ (Cn−i+1)
n−i+1
n−i




n∏

j=i+1

r∗j,j





1
n−i

. (28)

This property still holds at subsequent steps of the algo-
rithm since the operation of extracting a short vector and
lifting decreasesr∗i,i, and so increases

∏n
j=i+1 r

∗
j,j .

We claim thatc1 in the primal basisC = (C∗)∗ is the
shortest vectorv of L(B). We prove this fact by contradiction.
Suppose thatc1 6= ±v, where±v are the unique shortest
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vectors ofL. Note thatc1 cannot be±2v or other multiples,
since in that caseC would not be a basis ofL. We may write

v =
k∑

i=1

xici,

wherexi is an integer andk is the largesti such thatxi is
nonzero.

Observe that ifC = QR is the QR decomposition ofC,

v =

k∑

i=1

xi



ri,iqi +

i−1∑

j=1

rj,iqj





=

k−1∑

i=1



xiri,i +

k∑

j=i+1

xjri,j



qi + xkrk,kqk.

Since theqi’s are orthogonal, we have:

λ1 ≥ ‖v‖ ≥ ‖rk,kqk‖ = rk,k.

Using the assumption thatc1 6= ±v, we have thatk > 1.
This ensures that:

λ2 ≤ λ1(L [b1, . . . ,bk−1]).

Indeed, the second minimumλ2 must be no greater than
the norm of the shortest nonzero vector in the sublattice
spanned by{b1, . . . ,bk−1}, since these vectors are linearly
independent withv. The fact thatk > 1 ensures that there
are non-zero vectors in that lattice. Using Minkowski’s first
theorem, we obtain

λ2 ≤ √
γk−1 det (L [b1, · · · ,bk−1])

1
k−1

=
√
γk−1

(
k−1∏

i=1

ri,i

) 1
k−1

(29)

=
√
γk−1

(
n∏

i=n−k+2

r∗i,i

)− 1
k−1

,

where we used the relationri,i = 1/r∗n−i+1,n−i+1.
In the meantime, the HSVP oracle (28) ensures that

r∗n−k+1,n−k+1 ≤ (Ck)
k

k−1

(
n∏

i=n−k+2

r∗i,i

) 1
k−1

(30)

for any k > 1. Substituting into (29), we have

λ2 ≤ √
γk−1(Ck)

k
k−1 rk,k (31)

≤
√
γn−1(Cn)

n
n−1λ1,

where we used the (mild) assumption that(Ck)
k/(k−1) in-

creases withk. The last statement is a contradiction because
we assumedλ2 >

√
γn−1(Cn)

n/(n−1)λ1. This completes the
proof.

We now instantiate Theorems 2 and 3 with two different
HSVP solvers.

The LLL algorithm solvesCn-HSVP with Cn = α(n−1)/4

(see Equation (11)). The sequence(Cn)
n/(n−1) grows withn,

and thus, by Theorem 3, LLL solves anyn-dimensional
instances ofγ-uSVP withγ =

√
γn−1α

n/4. Note that in the

reduction from uSVP to HSVP (in the proof of Theorem 3), a
single LLL reduction suffices, even if the reduction calls the
HSVP oracle many times on projections of the dual lattice.
This is because LLL is almost self-dual and the projected
sublattices are also reduced. More precisely: We call a basis
effectivelyLLL-reduced if it satisfies condition (8) forj = i−1
(and possibly not forj < i− 1) and if it satisfies the Lovász
condition (9). A basis that is effectively LLL-reduced also
satisfies Equations (10), (11) and (12). The LLL algorithm is
self-dual in the sense that if a basis is effectively LLL-reduced,
so is its dual basis (see [45]). Moreover, if[b1, . . . ,bn]
is LLL-reduced, the projection of the basis[bi, . . . ,bn] on
the orthogonal complement of the vector space generated by
b1, . . . ,bi−1 is also LLL-reduced.

Overall, if one relies on LLL as HSVP solver, we ob-
tain that Kannan’s embedding achieves correct decoding ra-
dius ≥ 1

2
√

γnα
(n+1)/4

λ1, when using embedding parameter

t = 1

2
√

γnα
(n+1)/4

λ1.

The BKZ algorithm [8] solvesC-HSVP with a smallerC,
but at the cost of a higher run-time. It is parametrized by
a block-sizeβ ∈ [2, n]. In [46], a variant of BKZ is given,
which achievesCn,β = 2(γβ)

n−1
2(β−1)

+ 3
2 in time polynomial

in n and 2β. For a fixed value ofβ (and even for a block-
size β that is growing slowly with respect ton), the se-
quence(Cn,β)

n/(n−1) grows withn, and thus, by Theorem 3,
the modified BKZ with block-sizeβ solves anyn-dimensional
instances ofγ-uSVP withγ =

√
γn(γβ)

n
2(β−1)

+ 3n
2(n−1) .

C. Embedding based on LLL is at least as good as LLL-SIC

The analysis in Subsection IV-B holds generally for any
HSVP solver. In this section we focus on the LLL algorithm,
and prove a stronger bound, namely that embedding based on
LLL has a decoding radius at least as large as LLL-SIC’s. The
key observation is as follows: Ify falls within the decoding
radius of Babai, the vector[(Bx − y)T t]T will be the
shortest vector; it will be moved by LLL to the first column of
the basis, and will stay there during the rest of the execution
of LLL.

Lemma 3 (Embedding is at least as good as LLL-SIC):
Consider a fixed realizationy = Bx+ n of the MIMO
system (4). Suppose that‖n‖ < RLLL-SIC , so that the LLL-
SIC decoder returns the correct transmitted vectorx. Then
the embedding technique (based on LLL) with the choice
t = RLLL-SIC also outputs the correct transmitted vector for
the same MIMO system. Consequently, the correct decoding
radius of the embedding technique is greater or equal to
RLLL-SIC.

Proof: Let Bred = BU be the LLL-reduced channel
matrix.

If Bred = QR is the QR decomposition ofBred, then
the output of LLL-SIC is given byUx̃, where x̃ is defined
recursively by

x̃i =

< qi,y >

ri,i
−

n∑

j=i+1

ri,j
ri,i

x̃j



.
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Suppose that the noise vectorn is shorter than the correct
decoding radius of LLL-SIC, that is

‖n‖ < RLLL-SIC =
1

2
min

1≤i≤n
|ri,i| = t. (32)

Observe that the hypothesis of Lemma 2 is satisfied forγ =
1, that is

√
t(λ1(B)− t) ≥ RLLL-SIC = t > ‖n‖ , (33)

since λ1(B) ≥ 2RLLL-SIC. Consequently, Lemma 2 implies

that

(
−n

t

)
is a unique shortest vector in the extended lattice.

Consider an alternate version of LLL reduction in which
a full round of size reductions RED(k, i), i = k − 1, . . . , 1
is performed before the Lovász test, i.e., when considering
vector bk, the LLL variant ensures that condition (8) is
satisfied for all|ri,k| / |ri,i| (with varying i) before checking
condition (9). Since size reduction has no impact on the Lov´asz
test, this version leads to the same output as the usual LLL
algorithm [14]. After LLL-reducing the firstn columns, the
augmented channel matrix is of the form

B̃ =

(
Bred −y

0 t

)

By doing a first round of size reduction RED(n + 1, i),
i = n, . . . , 1 on the last column, we find that the(n + 1)-th

column b̃n+1 =

(
−n

t

)
, as size-reduction is exactly SIC. At

this stage, we have that augmented matrix is of the form
(

bred
1 . . . bred

n −n

0 . . . 0 t

)
.

We will prove by induction that for all the subsequent steps
indexed byk = n, . . . , 1, the Lovász condition on the columns
k + 1 and k fails, and there is a swap, so that at stepk the
augmented matrix is of the form

B̃(k) =

(
bred
1 · · · bred

k −n ∗ · · · ∗
0 . . . 0 t ∗ · · · ∗

)
.

The inductive step works as follows. Let̃B(k) = Q̃(k)R̃(k) be
the QR decomposition of̃B(k). Then
(
r̃
(k)
k+1,k+1

)2
+
(
r̃
(k)
k,k+1

)2
≤
∥∥∥r̃(k)k+1

∥∥∥
2

≤
∥∥∥b̃(k)

k+1

∥∥∥
2

= ‖n‖2+t2

since the columns of̃R(k) are projections of the corresponding
columns ofB̃(k). All the swaps will take place since, because
of condition (32),

‖n‖2 + t2 <
1

2
min

1≤l≤n
r2l,l ≤

1

2
r2k,k. (34)

After the last swap, we obtain

B̃(0) =

(
−n ∗ . . . ∗
t ∗ . . . ∗

)
.

Now, recall that if the first columnb1 of a basis matrix is
a shortest lattice vector, then it remains at the first position
during the whole execution of LLL. Indeed, it is never
swapped. To see it, recall that the swap between the first and
the second columns takes place only if‖b2‖2 < δ‖b1‖2. This

cannot occur asb2 6= 0 andb1 is a shortest non-zero lattice
vector.

Thanks to condition (33), the vector

(
−n

t

)
is a shortest

non-zero vector of the augmented lattice. So it is not swapped
during the subsequent steps of the execution of LLL, and thus
it is the first column of the output basis̃Bred.

To conclude, we have proven that with the choicet =
RLLL-SIC, the correct decoding radius of embedding is greater
thanRLLL-SIC.

Remark 4:The proposed valuet = RLLL-SIC of the embed-
ding parameter can be efficiently computed afterBred is found
and before reducing the(n+ 1)-th column ofB̃.

V. DEALING WITH λ1

The derived bounds on the correct decoding radius hold
only if the minimum distanceλ1 is known. However,λ1 can
only be obtained by solving SVP, which is generally a difficult
problem. Fortunately, there are alternative approaches that do
not require the knowledge of the exact value ofλ1.

A. Rigorous approach

Suppose we do not knowλ1, but that we have a good
estimate of it:λ1 ∈ [A, κA] for some factorκ ≥ 1. Let

t = A
2γ ∈

[
λ1

2γκ ,
λ1

2γ

]
. The assumption of Theorem 2 is satisfied.

Observe that the right hand side of (24) is an non-decreasing
function of t in this interval. Then the correct decoding radius
is

REmb =

√
t

γ
λ1 − t2

≥ λ1

γ

√
1

2κ
− 1

4κ2

≥ λ1

γ

√
1

2κ
− 1

4κ

≥ λ1

2
√
κγ

. (35)

Equation (35) shows that for any approximation constantκ,
we at most lose only a constant

√
κ in the correct decoding

radius.
We recall the following useful property of LLL-reducedB

which follows from (12):

α−(n−1)/2‖b1‖ ≤ λ1 ≤ ‖b1‖. (36)

Letting A = α−(n−1)/2‖b1‖, we obtain

A ≤ λ1 ≤ α(n−1)/2A. (37)

Substituting κ = α(n−1)/2 into (35) and choosingγ =√
γnα

n+1
4 as in Subsection IV-B for(n + 1)-dimensional

lattices, we can obtain a decoding radius

R ≥ λ1

2
√
γnα

n/2
,

by setting the embedding parametert to A
2γ .
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It is possible to obtain a better guarantee on the correct
decoding radius by partitioning the interval whereλ1 resides:

[
A,α(n−1)/2A

]
⊂

⌈n−1
2

log α
log κ ⌉⋃

i=0

[
κiA, κi+1A

]
,

where κ > 1 is arbitrary. Each subinterval is of the form
[Ai, Aiκ] with Ai = κiA. We apply the embedding technique
for each subinterval, choosing

ti =
Ai

2γ
. (38)

Each call solvesγ-uSVP with γ =
√
γnα

n+1
4 as in Subsec-

tion IV-B for (n + 1)-dimensional lattices; at least one of
these subintervals containsλ1

2γ , and therefore the correspond-
ing call provides the closest lattice vector to the target as
long as the norm of the noise is less thanλ1

2γκ . Therefore,

using ⌈n−1
2

logα
log κ ⌉ calls to LLL, we can solveγ′-BDD with

γ′ =
√
κγ. That is, we only lose a factorκ, compared to the

case whenλ1 is known. Note thatκ can be chosen arbitrarily
close to1, at the cost of increasing the number of calls to
LLL.

B. Heuristic approach

We may also find a good estimate ofλ1 heuristically.
There is a common belief that the worst-case bounds (11)

and (12) are not tight for LLL reduction on average. In low
dimensions, the LLL algorithm often finds the successive
minimum vectors in a lattice. In [47], the average behavior of
LLL reduction for some input distributions was numerically
assessed, and it was observed that one should replace the factor
α

n−1
2 from (12) by a much smaller value for a random lattice

of sufficiently high dimension. The experiments corresponding
to Fig. 1 allows one to observe a similar behavior for random
basis matrices with i.i.d. Gaussian entries: Forδ = 0.99,
the factorα

n−1
2 ≈ (1.428)n−1 from (12) should be replaced

by ≈ 1.01n.
Independently, we have the upper boundλ1 ≤√
γnα

n−1
4 min1≤i≤n |ri,i| (from Lemma 1 and Equation (15)),

where the |ri,i|’s can be easily computed from the out-
put basis. Forδ = 0.99, this approximately givesλ1 ≤√
γn(1.195)

n−1min1≤i≤n |ri,i|.
Fig. 2 shows that after the call to LLL withδ = 0.99 and

for random input basis matrices with i.i.d. Gaussian entries,
we haveλ1 ≈ 1.03nmin1≤i≤n |ri,i|.

It is also folklore to estimateλ1 via the so-called Gaussian
heuristic [48]

λ1

(detL)1/n ≈ Γ(1 + n/2)1/n√
π

≈
√

n

2πe
.

This estimate ofλ1 is the radius of the ball whose volume
matches the lattice determinant. The Gaussian heuristic holds
for random lattices in a certain sense, and can be made
rigorous for precise definitions of random lattices (derived
from the theory of Haar measures on classical groups) [47].
However, the experiments in Fig. 3 tend to show that this
estimate does not apply for lattices sampled by i.i.d. Gaussian
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lnF1 with F1 =
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, as function of
dimensionn for the ouptut of LLL withδ = 0.99 and i.i.d. Gaussian inputs.
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matrices: the minimumλ1 seems to follow the Gaussian
heuristic in the beginning, but to fall short of the theoretic
value whenn is large.

VI. EXPERIMENTS

In this Section we address the practical implementation
of embedding decoding in implementation and compare its
performance with those of existing methods.

A. Incremental Reduction for Embedding

Setting t0 = A/(2γ) and κ = α1/2, we give an efficient
implementation of the strategy proposed in Section V-A where
n− 1 calls to LLL reduction of the extended matrix (21) are
performed for the sequence{ti} of values oft given in equa-
tion (38). It is summarized by the pseudocode of the function
IncrEmb(B,y, t0) in Table I. Except the first one, each call to
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Table I
PSEUDOCODE OF INCREMENTAL EMBEDDING DECODING

Function IncrEmb(B,y, t0)

1: B̃ =



 B −y

01×n t0



 ,U
′
= In+1

2: for i = 1 to n− 1 do

3: B̄ =B̃U←− LLL
(
B̃

)

4: U
′
= U

′
U

5: x̂i ←− U
′
(1, :)

6: B̃ =



 In×n 01×n

01×n α1/2



 B̄

7: end for

8: x̂←−argmin ‖y −Bx̂i‖

9: return x̂

LLL is significantly cheaper, as LLL is called on a reduced
matrix whose last row has been multiplied by a small constant
factor α1/2 (Line 6). This is equivalent to multiplyingti by
α1/2, then reducing the extended matrix̃B. Intuitively, we
deform the lattice progressively while preserving the property
of being LLL-reduced. At last, we choose the vector that is
closest toy.

B. List Decoding Based on Embedding

A practical way to improve the embedding technique is
to make use of all intermediate lattice vectors during the
execution of LLL. Such vectors are generated when size
reduction is performed. Since the number of iterations is
betweenO

(
n2
)

and O
(
n3
)

in embedding (see [18]), and
since we can obtain one new vector in each size reduction, the
list size can range fromO

(
n2
)

to O
(
n4
)
. We can integrate

this into LLL, and the complexity will be of the same order.
The size check in LLL is done with respect to the|ri,i|.

Clearly it is preferable to choose smallt in order to make

sure that the last column in (21) can be used as many times
as possible. Here, we choose

tList-Emb =
1

2
√
nα

n+1
4

min
1≤i≤n

|ri,i| , (39)

which is indeed far smaller than the average-case.

C. Soft-output Decoding Based on Embedding

Soft output is also possible from the constellation points
generated in the size reduction. To further improve the per-
formance, near neighbors of the recovered constellation point
are also taken into consideration. Once the list is found,
we choose to center it ony, and then pick up theK best
candidates with the smallest Euclidean norm. TheK candidate
vectorsZ = {z1, · · · , zK} can be used to approximate the log-
likelihood ratio (LLR), as in [49]. For bitbi ∈ {0, 1}, the
approximated LLR is computed as

LLR (bi | y) = log

∑
z∈Z:bi(z)=1 exp

(
− 1

σ2 ‖y−Bz‖2
)

∑
z∈Z:bi(z)=0 exp

(
− 1

σ2 ‖y−Bz‖2
)

(40)
where bi (z) is the i-th information bit associated with the
samplez. The notationz : bi (z) = µ means the set of all
vectorsz for which bi (z) = µ.

D. Simulation Results

This subsection examines the error performance of the
embedding technique. For comparison purposes, the perfor-
mances of lattice reduction aided SIC and ML decoding are
also shown. We assume perfect channel state information at
the receiver, and use MMSE-GDFE left preprocessing for
the suboptimal decoders. Monte Carlo simulation was used
to estimate the bit error rate with Gray mapping and LLL
reduction (δ=0.75).

Fig. 4 shows the bit error rate for an uncoded MIMO
system withnT = nR = 10, 64-QAM. We found that the list
and incremental versions of embedding achieve near-optimum
performance in this setting; the SNR loss is about1 dB. Both
of them are better than ALR [18] and embedding using the
exact knowledge ofλ1 (“exact MMSE embedding”). We also
observed poor performance for the choice of the embedding
parametert = dist(y,B) in [33].

Fig. 5 shows the achieved performance of embedding decod-
ing for the4× 4 Perfect code using64-QAM. The decoding
lattices are of dimension 16 in the complex space (and 32
in the real space). The list version of embedding enjoys3.5
dB gain over LLL-SIC, while embedding using the average
estimate ofλ1 in Section V-B (“average MMSE embedding”)
also has more than 2 dB gain.

Fig. 6 compares the average complexity of LLL-SIC de-
coding, embedding decoding and sphere decoding for uncoded
MIMO systems using 64-QAM.

Fig. 7 shows the frame error rate for a coded4× 4 MIMO
system with 4-QAM. For channel coding, we use a rate-
1/2, irregular(256, 128, 3) low-density parity-check (LDPC)
code of codeword length 256 (i.e., 128 information bits) [50].
Each codeword spans one channel realization. The parity
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Figure 4. Bit error rate vs. average SNR per bit for the uncoded 10 × 10
system using 64-QAM.
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Figure 5. Bit error rate vs. average SNR per bit for the4× 4 perfect code
using 64-QAM.

check matrix is randomly constructed, but cycles of length4
are eliminated. The maximum number of decoding iterations
is set at 50 for the LDPC. It is seen that the soft-output
version of embedding decoding is also nearly optimal when
K = 20, with a performance very close to maximum a
posterior probability (MAP) decoding and much better than a
MMSE-only detector followed by per symbol LLR calculation.

VII. C ONCLUSIONS ANDDISCUSSION

In this paper, we have studied the embedding technique
from a BDD point of view. We have investigated the relation
between Hermite SVP and uSVP and improved a previously
known bound on the valueγ for which LLL reduction provides
a solution toγ-uSVP. Moreover, we proved that BDD is DMT-
optimal. The polynomial complexity and near-optimum perfor-
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Figure 6. Average number of floating-point operations for uncoded MIMO
at average SNR per bit = 17 dB. Dimensionn = 2nT = 2nR
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Figure 7. Frame error rate vs. average SNR per bit for the4 × 4 rate-1/2
LDPC code of codeword length 256 using 4-QAM.

mance of the embedding technique makes it very attractive in
decoding applications.

We proposed variants with different embedding parameterst
that are easy to compute and do not require the knowledge of
the minimum distanceλ1 of the lattice: a rigorous version for
which we can provide a theoretical estimate of the decoding
radius, a heuristic version based on a heuristic estimate ofλ1

with lower computational complexity, and a list-based embed-
ding scheme with improved BER performance. Our numerical
simulations provide evidence that a significant fraction ofthe
gap to ML decoding can be recovered.

We have proven that the correct decoding radius achieved
by the LLL-based embedding technique is at least as large as
the one achieved by LLL-SIC. Experimentally, it seems that it
is in fact strictly larger. It would be interesting to explain why
this is indeed the case and to which extent. One possibility
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would be that the embedding technique benefits on average
from the noise vector following a normal distribution.
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