
An autonomic framework for enhancing the quality of data grid services 
Alberto Sancheza' Jesus Montesb, Maria S. Perezc, Toni Cortesd 

a E.T.S. de Ingenieria Informdtica, Universidad Reyjuan Carlos, Campus de Mostoles, Mostoles, Madrid, Spain 
b CeSViMa, Universidad Politecnica de Madrid, Parque Tecnologico UPM, Pozuelo de Alarcon, Madrid, Spain 
c Facultad de Informdtica, Universidad Politecnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain 
d Barcelona Supercomputing Center, Universidad Politecnica de Catalunya, Barcelona, Spain 

A B S T R A C T 

Data grid services have been used to deal with the increasing needs of applications in terms of data 
volume and throughput. The large scale, heterogeneity and dynamism of grid environments often make 
management and tuning of these data services very complex. Furthermore, current high-performance 
I/O approaches are characterized by their high complexity and specific features that usually require 
specialized administrator skills. Autonomic computing can help manage this complexity. The present 
paper describes an autonomic subsystem intended to provide self-management features aimed at 
efficiently reducing the I/O problem in a grid environment, thereby enhancing the quality of service (QoS) 
of data access and storage services in the grid. 

Our proposal takes into account that data produced in an I/O system is not usually immediately 
required. Therefore, performance improvements are related not only to current but also to any future 
I/O access, as the actual data access usually occurs later on. Nevertheless, the exact time of the next I/O 
operations is unknown. Thus, our approach proposes a long-term prediction designed to forecast the 
future workload of grid components. This enables the autonomic subsystem to determine the optimal 
data placement to improve both current and future I/O operations. 

1. Introduction 

Grid-based data infrastructures have been used in the last 
decades to address the increasing needs of applications in terms of 
data volume and throughput. Data grids have been defined as a set 
of storage resources and data retrieval elements, which allow ap
plications to access data through specific software mechanisms [ 1 ]. 
The usual manner of providing this functionality is through the cre
ation of data access and storage services. Nevertheless, the use of 
a grid infrastructure poses an increasing challenge to the efficient 
management of these data services. This increased complexity may 
have an impact on the QoS. To date, there is no simple and efficient 
way of accessing data resources whilst safeguarding a committed 
QoS level. Ross et al. [2] identified several challenges for I/O sys
tems emphasizing the need to increase the manageability of I/O 
systems due to their high complexity. Autonomic computing [3] 
can offer self-management features to I/O systems, which consti
tutes an important step forward in the I/O field. This approach is 
commonly known as autonomic storage. 

Autonomic storage can improve I/O performance and QoS, 
especially when accessing large volumes of data such as that stored 
in data grids. Our proposal, called Grid-based Autonomic Storage 
(GAS), combines concepts from autonomic computing and I/O for 
the creation of an autonomic subsystem intended to provide self-
management features to a data grid. This autonomic subsystem 
can predict the future performance of the grid components which 
can vary due to dynamic changes in the grid infrastructure. Based 
on the prediction, the target resources for data placement can be 
selected. This contributes to improving the QoS of data access and 
storage services in the grid. 

The rest of this document is organized as follows. Section 2 
presents the overview of GAS. Section 3 shows the internal 
structure of GAS. Section 4 shows our monitoring subsystem aimed 
at obtaining data that will be used in the following stages. Section 5 
deals with all the aspects related to data analysis and scheduling. 
Section 6 describes a sample scenario where GAS is applied and 
shows the evaluation of our proposal. Section 7 shows several 
studies related to our proposal. Finally, Section 8 analyzes the 
conclusions and describes any open issues. 

2. Proposal: providing grid autonomic storage 

Although grid computing enables creating infrastructures to 
address grand challenge problems, its own characteristics imply 



Logs & Monitored data 

Monitoring 
database 

retrieve/store 

GAS 
Monitor 

GMonEAccess 

GMonEDB 

Analyze & Plan 

System 
Prediction 

Module 

Decision Making 
Module 

Request 
Translation 

Module 

Client 

request 

Monitoring 
modulei— 

query 

MonitorAccess 

Data Service 

X 
MonitorAccess 

Data Service 

MonitorAccess 

Data Service 

i / 
Execute 

W 

Storage Element 1 Storage Element 2 Storage Element n 

Cluster 1 Data Storage Server 2 Data Storage Cluster n Data Storage 

Fig. 1. GAS architecture. 

a highly complex distributed system. Dealing with this complexity 
is a top priority in term of efficiently managing the system. 

Obtaining proper information about the system is the first step 
for its management. Since grid systems are focused on services, 
monitoring mechanisms should provide relevant information, 
i.e. information relating to the overall service rather than the 
internal composition of each specific element. Thus, there is a 
case for efficiently adjusting distributed monitoring techniques 
to highly complex infrastructures. The solution presented in this 
paper is data aggregation, i.e. monitoring each storage resource as 
a single entity even if it is composed of several nodes. 

Selecting the appropriate data resources to provide a high QoS 
is another challenging area of grid storage management. The QoS 
for data accesses is normally more related to the read operation 
behavior, since data is usually read more times than it is written [2]. 
As data is not usually required immediately after having been 
generated, enhancing the overall QoS requires improving the 
later read accesses instead of current write accesses. Thus, data 
placement should be chosen depending not only on current 
behavior of the storage elements but also considering predictions 
about their future operation. Predictions must be made in the long 
term as the exact time of future I/O operations is unknown. 

This idea, based on monitoring and decision-making, is closely 
related to the way most autonomic computing applications work. 
Autonomic computing solutions are based on monitoring man
aged resources and analyzing retrieved data. After this analy
sis, they plan and execute the best actions according to the data 
analyzed and the policies defined. The whole process follows a 
MAPE (Monitor-Analyze-Plan-Execute) processing loop [4]. GAS 
is defined in the same way, following the principles of auto
nomic computing. GAS is also composed of four phases, whose 
main responsibility is providing autonomic self-management fea
tures. These four phases of GAS, following the MAPE loop, are 
(i) System Monitoring (Monitor), responsible for collecting 
monitoring data (ii) System Analysis and Prediction (Analyze), re
sponsible for analyzing the monitoring data and constructing a pre
diction model for the storage elements, (iii) Decision Making (Plan), 
responsible for deciding the data placement and actions to be car
ried out and (iv) Request Execution (Execute), responsible for inter
preting the decisions made and accessing suitable elements. 

Our proposal presents a formal study of all the tasks required 
to provide autonomic features, reduce management complexity 
and improve data access QoS: self-managing capabilities, long-
term prediction and decision-making. As a result, the proposed 

GAS system incorporates self-management and self-optimizing 
capabilities. On the one hand, GAS allows the system to adapt its 
behavior in the face of environment changes, making appropriate 
decisions according to the expected behavior. These decisions are 
intended to improve both current and later I/O operations. On the 
other hand, GAS adjusts its own internal parameters to improve its 
operation and future decision making. 

3. GAS architecture 

In a generic grid scenario, brokering is a useful technique to de
termine the extent to which the user requirements are met and 
how efficiently the underlying resources are being used. The bro
ker not only performs the decision-making but is also essential for 
managing these systems. In this sense, GAS has been conceived as a 
brokering-based solution and can therefore be used with mi
nor changes in conjunction with any data access service, such as 
Storage Resource Manager (SRM) [5], Grid Datafarm (Gfarm) [6], 
MAPFS-Grid [7], etc. designed to provide self-management fea
tures to the system. 

Furthermore, the broker can act as a provider of autonomic 
features. To create an autonomic broker, the GAS architecture 
covers the following functionalities: 
1. Monitoring grid resources. 
2. Predicting the future state of the storage elements, according to 

the data monitored. 
3. Decision-making about suitable data placement to ensure a 

high QoS data access. 
4. Decision-making about the adjustment of GAS internal param

eters. 
Fig. 1 shows the GAS architecture. The storage elements can be 

clusters of workstations, standalone servers with attached disks 
or storage-based systems, e.g. a Network Attached Storage (NAS). 
The architecture is divided into two main components: the first is 
related to the monitoring phase and the second concerned with 
the Analyze and Plan phases. The following sections describe both 
components in detail. 

4. Monitor 

GAS needs a powerful monitoring tool which provides the re
quired state information, without affecting the QoS of the system. 
To provide the required information, we have developed GMonE 
(Grid Monitoring Environment). Although we have implemented 



GMonE as a part of GAS, it is a standalone tool that can run and 
work independently on any computing environment. GMonE is 
a set of MDS-compliant services (Monitoring and Discovery Ser
vice) [8] designed to work together. GMonE provides efficient ac
cess to information, in terms of both response times and data size. 
It coordinates monitored information from the whole grid, provid
ing a unified interface for information management and queries. 
It also performs statistical aggregation and pre-processing of the 
monitored data. 

GMonE components are spread throughout the entire infras
tructure, monitoring each resource. These components have been 
designed to cooperate in order to obtain and manage the moni
tored data, performing four basic tasks (see Fig. 1). 

First, the raw monitored data is obtained using a service called 
MonitorAccess. The aim of this service is to provide an efficient 
way to access monitored information from each grid resource, 
performing statistical pre-processing of the data. MonitorAccess 
provides an abstraction layer to access all resource-monitored 
information from the same interface. 

Second, the monitored data is aggregated. Grid systems are 
composed of different and heterogeneous resources. Clusters stand 
out among them because of their good relation in terms of power 
vs. cost. Since most grid resources are clusters, abstracting each 
cluster by aggregating data as a single entity helps understand 
the system more easily. In spite of its complexity, it is possible 
to consider a cluster as a virtual element defined on the basis of 
monitored data from every node. Using MonitorAccess it is possible 
to monitor different Pj, parameters of each nodej of cluster i. Each 
parameter is grouped to obtain a representative value of the whole 
cluster, using different methods depending on each parameter. 
Examples of these methods are arithmetic functions of all the 
node values (e.g. the average value), pessimistic or optimistic 
case (e.g. taking the worst or best measurement of all nodes), 
individual evaluation function of a single parameter, evaluation 
function including all the parameters (Pj,, Qy,...), etc. By means 
of this aggregation, all grid elements can be compared regardless 
of whether they are clusters or not. 

Third, the monitored data is gathered and managed. The 
GMonEDB service is in charge of gathering and managing the 
monitored information, once this has been obtained. This means 
collecting the monitored information from each element and 
storing it in its own database. 

Fourth, the post-processed monitored data is made available 
to the autonomic system. The GMonEAccess service provides 
a common interface to query monitored data and manage the 
GMonE system. 

5. Analyze and plan 

After the monitoring stage, GAS (i) analyzes the obtained data, 
(ii) creates a prediction model and (iii) makes decisions about the 
target storage elements, in order to enhance the QpS of current and 
later data accesses. 

5.1. Data analysis 

Due to the high number of different resources present in a grid, 
the volume of monitoring information generated can be enormous. 
Data mining techniques can be used to identify behavior patterns. 
Since the number of data items is high, it is advisable to group or 
cluster them in different categories or states, defined by certain 
parameters. 

For this task the fc-means algorithm [9] was selected, due 
to its simplicity and fast execution.1 K-means provides a way 

1 The system is intended to provide a fast response. Thus, the whole approach is 
based on methods with low computational cost. 

of grouping the monitored data. However, it is important to 
determine the number of clusters. This is not known a priori and, 
in fact, there might not be a unique answer as to what value 
it could take. Each method to determine the number of clusters 
has its own limitations, i.e. there is no definitive method for 
determining the number of clusters [10]. Since the number of 
states must be automatically determined according to monitored 
values, Hartigan's rule [11] is used, due to its simplicity and good 
results. 

5.2. Prediction 

A priori and on-line models provide different approaches to 
address the prediction task. A priori models perform an in-depth 
analysis of the past system behavior in order to forecast its future 
operation. However, this is based on the assumption that the 
system will not change its usual behavior. Long-term predictions 
can be made based on this assumption. Unlike a priori models, 
on-line models are capable of detecting the system changes in the 
short term. That is, they can adapt themselves to drastic changes in 
the system behavior due to the fact that they give more importance 
to current data. 

Since GAS provides an autonomic system that can adapt itself to 
system changes, it should tackle the problem following an on-line 
model approach. However, the specific moment when a grid user 
makes a data request is unknown. Therefore, GAS must improve 
future I/O requests as a whole instead of concentrating on a given 
moment. Thus, in order to improve not just current operations 
but also future ones, long-term prediction is useful. This kind of 
prediction can be made by means of a priori models. Among the a 
priori models analyzed, Markov chains [12] can be used to predict 
how every parameter of each grid element usually behaves in the 
future. Nevertheless, the usual Markov chain approach does not 
meet the needs of dealing with short-term changes. In order to 
provide a trade-off solution, we have built an enhanced Markov 
chain approach (see Section 5.2.2), which includes on-line model 
functionalities. 

5.2.2. Prediction calculation 
The size, complexity, heterogeneity, and constant variability of 

the system require the creation and solution of several Markov 
chains, one for each storage element. Predicting a single grid 
resource performance requires comprehensive knowledge of its 
past behavior. GMonE is used to obtain all the monitored data 
required. GAS then obtains basic knowledge about the monitored 
data by means of the data analysis phase shown above to discover 
relations between data. This stage defines a set of states describing 
the expected grid element behavior. These states are dynamically 
defined, making it possible to self-adapt to the problem. Although 
it might be easier to use pre-defined and static states - since they 
can be defined before obtaining the data -, this would restrict 
the knowledge about the evolution of the grid elements, therefore 
reducing the system's self-management capabilities. Through this 
data analysis phase it is possible to predict the reachable states 
and the probability of reaching them. These states can be used 
to define a typical Markov chain. Modeling the system in this 
way enables making long term predictions due to the stationary 
probability properties. These stationary probabilities can be used 
for the decision-making phase. 

Markov chains represent a system whose state changes over 
time and which can be represented as a transition matrix. 
The matrix obtained from a regular chain does not facilitate 
solving the system. However, it can be turned into a system 
of equations, which can be easily solved. Among the solving 
methods available, direct methods have been ruled out due to 
response-time restrictions. In this case GAS uses approximative 
methods. The selected algorithm is the Successive OverRelaxation 
(SOR) [13] which offers performance improvements over the 



traditional Gauss-Seidel algorithm [14]. The matrix and a vector 
of independent components are introduced in the SOR algorithm 
to obtain the probability of each state in the long term. As an 
initial hypothesis, a vector is defined based on historical data 
- which is calculated at the time of defining the states - to 
represent the probability of a certain state. This approach offers 
some advantages over the usual equiprobability vector, namely 
that it takes into account the significant influence of past behavior 
on future operation. 

As the system is regulated by external factors, transition 
probabilities are extracted by studying the system behavior using 
the GMonE tool. To do this, GAS requests from GMonE a monitored 
parameter value for each time window. These requests generate 
a time series. Defining the limit values of each state, the time 
series is scanned counting transitions from each state to all others. 
This allows the transition matrix to be directly obtained from the 
data returned by GMonE. When the transition-counting phase is 
completed, it is necessary to normalize the resulting matrix. As 
each matrix element represents a probability, its value must be 
in the rank [0, 1] and the sum of the row values must be equal 
to one. Normalization can be performed using Laplace's correction 
formula to obtain a confidence probability value: 

Favorable cases + X< 
Pi = ^ (D 

Total cases + ^ Xt 
i = l 

where n is the number of classes and Xt is the priority for class i. 
In this case, it is set to 1. Eq. (1) is applied to each matrix element 
where the number of total cases is the sum of all values of the row 
and favorable cases is the element value. Thus it is possible to obtain 
the transition matrix for each parameter and grid element. The 
computational overhead of this matrix calculation is very small, as 
will be shown in Section 6.1. However, if it were only calculated 
once, there would be a single prediction about the further behavior 
of each grid element. Therefore, as new monitored data can vary 
the expected future state, the predictions need to be reconsidered 
when new data is acquired. The next section explains our approach 
in solving this problem. 

5.2.2. Adaptation to new data (historical Markov chain approach) 
Regarding on-line models, it is important to take into account 

that new data can vary the expected future system behavior. 
Thus, it is necessary to analyze the past system operation every 
time new data is acquired. There are several ways to incorporate 
new behavior-related data in the prediction phase. GAS could 
perform a new prediction for each client write request. This would 
create several Markov chains over time, one for each request. 
Nevertheless, this alternative raises some problems. First, it could 
cause an overload of the autonomic system and therefore a 
decrease in the perceived QpS from the client point of view. Second, 
the monitored data time parameter which needs to be taken into 
account in the prediction is highly significant, since it represents 
the total time of the past behavior being analyzed. This means 
the rest of the time is not considered in the study. Thus, other 
alternatives have been analyzed where data is gathered since the 
beginning of the system execution and the monitored data time 
parameter can be neglected. 

Our proposal is based on the idea of gathering data until a 
drastic change occurs in the system. Instead of performing a 
prediction for each client request, the predictions are made at 
certain times and different Markov chains are required: 

• A Markov chain Pr] that represents only a time interval [(i — 
1)7", iT]. Each period T a new Markov chain is calculated with all 
monitoring values corresponding to this period. The predictions 
performed correspond to the time interval when they have been 
calculated. 

• A historical Markov chain Pr". This historical chain aggregates 
all the historical data from the beginning of the execution up 
until the time iT. 

The chain Pr"_x can be evolved by using a new Markov chain 
corresponding to the last time interval Pr] .Pr] is the Markov chain 
in each step of the evolution. 

Prl = Pr\ 

Pr"2 = Pr"x • Pr] 

PrH =pr»_l. pr]. 

At any time in this process, it is possible to evolve the historical 
chain to obtain the stationary probability for a certain state in the 
long term, as described in Section 5.2.1. To do this, the period T 
must be constant and the states must not change in all Pr] in order 
to allow the historical Markov chain to evolve properly. Finally, 
the stationary Markov chain can be calculated from the historical 
chain P" taking into account that its states are dynamically defined 
once, when this matrix is created from Pr\. This allows taking into 
account all the monitored data from the beginning of the system 
run. This way of evolving the historical chain allows GAS to adapt 
itself to gradual changes in the system behavior. In this sense, the 
predictions are slightly modified as new data is collected enabling 
to gradually change their meaning in several steps. Nevertheless, 
drastic changes in the system can abruptly modify this prediction. 
When a drastic change occurs in the system, the values of the 
monitored data are modified, causing the new acquired data not 
to fit with the states defined in the historical matrix. This causes 
empty states or states without transitions that indicate that the 
matrix does not comply with the regularity property. This case 
makes the calculation of the stationary probabilities difficult (and 
sometimes impossible). 

Determining whether the matrix is regular or not can be 
reduced to determining whether all the states can be reached 
from any other state. This problem can be addressed using graph 
theory determining if the graph created according to the relations 
between the states is strongly connected. Kosaraju's algorithm 
calculates the strongly connected components of a graph using 
two Depth-First Searches [15]. If there is only a single strongly 
connected component the matrix represented by this graph is 
regular. If the matrix is not regular, it means that the new data, 
collected after defining the states, does not fit with the known 
states. This is caused by a drastic change in the system. In this case 
new states have to be dynamically defined according to the last 
monitored values so as to calculate a new historical chain. 

5.2.3. Interpretation of results 
Once the historical chain Pr" of each parameter in each storage 

element has been evolved, the stationary probability of remaining 
in each of the defined states in the long term is obtained. Since 
each grid element can have a different representative pattern, 
different states can be created for each of them. The states are not 
comparable, making the decision process difficult. To overcome 
this problem a single value is obtained for each parameter and 
grid resource that represents an aggregation of the probabilities 
obtained in each state for the parameter in question. The problem 
is approached as a piecewise defined function that indicates the 
probability of the possible values of the parameter studied. The 
centroid or center of gravity g is the most common method to obtain 
a single value that represents the whole function: 

n 

i= 



where xt are equidistant points which cover the whole range 
of values where the function is not 0. The separation between 
these points can be adjusted according to the precision needed 
in the result. This single numerical value represents the observed 
parameter in the long term. This result is consistent with the 
expected probabilities of remaining in each state and it is possible 
to make decisions by comparing with the values obtained for the 
same parameter in every storage element. 

5.2.4. Influence of the monitoring data period 
The monitoring data period Dp refers to the time interval used 

by GAS to request a parameter P from GMonE. This parameter, 
monitored in a specific resource s, determines the data set used 
in the prediction phase. If Dp is too high, the system changes 
occurring during this period are not visible resulting in a loss 
of precision. A reduction of the monitoring data period allows 
more detailed tracking of the system changes but also requires 
a higher amount of monitoring data from GMonE, causing a 
performance decrease when a prediction is performed. Thus, 
careful adjustment of this parameter allows the system to better 
adapt itself to environment changes avoiding overheads in the 
prediction algorithm. The system adjusts Dp autonomically, finding 
a trade-off between the size of Dp and the overhead caused. In 
order to automatically select a suitable value, it is possible to 
compare results obtained in the prediction phase for different 
values of Dp. 

As the initial aim is the reduction of Dp to enhance operation, 
a prediction is carried out with a smaller value than the current 
Dp (the minimum size of this value is the monitoring period). Its 
result then is compared with the result previously obtained for the 
same parameter and grid resource. If the results differ,2it means 
that system changes are not properly recognized and therefore it 
is necessary to reduce the monitoring data period, even though 
this involves an overhead. The initial monitoring data period used 
is 5 min because it is considered relevant enough, although it 
is adjusted depending on the data supplied. If both predictions 
are similar, reducing the number of observations does not obtain 
higher accuracy. In this case, a new prediction is carried out with 
a larger Dp to know if it is possible to reduce the amount of data 
without losing accuracy (the maximum size of Dp is a fraction of the 
prediction period T). If results are similar to the current prediction, 
then both predictions are similar and it is possible to increase 
the size of the monitoring data period in order to work with 
fewer observations. The amount by which to reduce or increase 
the monitoring data period is a fraction of the difference between 
the maximum and minimum period. Since this proportion is not 
a multiple of the current monitoring data period, periodic system 
changes can be discovered. 

5.3. Decision-making 

Decision-making means selecting the most suitable storage 
elements to deal with client requests. Whereas future behavior 
prediction is made at certain intervals, decision-making is carried 
out when a client requests an I/O operation from the system. 
Different methods have to be applied depending on the kind of 
I/O operation. Depending on the specific data access service used 
the degree of development of each of these methods is different. 
The reason is that each grid I/O system uses a different data access 
mode. To give a comprehensive overview of the decision-making 
involved, the most difficult process is shown in terms of the use of 
data parallelism and the replication of the most used parts of each 
file instead of whole files. 

^ The degree of similarity indicates the adjustment between Dp and the overhead 
caused. A similarity of 5% is considered sufficient to prevent loss of accuracy. 

5.3.2. Decision-making for read requests 
This type of requests requires reading a file. File data can be 

replicated into the system to provide fault tolerance capabilities. 
The replication involves the broker selecting the replica of each file 
part that currently offers the highest quality access. 

The basic discovery of file data in GAS is carried out by means of 
MDS. Important information is then extracted from the meta-data 
stored in its corresponding WS-resource properties, which allows 
GAS to analyze the completeness of all the data that makes up 
the whole file. If the file is complete, GAS decides which replicas 
provide the most efficient access to the requested file. In order 
to make this decision, the transfer time Tr of each replica r is 
calculated. Tr takes into account both the latency Latc

s and the data 
transfer rate TRC

S. The data transfer rate TRC
S is calculated for the 

data size DSr. DSr corresponds to the size of the replica and is the 
same in each data service resource that contains a replica of this 
information. This information is included in the meta-data since 
it is useful to know the file size to book space. Since this article 
is concerned with distributed storage, it is worth noting that both 
the I/O and network bandwidths are limiting factors. Thus, TRC

S is 
obtained as the minimum between the internal read bandwidth, 
IRS, of the storage element and the network bandwidth Ec

s between 
the client and the storage element. Both parameters IRS and Ec

s are 
obtained by means of GMonE. If GMonE does not provide a value 
Ec

s (traffic between client c and element s may not yet have been 
observed by the monitoring system) oo is taken as the value, which 
turns Ec

s into a non-limiting factor. Normally IRS will be higher 
than Ec

s. By setting Ec
s to oo, the system will select those replicas 

stored in the resources not previously accessed by the client. As this 
access implies a connection, in later accesses other replicas will be 
selected, namely those that are stored in resources which the client 
has never previously connected to. Though this does not improve 
the data operations in the short term, it does, however, increase 
the number of connections between the client and new elements 
thus obtaining more knowledge. This knowledge will enhance the 
QoS later on. 

To calculate the transfer time the number of messages sent 
between the storage element and the client has to be taken into 
account. Not all the data blocks are sent in the same message if the 
transfer is carried out slice by slice. The block size of the slice is a 
key factor that indicates the number of messages. As in the case of 
DSr, the block size BSs

r - which is calculated during file creation to 
optimize I/O access (as explained in Section 5.3.2) - is stored in the 
meta-data. To calculate the number of sent messages MS

T'C, the data 
size of the replica DSr and the size of the slice of the same BSs

r must 
be considered in the following way: 

The number of messages has an impact on the I/O operation 
latency {Latc

s), since it increases the time spent to establish the 
communication. Latc

s is provided by GMonE. If there is no value 
for Latc

s, the client has never connected to this element. In this 
case, 0 is taken as the value, which implies a higher probability of 
selecting the non-connected resources. Finally, the transfer time is 
expressed as: 

rr^ = ( L < x M r ^ ) + ( ^ ! ) . (3) 

Once all the transfer times of each replica have been calculated, 
GAS chooses the replica with the shortest VT>C time to read this part 
of the file. It then provides the client with a list of the data services 
used to store the selected replicas including their appropriate block 
size BSs

r. This allows the client to find and efficiently access all the 
parts of the file in a parallel way using BSs

r as block size. 



5.3.2. Decision-making for file creating requests 
These requests require creating a new file of a certain size. GAS 

must not only determine the currently suitable data locations to 
create and write the data with their indicated size, but it must also 
estimate the appropriate storage elements in order to perform later 
I/O operations. This estimate is made by means of the prediction 
phase shown before. 

The decision-making to obtain a suitable trade-off between 
improving current and later operation is a very complex process. 
When a huge amount of elements are working together, each 
element can have a different representative pattern. Section 5.2.3 
explained how the results obtained from the prediction phase 
can be interpreted and concentrated in a single value. This value 
represents a parameter observed in a storage element in the long 
term. 

Since several parameters can be taken into account, it is 
necessary to determine a goodness value Xs for every storage 
resource s. This value concentrates all the parameters in an 
aggregated value representing current and later behavior of 
the storage resource. To model this problem, the goodness is 
calculated from the different behavior of each storage element. 
The influence of every parameter on the goodness is weighted 
according to its importance. Since these weights constitute a 
key factor, the system itself should automatically decide these 
values following high-level policies. This can be defined as an 
optimization problem between all the parameters affecting the 
system, thereby maximizing the goodness of the storage elements 
to ultimately simplify decision-making. 

The parameters to be considered in the decision-making 
process must be related with the monitoring of the I/O system 
phase in a data grid. The transfer rate for read TRRC

S and write TRWC
S 

operations and the latency Latc
s stand out as parameters defined by 

both the client c and the storage element s. Parameters that are 
related with the behavior of each storage element s include the 
percentage of available storage capacity CPS, the workload WLS and 
the number of simultaneous I/O requests Rs.

3 Furthermore, since 
the QoS should not only be related to current but also later data 
accesses, the prediction of parameters must be taken into account 
in the calculation of the goodness. The parameters that have an 
influence on later accesses are those related withread accesses and 
the behavior of the resource, such as TRRC

S, Rs, WLS and CPS,
A and 

thus they have to be predicted following the method explained in 
Section 5.2. The importance of every monitoring parameter in the 
goodness calculation can be established by means of a weight W, 
which allows GAS to decide which parameters have more influence 
during decision-making. 

Xs = WTRR x fRRj + W W x TRWC
S + WCP x CPS 

+ WWLxWLs + WR*Rs + WLatxLatc
s. (4) 

Eq. (4) shows the goodness of each grid element. Since each 
parameter has its own units, their values are standardized before 
adding. WP represents the importance weighting assigned to each 
parameter P. As the aim is to obtain the values of WP that yield 
the best decision-making process, the decision will be easier if 
the goodness of every storage element is the highest. Thus, the 
objective function should represent the calculation of the weights 
WP], Wp2,..., WPn that obtain a goodnessXs for each element s as 
long as there are no other weights W'p ,..., Wp whose goodness 
assigned to a resource X's is higher than the one calculated with 
the previous weightsXs. However, this problem is NP-complete. To 

avoid this, the joint system goodness can be optimized instead of 
the goodness of each element. In this sense the objective function 
is: 

max(X1+X2 + - - -+X n ) . (5) 

The relations between these weights must be defined through 
high-level policies. The policies indicate which parameters are 
more important for the definition of the QoS and they can 
be expressed by means of constraints on the relation between 
weights. Since policies are intended to improve the I/O phase so as 
to enhance data-intensive applications, the following restrictions 
have been defined based on expert knowledge in the I/O field5: 

1. The transfer rate of read operations has a higher priority than 
that of write operations because the aim is to improve the QoS 
of later read accesses, i.e. WTRW < WTRR. 

2. Due to the great volume of data to store, the transfer rate for 
write operations is more important than the workload in the 
storage element, i.e. WWL < WTRW. 

3. Since the problem is focused on storage in a distributed 
environment, latency is a key factor. Therefore, its weight has 
to have more priority than the processing capacity, i.e. WWL 

< WLat. 
4. It is important not to saturate the storage capacity of the few 

grid elements which have the best characteristics, since data 
should be distributed between all the resources. Therefore, the 
free capacity percentage is more important than the number 
of expected simultaneous connections and the current transfer 
rate for write operations, i.e. WTRW < WCp; WR < WCp. 

This problem is solved by means of linear programming, namely 
the Simplex method [16], since all the constraints shown and the 
objective function are linear. The problem is solvable since there is 
a basic solution available, i.e. Vi e [1, n], WPj = 1/n. 

The dynamic calculation of weights allows GAS to assess the 
goodness of each element in order to automatically make a 
decision about where to place the data when creating a new file. 
To take full advantage of the available client network bandwidth 
BWC a sufficient number of elements are selected. This involves 
analyzing the transfer rate TRC

S that each element provides to the 
client. This analysis is performed by order of goodness and includes 
checking that the sum of the transfer rates of the previously 
selected elements is less than BWC, to prevent the client being 
saturated. 

Data distribution and block size. The way to access data services has 
a clear influence on the QoS. Data is usually accessed by means of 
slices. Thus, the size of the slice sent to each storage element affects 
the QoS obtained. In view of the importance of this parameter, GAS 
calculates a suitable block size BS. 

Chen and Paterson [17] indicate the block size that maximizes 
the performance in a striped disk array. Disk arrays can be regarded 
as a previous step to the proposed storage element arrays. Their 
proposal consists in balancing the benefit and the cost of the 
operation. The benefit is the transfer time of a single request, 
and the cost is the time spent until data actually starts being 
accessed. For disk arrays, the benefit can be expressed as the 
slice size divided by the transfer rate of the disk, and the cost is 
its positioning time. In a data grid, where disks are replaced by 
storage resources distributed over WAN, the benefit and cost are 
represented by different parameters. These parameters must take 
into account the operation of the network instead of the disk, since 
the network establishes the communication between the client 
and the data. Following the previous idea, the benefit would be the 

Note that any other parameters can easily be included in the model. 
The symbol P stands for the predicted value of parameter P. 

5 These policies are adapted to large amounts of data. For smaller volumes the 
constraints need to be changed accordingly. 



block size divided by the transfer rate of the connection and the 
cost would be its associated latency. Thus, a suitable block size to 
optimize the access between a storage elements and a client c can 
be expressed as: 

BSC
S = Z x Latc

s x TRC
S (6) 

where Z is the zero-knowledge coefficient, that is, if no information 
about the workload is known. Chen and Patterson demonstrate 
that Z is roughly | . Since (6) is based on the Chen and Paterson 
formula developed for homogeneous disk arrays, this slice size can 
be used when a single storage element is accessed to obtain data. 
If parallelism between heterogeneous networks and elements is 
used, it is possible to asynchronously send the suitable block 
size BSC

S to each resource. The block size of each element is 
obtained independently by means of (6). In this sense, faster 
storage elements receive more blocks according to their transfer 
rate. This makes reconstructing and recovering the file difficult. 
In fact, any grid element must inform GAS6 about the file parts 
it contains by publishing each file block through MDS using its 
corresponding WS-resource. The size of a file block in each storage 
element s is equal to the calculated slice BSC

S. The present proposal 
provides a seamless approach, since parallelism logic does not 
require waiting for the lowest element. 

5.3.3. Decision-making for write requests to an existing file 
This kind of requests requires writing a file that is in the file 

system. Since file data can be replicated into the system, a write 
involves selecting the replica of each file part that enhances the 
QoS of not only current but also later data accesses. However, since 
replication and file creation aim to optimize later access, decision
making for write operations is only concerned with current access. 
Therefore, the decision can be made as for read operations. 

To select the most efficient replicas, the storage location of the 
old data must provide sufficient capacity for the new file size. 
This is verified during the whole process of selecting a replica 
of each file part. If there is not enough space available to store 
the file in the data distribution, decisions need to be made about 
other suitable locations for the new file size in the way explained 
in Section 5.3.2. The file must then be reconstructed following 
the selected new distribution. This task can be performed using 
selective operations. These operations read data slices of the most 
effective replicas that belong to the first topology and subsequently 
write them into the new distribution of storage elements. [18] 
shows the file reconstruction stage by using selective operations 
in cluster environments. In a grid these operations are applied 
analogously, as this alternative is more efficient than brute force. 

If there is enough space, GAS decides which replicas provide the 
most efficient write access. The transfer time is the key factor in 
selecting the best replicas (see (3)). Nevertheless, the data transfer 
rate TRC

S for sending from the client c to each storage element s 
is different, since parameters affecting write operations must be 
considered. In this case, the data transfer rate is obtained as the 
minimum between the internal I/O bandwidth of writing IWS in 
each site and the network bandwidth Ec

s between the client and 
the storage resource. 

When a write is performed on the replica that provides the most 
efficient write access, the non-selected replicas must be marked 
as obsolete because their data is not updated. The consistency 
problems derived from this data update can be solved by using a 
Consistency Service [19] that propagates the update to the other 
sites. 

GAS checks if the whole file is in the system obtaining the total number of parts 
in which the file was distributed and checking if all the parts are stored by any 
elements. 

6. Evaluation 

In order to evaluate GAS, some non-idle storage elements 
distributed on the Internet have been used to build a simple but 
complete grid testbed. The storage elements are distributed over 
Spain and run the GridFTP version of the MAPFS-Grid service [7] for 
parallel file storage, called MAPFS-DSI. Both the storage elements 
and the client, are connected via the Spanish scientific wide area 
network, called RedlRIS. The resources are heterogeneous and 
belong to different sites with different administrators and security 
policies: 

• Universidad Politecnica de Madrid: its resources are three 
clusters, UPM 1, UPM 2 and UPM 3, located in Madrid, Spain. 
UPM 1 has 8 Intel Xeon 2.40 GHz nodes with 1 GB of RAM 
memory, their hard disks providing approx. 30 MB/s each. UPM 
2 has 8 Intel Xeon 3.0 GHz nodes with 2 GB of RAM memory, 
their hard disks providing approx. 50 MB/s each. UPM 3 has 2 
Intel Pentium IV 3.20 GHz nodes with 512 MB of RAM memory, 
their hard disks providing approx. 30 MB/s each. 

• Universidad Reyjuan Carlos: the URJC node is an Intel Pentium 
IV 2.80 GHz node with 1 GB of RAM memory located in 
Mostoles, Spain. 

• Barcelona Supercomputing Centers: the BSC resource is an Intel 
Pentium IV 3.0 GHz node with 1 GB of RAM memory located in 
Barcelona, Spain. 

• Universidad de Castilla La Mancha: the UCLM cluster is 
composed of 8 Intel Pentium IV 3.0 GHz nodes with 2 GB of RAM 
memory located in Albacete, Spain. 

• Universidad de Murcia: the UM node is an Intel Pentium III 
1.0 GHz node with 384 MB of RAM memory located in Murcia, 
Spain. 

The GAS broker is running on an Intel Xeon 3.00 GHz node, 
with 2 GB of RAM memory. It is located at the computer science 
faculty of the Universidad Politecnica de Madrid. Finally, the client 
is running on an Intel Core 2 2.13 GHz node with 1 GB of RAM 
memory and network bandwidth limited to 40 MB/s. It is located 
at the Operating Systems Group's laboratory of the Universidad 
Politecnica de Madrid. Fig. 2 shows the grid testbed with the 
topology of the network that interconnects the different grid 
elements. The network bandwidths shown refer to the maximum 
values of their network interfaces, their actual value being lower 
because of third-party network traffic and the internal RedlRIS 
topology. Furthermore, in order to understand the results it is 
important to emphasize that the whole set of grid elements used 
in the testbed are shared by other local users. 

6.1. Evaluation of the prediction model 

This section analyzes the time required to make predictions, the 
weight of selected algorithms in the workload and the evaluation 
of the predictions. 

Several predictions have been made by GAS to evaluate the 
complete prediction time. Every period T, a new prediction is made 
for each storage element and parameter required in the decision
making. Since the system is designed to work in the long term 
and the aim is not to overload the system, 1 day is considered 
an acceptable minimum value of T. The average prediction time 
for each grid element and parameter is then analyzed. It takes 
approximately 20 ms to predict every parameter of each resource. 
This low time illustrates the high capacity offered by the proposed 
system: a typical machine can predict the future state of 12.5 
resources per second. Furthermore, the possibility of increasing the 
period T shows the scalability of the system. 

Most of the prediction time is spent on gathering data, 
especially accessing database. Around three quarters of the 
prediction time (73.68%) is consumed by the database accesses 



(a) Geographical location. 

UCLM BSC 

(b) Network topology. 

Fig. 2. Gridtestbed. 

to gather the information required for making predictions. This 
indicates the importance of having fast database access. Only 
around a quarter (26.32%) is consumed in processing data, defining 
the states and making the prediction. The prediction model 
designed in this work takes less than 2 ms for each parameter and 
storage element. 

With the aim of understanding how well the predicted model 
works, the prediction of the expected distribution should be 
checked against real observations. The chi-square (x2) test can 
be used to check this. The x2 statistic calculates a discrepancy 
measure between observed values Obs and the values Exp of the 
expected distribution. In this test, both states i and expected 
frequencies Exp{ of every parameter p of each storage element s 
are calculated by means of the data analysis and prediction phases 
shown. The predictions were made based on 10 days of historical 
data. These predictions are compared with the data set Obst 
obtained for each parameter and grid element during the following 
20 days (measured every 4 h) classifying each value according to 
the states previously calculated. Once the x2 statistic is calculated, 
it can be compared to the x2 distribution to determine its goodness 
of fit and therefore its confidence level. The confidence level 
indicates the probability of the result being correct, i.e. if the 
prediction has been correct. In the tests, 57.14% of the predictions 
made achieve a statistically meaningful confidence level (higher 
than 90%). The parameter for internal I/O bandwidth of reading 
(/r) showed the highest probability of a statistically meaningful 
confidence level, reaching 71.48%. Regarding the confidence level 
of the predictions of the different storage elements, no statistically 
meaningful differences were found. 

6.2. Evaluating decision-making 

In evaluating decision-making attention should be focused 
on the time consumed in read/write operations and the time 
dedicated to file create operations. These operations consume 
much more processing time because they have to calculate the 
most efficient data placements to enhance the QoS of later data 
accesses. 

The decision-making performance of read/write operations 
depends on the number of parts into which the file was divided 
when it was created and the number of replicas of each part. For 
each replica, the broker has to obtain the corresponding current 
data by means of GMonE to make the decision. The average time to 
request this data is 30 ms per replica. The processing time to select 
the appropriate replicas only represents a very low percentage 
(13.4%) of this time because of the high cost of database accesses. 

The study of file create operations requires a deeper analysis. 
For this purpose, the weights of the different stages are examined 
step by step: (i) analysis of the active grid resources to obtain their 
predictions and the historical information of each of the different 
parameters analyzed, (ii) obtaining the objective function and 
sorting the storage resources from higher to lower expected QoS of 
current and later data accesses according to the predictions and the 
high-level policies defined, and (iii) selection of the set of storage 
elements required to store the file, taking advantage of most of the 
client network bandwidth and calculating a suitable block size to 
access each resource. The processing time (200 ms on average) is 
mostly spent on the first step (44.5%) because this phase requests 
a higher number of data from the monitoring system. Most of this 
time (72.25%) is consumed in accessing the database whereas only 
a minor percentage (27.75%) is used for processing data. The next 
high workload stage (37.8%) is the resource selection and block 
size calculation step, since it has to make the decision. Finally, the 
objective function calculation is the step that requires the least 
workload (17.7%) ensuring the selection of suitable algorithms to 
obtain the goodness of each resource. 

6.3. Autonomic capabilities 

GAS aims at making system management easy by incorporating 
autonomic capabilities. The self-management capability is intrinsic 
to the GAS operation. Section 5.3.2 analyzes in depth how GAS 
configures the importance (WP) of every parameter P in order to 
make decisions following high-level policies. Self-optimizing aims 
at enhancing the QoS of not only data accesses but also the GAS 
itself. The autonomic configuration of the internal parameter data 
period (Ds

p) allows the system to adapt better to changes in the 
environment. Fig. 3 shows the average time taken by the system to 
make predictions according to different values of Dp. If GAS detects 
a stable behavior for a specific storage element s and parameter 
P, it increases Dp achieving faster access to the database and 
avoiding overheads in the prediction algorithm. If the behavior is 
too variable, GAS reduces Dp to obtain more information about the 
resource and the parameter thus adapting itself better to changes. 
In this case, prediction results can change around 16% moving 
closer to actual resource behavior as Dp is decreased. 

6.4. CAS performance and QoS 

To measure the GAS influence on the system performance and 
the quality of the overall data services provided, a MAPFS-DSI 



-1 1 1 1 1 1 1 1 1 1 r-

60 93 6 1272 160 8 194 4 228 2616 295 2 328 8 3624 396 429 6 463 2 496 8 530 4 564 597 6 631 2 664 8 698 4 732 765 6 799 2 832 8 866 4 900 

Monitoring data period (s) 

-Database access time Prediction time 

Fig. 3. Average time to make predictions regarding the monitoring data period Dp 
observed in the storage element s. 

client application has been used. This application performs read 
and write operations on the selected resources in a parallel way. 
For comparison purposes, the client and GAS have been configured 
in four different working modes during these experiments: 

• Random mode: the client randomly selects how many and what 
storage resources are used to perform parallel read and write 
operations. It uses a 2 MB block size, since results obtained in 
previous analyses show that this size is suitable in all tests. 

• Best resource mode: the broker selects the best resource for 
read and write operations based on static characteristics of grid 
elements instead of dynamic workload. In these experiments 
UPM 2 was selected as the best resource. The appropriate block 
size for effectively accessing the selected resource is calculated 
by the broker. 

• Decision mode: the broker selects data placements according 
to the decision making phase explained in this work. The 
prediction phase described in this paper is not performed, 
i.e. the broker only uses the current state of each resource. 
As in the case of best resource mode, the client obtains the 
appropriate block sizes to access every resource. 

• Prediction and decision mode: the GAS broker is in charge of 
calculating the predictions and the decision-making. The client 
obtains the suitable block sizes from the broker. 

The last two working modes (decision, and prediction and 
decision) contain the main elements of the GAS proposal. They 
are the center of this experimental evaluation and represent the 
main contribution of this paper. The first two working modes 
(random and best resource) represent typical distributed storage 
configurations and are included in the study for comparison 
purposes. Several experiments have been performed in order to 
analyze the QoS of I/O operations according to the client access 
mode and the file sizes. These tests consisted in creating and 
writing 10 MB, 100 MB and 1 GB files for the purpose of performing 
consecutive read operations from the same files every six hours. 
For read operations, average and standard deviation bandwidth 
values were selected as representative descriptors. Brokering 
times were measured in order to study the overhead of the decision 
and prediction phases. 

Regarding brokering overhead, the experiments performed 
show that decision and prediction times are not dependent on 
the specific characteristics of each I/O operation. The brokering 
overhead is basically constant for all operations, regardless of the 
amount of data that is being accessed. 

The random and best resource modes do not have any brokering 
overhead, since the resource selection is performed by the client 
in the first case (simply by selecting random resources) and is 
static and performed before the experiments in the latter case. The 
other two modes (decision and prediction and decision) present a 
very similar constant overhead of around 0.86 s. The prediction 

GAS automatically adapts this value in accordance with the behavior of the parameter P 

File Size 

D Random D Best resource D Decision D Prediction & Decision 

Fig. 4. Average read bandwidth. 

and decision mode presents the higher overhead (0.89 s), which is 
not surprising given that it presents the most complex brokering 
process. The small difference between this and the decision mode 
is explained by the fact that most of the prediction process 
(Markov chain calculations, etc.) is performed asynchronously, and 
therefore adds no direct overhead to the I/O operations time. The 
extra time spent due to the prediction process is insignificant. 

Fig. 4 shows the different average read bandwidths of each 
client access mode and file size. Regarding small operations 
(10 MB), the random mode obtains better results since the file size 
is very small. I this mode the client itself has the required location 
information whereas in the other modes the client requests the 
data location information from the broker. The effective read 
bandwidth shown is calculated using the request time and the file 
size. The request time is the sum of the time of the connection 
to the broker and the decision-making to select the appropriate 
replicas. The request time affects the 2 broker-based modes. The 
high influence of the request time due to the low file size means 
that the best option to read low-size files is to use the random 
mode. 

The 100 MB read operation performance in random mode has 
a high average read bandwidth compared to the 10 MB case. 
I/O operations in random mode benefit from the parallel ac
cess if several resources are randomly selected, whereas only one 
resource is used in best resource mode, limiting its performance. 
Regarding the two proposed decision-based modes, which repre
sent the fundamental contribution of this paper, the average read 
bandwidths of both modes are very close because there are several 
suitable combinations for this file size in which the bandwidths are 
not saturated during a long time. 

The 1 GB read operation bandwidth in each mode is noticeably 
different. The random mode client is clearly penalized because it is 
equally likely to select either the best or the worst resources. On 
the other hand, both proposed decision-based mode approaches 
guarantee the use of optimal resources because decisions are 



5 
n 
> 8 

I 
* 
4) 

« * 
m 

1 

0.8 

0.6 

n4 

0.2 

10 MB 100 MB 1GB 

File Size 

• Random • Best resource D Decision • Prediction & Decision 

Fig. 5. Average read bandwidth standard deviation. 

focused on obtaining high-performance. Thus, although the 
random mode client does not contact the broker, eliminating the 
extra overhead, it takes around 38% more time than decision mode 
client and around 46% time more than prediction and decision 
mode client. In the case of 1 GB read operations, the difference 
observed between the two decision-based modes is due to the 
prediction enabling more constant data access in the long term. The 
decision mode client is penalized by the grid changes because write 
operations do not take into account the behavior prediction. The 
prediction and decision mode client achieves an improvement of 
around 10% with regard to the decision mode client. As in 10 MB and 
100 MB file size accesses, the best resource mode obtains the worst 
performance since clients only access a single grid resource. From a 
general perspective, both decision-based modes (the fundamental 
part of this contribution) obtain significantly better results. 

When the file size is increased, the performance is significantly 
improved by using the decision-based modes. The decision and 
prediction mode obtains the highest bandwidths for both read 
and write operations, with their transfer rates exceeding 25 MB/s 
and 20 MB/s, respectively. These are higher than the theoretical 
network transfer rate of every storage element of the grid testbed. 
Despite obtaining slightly worse results than the decision and 
prediction mode, the decision mode still presents an improvement 
over the other two mechanisms, proving that both key elements 
of the GAS framework (decision and prediction) are necessary to 
obtain the highest performance. 

These results show how the proposed techniques improve data 
access performance. However, to obtain quality of service a certain 
bandwidth stability in all operations and the ability to adapt to 
system changes have to be guaranteed. Not only the average 
bandwidth has to observed, but also the degree of dispersion of 
the performance observed (how close each individual operation is 
to the average value). To provide a descriptor of this dispersion, 
Fig. 5 shows the different read bandwidth standard deviations for 
each client access mode and file size. 

In the case of small operations (10 MB), the dispersion is 
negligible, with all deviation values less than 0.1 regardless of 
the access mode. In this scenario the small file size and access 
time make most read operations almost identical, regardless of the 
resource selected. 

In the 100 MB read access scenario higher deviations have been 
observed, showing that in large I/O operations resource selection 
is a key factor. However, the dispersion observed is still very low, 
between 0.2 and 0.3. The random mode presents a lower deviation 
than both decision-based modes. If we consider again the data from 
Fig. 4, showing that the random mode performance is clearly lower 
than the other two mentioned, the conclusion is that this mode 
always produces low performance results. The best resource mode 
brings up the rear, with even lower performance and a deviation 
similar to the decision-based modes. 

The 1 GB scenario shows that the significant performance im
provement obtained by the decision-based modes is concomitant 

with an increase in deviation. This is due to the fact that the grid 
constantly changes, and the best possible performance that can be 
obtained varies with time. The decision-based modes try to obtain 
the best performance at each moment, reflecting the variability of 
the grid infrastructure in their results. However, the deviation val
ues observed are still very low (less than 0.7), guaranteeing a very 
stable service with substantially better performance than in the 
random and best resource modes. 

The increase in file size has an impact on service stability, 
since resource selection is the key element of operation QpS. The 
random and best resource modes generally provide poor results, 
with low dispersion but also low performance. These modes 
fail to take advantage of the grid potential and present sub-
optimal solutions. Our decision-based proposals (both decision and 
decision and prediction modes) show slightly higher dispersion 
due to the fact that they adapt to the grid variability and try 
to achieve optimal performance in each situation. The slightly 
higher deviation observed is still very low, guaranteeing a 
higher performance and stable operation, and therefore increasing 
QoS. 

7. Related work 

The main difference between the work presented in this paper 
and the previous work done on data grids is the way write 
operations are performed. In most systems, files are written locally 
and once the write is completed the files are either sent to the 
server that will finally store them or replicated to the right places 
(according to the replication policies) [20-23]. Our proposal is 
based on providing efficient access to large volumes of data, such 
as those stored in data grids. Therefore, it is necessary to enhance 
the quality of data services, writing data in those storage elements 
that will offer high quality access when the file is to be read. 

Although, as far as the authors are aware, no previous work 
has followed the proposed approach, many projects have tried to 
model grid resources to be able to make decisions on how and 
where to replicate data. The first approach, widely used in grids, 
is based on measured performance values. In these systems, the 
load is measured once (peak value), periodically or every time 
an event occurs. This observed performance serves as the basis 
for making decisions [21,24-26,22]. This approach is based on 
the assumption that the future will be like the measured state, 
i.e. that the system is somehow static. A second approach consists 
in modeling using analytical models [27-31]. Another family of 
models is based on correlation between events. The idea is to be 
able to predict events by its correlation to previous events [32] 
or workload characteristics [33]. As an evolution of these models, 
there have also been proposals going beyond building the model, 
by checking the accuracy of the model and deciding to remodel 
whenever needed [34]. The proposed models are not adequate for 
our objective because they cannot predict the behavior at a given 
time when this time is not known a priori, making it impossible to 
dynamically adapt to changes in the system behavior. 

Finally, the main cluster file systems that have autonomic 
capabilities [35-39] need to be mentioned. Although these 
file-systems have different target environments, they are the 
precursors of autonomic storage for grid systems. 

S. Conclusions and open issues 

Grids are highly complex systems. The autonomic framework 
GAS has been designed and implemented to manage this 
complexity, enhancing the quality of data storage services. Firstly, 
GAS allows the system to adapt its behavior facing environment 
changes. Additionally, it adjusts internal parameters to improve 
the QoS of the overall system and the decision-making processes. 



This paper describes in depth all the required phases to provide 
autonomic features: monitor, analyze and plan. The analyze and 
plan phases are based on data analysis, Markov chain-based 
prediction and decision-making, whereas the monitoring phase is 
provided by GMonE, a proposed set of services for GAS designed 
to work together and intended to provide a complete monitoring 
infrastructure for the grid. 

The use of GAS provides substantial benefits both in the areas of 
data access performance and, most importantly, quality of service. 
These benefits have been observed in real experimental scenarios, 
further validating the scientific contribution of this autonomic 
framework. Additionally, the decision and prediction techniques 
here presented are based on an enhanced Markov chain model, an 
extension of traditional Markov chain models that addresses the 
special needs of grid resource behavior modeling. 

There are, however, pending tasks to be considered for possible 
future work. GAS is a broker-based solution, which means that 
every client query is first submitted to the broker, thus making 
it a central element (creating a single point of failure). To address 
this problem, GAS could evolve into a distributed architecture 
using a distributed database, thus allowing more efficiency, 
availability, scalability and fault tolerance. Furthermore, although 
the prediction phase is relatively short, scalability is a crucial 
feature since there could be thousands of storage elements in 
a grid. Thus, an alternative could be to move the prediction 
capabilities to the server-side and analyzing the possible benefits 
and drawbacks. 

References 

[1] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, The data grid: 
towards an architecture for the distributed management and analysis of large 
scientific datasets, Journal of Network and Computer Applications 23 (3) 
(2000) 187-200. 

[2] R. Ross, R. Thakur, A. Choudhary, Achievements and challenges for I/O 
in computational science, Journal of Physics: Conference Series 16 (2005) 
501-509. 

[3] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1) 
(2003)41-50. 

[4] IBM, Autonomic Computing Toolkit, Developer's Guide, 2nd ed., IBM-
International Business Machines Corporation, 2004. 

[5] T. Perelmutov, et al. The storage resource manager interface specification, 
version 2.2, Lawrence Berkeley National Laboratory, January 2007. 

[6] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, S. Sekiguchi, Grid datafarm 
architecture for petascale data intensive computing, in: Proceedings of the 
2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, 
CCGRID'02, IEEE Computer Society, Washington, DC, USA, 2002, p. 102. 

[7] A. Sanchez, M.S. Perez, J. Montes, T. Cortes, A high performance suite of 
data services for grids, Future Generation Computer Systems 26 (4) (2010) 
622-632. 

[8] J.M. Schopf, M. D'Arcy, N. Miller, L. Pearlman, I. Foster, C. Kesselman, 
Monitoring and discovery in a web services framework: functionality and 
performance of the globus toolkit's MDS4, Tech. Rep. ANL/MCS-P1248-0405, 
Argonne National Laboratory, 2005. 

[9] J.B. MacQueen, Some methods of classification and analysis of multivariate ob
servations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical 
Statistics and Probability, 1967, pp. 281-297. 

[10] G.W. Milligan, M.C.Cooper, An examination of procedures for determining the 
number of clusters in a data set, Psychometrika 50 (1985) 159-179. 

[11] J. Hartigan, Clustering Algorithms, Wiley, 1975. 

[12] A.A. Markov, Extension of the limit theorems of probability theory to a sum 
of variables connected in a chain, in: Reprinted in Appendix B of: R. Howard. 
Dynamic Probabilistic Systems, in: Markov Chains, vol. 1, John Wiley and Sons, 
1971, pp. 552-577. 
S.P. Frankel, Convergence rates of iterative treatments of partial differential 
equations, MTAC 4 (1950) 65-75. 

W. Kahan, Gauss-seidel methods of solving large systems of linear equations, 
Ph.D. Thesis, University of Toronto, Toronto, Canada, 1958. 
T.H. Cormen, C.E. Leiserson, R.L Rivest, C. Stein (Eds.), Introduction to 
Algorithms, second ed., MIT Press, McGraw-Hill, 2001, pp. 540-549 (Chapter 
22.3): Depth-first search. 

G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, 
1963. 
P.M. Chen, D.A. Patterson, Maximizing performance in a striped disk array, 
in: Proceedings of the 17th Annual International Symposium on Computer 
Architecture, ISCA'90, ACM Press, New York, NY, USA, 1990, pp. 322-331. 
M.S. Perez, A. Sanchez, J.M. Pefia, V. Robles, A new formalism for dynamic 
reconfiguration of data servers in a cluster, Journal of Parallel and Distributed 
Computing 65 (10) (2005) 1134-1145. 
A. Domenici, F. Donno, G. Pucciani, H. Stockinger, K. Stockinger, Replica 
consistency in a data grid, Nuclear Instruments and Methods in Physics 
Research A 534 (2004) 24-28. 
C.IC Baru, R.W. Moore, A. Rajasekar, M. Wan, The SDSC storage resource broker, 
in: MacKay, S.A., Johnson, J.H. (Eds.), CASCON, IBM, 1998, p. 5. 
S. Vazhkudai, S. Tuecke, I. Foster, Replica selection in the globus data grid, 
in: Proceedings of the 1st International Symposium on Cluster Computing 
and the Grid, CCGRID'01, IEEE Computer Society, Washington, DC, USA, 2001, 
pp. 106-113. 
P.Z. Kunszt, E. Laure, H. Stockinger, K. Stockinger, File-based replica 
management, Future Generation Computer Systems 21 (1) (2005) 115-123. 
V. Andronikou, K. Mamouras, IC Tserpes, D. Kyriazis, T. Varvarigou, 
Dynamic QpS-aware data replication in grid environments based 
on data "importance", Future Generation Computer Systems (2011), 
doi:10.1016/j.future.2011.02.003. 
K. Ranganathan, I. Foster, Design and evaluation of dynamic replication 
strategies for a high performance data grid, in: Proc. of the Int. Conf. on 
Computing in High Energy and Nuclear Physics, 2001. 

J. Feng, M. Humphrey, Eliminating replica selection-using multiple replicas to 
accelerate data transfer on grids, in: Proc. of 10th Int. Conf. on Parallel and 
Distributed Systems, ICPADS 2004, IEEE Computer Society, 2004, pp. 359-366. 
D.G. Cameron, J. Casey, L. Guy, P.Z. Kunszt, S. Lemaitre, G. McCance, 
H. Stockinger, K. Stockinger, G. Andronico, W. Bell, I. Ben-Akiva, D. Bosio, 
R. Chytracek, A. Domenici, F. Donno, W. Hoschek, E. Laure, L. Lucio, A.P. Millar, 
L. Salconi, B. Segal, M. Silander, Replica management in the European datagrid 
project, Journal of Grid Computing 2 (4) (2004) 341-351. 

E. Anderson, Simple table-based modeling of storage devices, Tech. Rep. HPL-
SSP2001-4, HP, July 2001. 

S. Vazhkudai, J.M. Schopf, Using regression techniques to predict large data 
transfers, International Journal of High Performance Computing Applications 
17 (3) (2003) 249-268. 

F. Hidrobo, T. Cortes, Towards a zero-knowledge model for disk drives, in: Proc. 
of the 5th Annual Int. Workshop on Active Middleware Services, AMS 2003, 
IEEE Computer Society, 2003, pp. 122-130. 

X. Qin, Design and analysis of a load balancing strategy in data grids, Future 
Generation Computer Systems 23 (2007) 132-137. 

J. Montes, A. Sanchez, J.J. Valdes, M.S. Perez, P. Herrero, Finding order in chaos: 
a behavior model of the whole grid, Concurrency and Computation: Practice 
and Experience 22 (2010) 1386-1415. 

I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, J.S. Chase, Correlating instrumen
tation data to system states: a building block for automated diagnosis and con
trol, in: OSDI'04: Proceedings of the 6th Conference on Symposium on Oper
ating Systems Designs Implementation, USENIX Association, 2004, p. 16. 
M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, G.R. Ganger, Storage 
device performance prediction with CART models, in: Modeling, Analysis, and 
Simulation of Computer Systems, 2004, pp. 588-595. 

E. Thereska, D. Narayanan, A. Ailamaki, G.R. Ganger, Observer: keeping system 
models from becoming obsolete, in: Hot Topics in Autonomic Computing, 
HotAC II, USENIX Association, 2007, p. 10. 

G.R. Ganger, J.D. Strunk, A.J. Klosterman, Self-* storage: brickbased storage 
with automated administration, Tech. Rep. CMU-CS03-178, Carnegie Mellon 
University, August 2003. 

Z. Zhang, S.-D. Lin, Q, Lian, C. Jin, Repstore: a self-managing and self-tuning 
storage backend with smart bricks, in: Proc. of the 1st Int. Conf. on Autonomic 
Computing, ICAC 2004, IEEE Computer Society, 2004, pp. 122-129. 

F. Hidrobo, T. Cortes, Autonomic storage system based on automatic learning, 
in: L. Bouge, V.IC Prasanna (Eds.), HiPC, in: Lecture Notes in Computer Science, 
vol. 3296, Springer, 2004, pp. 399-409. 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 



[38] M. Halem, R. Schauer, A mass storage system administrator autonomic 
assistant, in: Proceedings of the 2nd IEEE International Conference on 
Autonomic Computing, ICAC-05, IEEE Computer Society, Los Alamitos, CA, 
USA, 2005, pp. 300-301. 

[39] K. Magoutis, P. Sarkar, G. Shah, OASIS: self-tuning storage for applications, in: 
Fourteenth NAASA Goddard, Twenty-Third IEEE Conference on Mass Storage 
Systems and Technologies, College Park, Maryland, USA, 2006. 


