10,120 research outputs found

    Replica Selection in the Globus Data Grid

    Get PDF
    The Globus Data Grid architecture provides a scalable infrastructure for the management of storage resources and data that are distributed across Grid environments. These services are designed to support a variety of scientific applications, ranging from high-energy physics to computational genomics, that require access to large amounts of data (terabytes or even petabytes) with varied quality of service requirements. By layering on a set of core services, such as data transport, security, and replica cataloging, one can construct various higher-level services. In this paper, we discuss the design and implementation of a high-level replica selection service that uses information regarding replica location and user preferences to guide selection from among storage replica alternatives. We first present a basic replica selection service design, then show how dynamic information collected using Globus information service capabilities concerning storage system properties can help improve and optimize the selection process. We demonstrate the use of Condor's ClassAds resource description and matchmaking mechanism as an efficient tool for representing and matching storage resource capabilities and policies against application requirements.Comment: 8 pages, 6 figure

    Computational structure‐based drug design: Predicting target flexibility

    Get PDF
    The role of molecular modeling in drug design has experienced a significant revamp in the last decade. The increase in computational resources and molecular models, along with software developments, is finally introducing a competitive advantage in early phases of drug discovery. Medium and small companies with strong focus on computational chemistry are being created, some of them having introduced important leads in drug design pipelines. An important source for this success is the extraordinary development of faster and more efficient techniques for describing flexibility in three‐dimensional structural molecular modeling. At different levels, from docking techniques to atomistic molecular dynamics, conformational sampling between receptor and drug results in improved predictions, such as screening enrichment, discovery of transient cavities, etc. In this review article we perform an extensive analysis of these modeling techniques, dividing them into high and low throughput, and emphasizing in their application to drug design studies. We finalize the review with a section describing our Monte Carlo method, PELE, recently highlighted as an outstanding advance in an international blind competition and industrial benchmarks.We acknowledge the BSC-CRG-IRB Joint Research Program in Computational Biology. This work was supported by a grant from the Spanish Government CTQ2016-79138-R.J.I. acknowledges support from SVP-2014-068797, awarded by the Spanish Government.Peer ReviewedPostprint (author's final draft

    An autonomic framework for enhancing the quality of data grid services

    Get PDF
    Data grid services have been used to deal with the increasing needs of applications in terms of data volume and throughput. The large scale, heterogeneity and dynamism of grid environments often make management and tuning of these data services very complex. Furthermore, current high-performance I/O approaches are characterized by their high complexity and specific features that usually require specialized administrator skills. Autonomic computing can help manage this complexity. The present paper describes an autonomic subsystem intended to provide self-management features aimed at efficiently reducing the I/O problem in a grid environment, thereby enhancing the quality of service (QoS) of data access and storage services in the grid. Our proposal takes into account that data produced in an I/O system is not usually immediately required. Therefore, performance improvements are related not only to current but also to any future I/O access, as the actual data access usually occurs later on. Nevertheless, the exact time of the next I/O operations is unknown. Thus, our approach proposes a long-term prediction designed to forecast the future workload of grid components. This enables the autonomic subsystem to determine the optimal data placement to improve both current and future I/O operations

    A Prediction-Based Replication Algorithm for Improving Data Availability in Frid Environment

    Get PDF
    Data replication is a key optimization technique for reducing access latency and managing large data by storing replica of data in a wisely manner. In this paper, we propose a data replication algorithm, called the Prediction-Base Dynamic Replication (PBDR) algorithm that improves file access time. Restricted by the storage capacity, it is essential to design an effective strategy for the replication replacement task. PBDR deletes files by considering four important factors: the number of requests for the replica in the future times, availability, the size of the replica and the last time the replica was requested. Also, it can minimize access latency by selecting the best replica when various sites hold replicas of datasets. The algorithm is simulated using a data grid simulator, OptorSim, developed by European Data Grid projects. The experiment results show that PBDR strategy gives better performance compared to the other algorithms and prevents unnecessary creation of replica which leads to efficient storage usage
    corecore