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Abstract— Data replication is a key optimization technique for 
reducing access latency and managing large data by storing 
replica of data in a wisely manner. In this paper, we propose a 
data replication algorithm, called the Prediction-Base Dynamic 
Replication (PBDR) algorithm that improves file access time. 
Restricted by the storage capacity, it is essential to design an 
effective strategy for the replication replacement task. PBDR 
deletes files by considering four important factors: the number of 
requests for the replica in the future times, availability, the size of 
the replica and the last time the replica was requested. Also, it 
can minimize access latency by selecting the best replica when 
various sites hold replicas of datasets. The algorithm is simulated 
using a data grid simulator, OptorSim, developed by European 
Data Grid projects. The experiment results show that PBDR 
strategy gives better performance compared to the other 
algorithms and prevents unnecessary creation of replica which 
leads to efficient storage usage.

Index Terms— Data Grid, Data replication, Simulation

I. INTRODUCTION

Nowadays, many large-scale scientific systems [1–5] and 
commercial applications [6] such as the Large Hadron 
Collider (LHC) [7], the Data Grid Project (EDG) [8], image 
processing, physics Data Grids [9,10], and data mining deal 
with large volume of data in the terabyte and even petabyte 
range and require increasing amounts of computing power, 
network bandwidth, and storage capacity for optimum
performance [11-13]. A large number of storage elements and 
computational resources are integrated to generate a grid 
which provides us shared access to computing and storage 
resources such as CPUs, memory, and hard disks [14]. 

In particular, Data Grid is a type of grid which gives 
services and infrastructure that facilitate discovery, transfer 
and manipulation of huge amounts of data, as well as creation 
and management of copies of these data sets [15-17]. 
According to the Pareto principle (also known as the 80/20 
rule) [18], some particular of Data Grid files are regularly 
accessed and transferred. In addition storing data on a central 
server causes problems such as single point of failure and 
bottleneck. Hence, this huge amount of data should be 
replicated and stored in various locations of distributed system 
to avoid such problems. Data replication is a practical and 
effective approach to achieve efficient and fault-tolerant data 
access in grids. 

There are three key issues in all the data replication 
algorithms as follows:
• Replica selection: process of selecting replica among 

other copies that are spread across the grid.
• Replica placement: process of selecting a grid site to 

place the replica. 
• Replica management: the process of creating or deleting 

replicas in Data Grid. 
In grid environment, where large number of users is sharing 

limited computing and storage resources, the optimization of 
resource usage is very critical in order to reach reasonable 
execution time. Even though the memory and storage size of 
computers are ever increasing, they are still not keeping up 
with the request of storing large number of data. Hence 
methods needed to create replicas that increase availability 
without using unnecessary storage and bandwidth.

In this paper, a Prediction-Base Dynamic Replication 
(PBDR) algorithm is proposed to decrease the job execution 
time and increase the data availability in the system. 
Restricted by the storage capacity, it is essential to present an 
effective strategy for the replication replacement task. We 
propose a new replacement strategy which considers four key 
factors: the number of requests in the future times, the size of 
the replica, availability, and the last time the replica was 
requested. 

The main concept is: some files that were accessed more 
frequently in past will be accessed in future more than others. 
The strategy assigns an availability factor for each storage 
element in grid. This factor is symptom of probability of file 
existence. It is supposed that all files in a storage element have 
the same availability and in addition, each file has only one 
copy in storage element. Also, we are fallowing users behavior 
of requesting a file, and record the change to this request, 
whether growth or decay change. Then the average 
decay/growth rate is computed, and according to this average, 
the next number of access of this file is predicted. The 
proposed strategy is simulated in OptorSim and compared 
with various replica strategies. The simulation results show the 
better performance of our algorithm than former ones.

The rest of the paper is organized as follows: In section 2 
the classification of data replication strategies is briefly 
explained. Section 3 gives an overview of pervious work on 
data replication algorithms. Section 4 presents the proposed 
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replication strategy. We show and analyze the simulation 
results in section 5. Finally, section 6 concludes the paper and 
suggests some directions for future work.

II. CLASSIFICATION OF DATA REPLICATION STRATEGIES

The motivation for replication is how to enhance data 
availability, accessibility, reliability, and scalability. 
Generally, replication algorithms are either static or dynamic.  
In static approaches the created replica will exist in the same 
place till user deletes it manually or its duration is expired. 

The disadvantages of the static replication strategies are 
that they cannot adapt to changes in user behavior and they are 
not appropriate for huge amount of data and large number of 
users. Of course static replication methods have some
advantages like: they do not have the overhead of dynamic 
algorithms and job scheduling is done quickly [19, 20]. On the 
other hand, dynamic strategies create and delete replicas 
according to the changes in grid environments, i.e. users’ file 
access pattern [21-25]. 

As Data Grids are dynamic environments and the 
requirements of users are variable during the time, dynamic 
replication is more appropriate for these systems [26, 27]. But 
many transfers of huge amount of data that are a consequence 
of dynamic algorithm can lead to a strain on the network’s 
resources. So, inessential replication should be avoided. A 
dynamic replication scheme may be implemented either in a 
centralized or in a distributed approach. These methods also 
have some drawbacks such as; the overload of central decision 
center further grows if the nodes in a data grid enter and leave 
frequently. In case of the decentralized manner, further 
synchronization is involved making the task hard.

III. RELATED WORKS

Foster and Ranganathan [28], proposed six distinct replica 
strategies: No Replica, Best Client, Cascading Replication, 
Plain Caching, Caching plus Cascading Replica and Fast 
Spread) for multi-tier Data Grid. They also introduced three 
types of localities, namely: Temporal locality (The files
accessed recently are much possible to be requested again 
shortly), Geographical locality (The files accessed recently by 
a client are probably to be requested by adjacent clients, too) 
and Spatial locality (The related files to recently accessed file 
are likely to be requested in the near future). These strategies 
evaluated with different data patterns: first, access pattern with 
no locality. Second, data access with a small degree of 
temporal locality and finally data access with a small degree 
of temporal and geographical locality. The results of 
simulations indicate that different access pattern needs 
different replica strategies. Cascading and Fast Spread 
performed the best in the simulations. Also, the authors 
combined different scheduling and replication strategies.

Sashi and Thanamani [29] have extended Latest Access 
Largest Weight (LALW) strategy [30] where the replicas are 
created based on their weights. LALW algorithm gives higher 
weighs to recently requested files and replica placement were 

done only in cluster levels and not in the site levels. But Sashi 
et al. algorithm minimizes mean job execution time by placing 
the replicas in best site within the cluster by considering 
number of file requests and response time.

Park et al. [31] presented a Bandwidth Hierarchy based 
Replication (BHR) which decreases the data access time by 
maximizing network-level locality and avoiding network 
congestions. They divided the sites into several regions, where 
network bandwidth between the regions is lower than the
bandwidth within the regions. So if the required file is placed 
in the same region, its fetching time will be less. BHR strategy 
has two deficiencies, first it terminates, if replica exists within 
the region and second replicated files are placed in all the 
requested sites not the appropriate sites. BHR strategy has 
good performance only when the capacity of storage element 
is small. 

Mansouri and Dastghaibyfard [24] presented a Dynamic 
Hierarchical Replication (DHR) strategy that store replica in 
suitable sites where the particular file has been accessed most, 
instead of storing file in many sites. It also decreases access 
latency by selecting the best replica when different sites hold 
replicas. The proposed replica selection strategy chooses the 
best replica location for the users’ running jobs by considering 
the replica requests that waiting in the storage and data 
transfer time. The simulation results show, it has less job 
execution time in comparison with other strategies especially 
when the Grid sites have comparatively small storage size.

According to the previous works, although DHR makes 
some improvements in some metrics of performance like 
mean job time, it shows some deficiencies. Replica selection 
and replica replacement strategies in DHR strategy are not 
very efficient.  We proposed in [32] Modified Dynamic 
Hierarchical Replication Algorithm (MDHRA) that improves 
DHR strategy. MDHRA deletes files in two steps when free 
space is not enough for the new replica: First, it deletes those 
files with minimum time for transferring (i.e. only files that 
are exist in local LAN and local region). Second, if space is 
still insufficient then it uses three important factors into 
replacement decision: the last time the replica was requested, 
number of access, and file size of replica. It also improves 
access latency by selecting the best replica when various sites 
hold replicas. The proposed replica selection selects the best 
replica location from among many replicas based on response 
time that can be determined by considering the data transfer 
time, the storage access latency, the replica request waiting in 
the storage queue and the distance between nodes. Also a 
novel job scheduling algorithm called Combined Scheduling 
Strategy (CSS) is proposed in [32] that uses hierarchical 
scheduling to reduce the search time for an appropriate 
computing node. It considers the number of jobs waiting in 
queue, the location of required data for the job and the 
computing capacity of sites.

Khanli et al. [33] proposed a new dynamic replication 
strategy in a multi-tier data grid called predictive hierarchical 
fast spread (PHFS) which is an extended version of fast spread 
(a dynamic replication method in the data grid). Considering 
spatial locality, PHFS tries to predict future needs and pre-
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replicates them in hierarchal manner to increase locality in 
accesses and consequently improves performance. PHFS not 
only replicates data objects hierarchically in different layers of 
the multi-tier data grid for obtaining more localities in 
accesses but also optimized the usage of storage resources. 
But the authors just compared PHFS and CFS (common fast 
spread) with an example from the perspective of access 
latency. Therefore we implemented their strategy using 
OptorSim and compared it with other data replication 
strategies.

IV. PREDICTION-BASED DYNAMIC REPLICATION STRATEGY

When a job is allocated to local scheduler, before job 
execution the replica manager should transfer all the required 
files that are not available. Some of data files, are more 
desirable that those are called, popular files, whereas some 
other files will be rarely used. If the popular files can be find 
and copied into the required sites, then a great stage are taken 
to decrease the data access and therefore decrease the job 
execution time. We explained proposed replication strategy in 
three sections:

A. Replica Selection
When different sites hold replicas of datasets, there is a 

significant benefit realized by selecting the best replica. The 
Bandwidth and the latency of links are the most important 
factors, affect directly on data transfer time. The other two 
factors CPU and I/O slightly affect the performance data 
transfer. A score function is calculated as the following 
formula:

1 2 3

BW CPU IOScore P w P w P w= × + × + ×
(1)

where PBW represents the percentage of bandwidth available 
from the selected site to the site that requested file resides, 
PCPU is the percentage CPU idle states of site that requested 
file resides, and PIO is the percentage of memory free space of 
site that requested file resides.

1 2 3 1w w w+ + =
(2)

These weights can be set by the administrator of the Data 
Grid organization. According to different attributes of storage 
systems in data Grid node. So, if several sites have the replica 
of f, it selects one that has maximum Score.

B. Replica Decision
To improve the system reliability and performance, each 

file can has some copy in grids that in this case each one of 
those replicas must be saved in different storage elements. 
Because saving some replicas of one file in one storage 
element, not only don’t help to increase file’s availability but 
also will consumed huge amount of storage space. 

If the requested file exists in the storage element, there 

isn’t any need to replicate and copy it. Since as mentioned 
before, various replications of the file in storage element don’t 
enhance the availability. In contrast it can cause to waste the 
storage space. But, if the requested file doesn’t exist in the 
storage element, the file replication will be done. Now PBDR 
places the replica in the Best Storage Element (BSE). To 
select the BSE, PBDR finds SE with minimum Value-SE 
(VSE). In the calculation of VSE the frequency of requests of 
the replica and the last time the replica was requested are 
considered. These parameters are important because they give 
an indication of the probability of requesting the replica again.

1( )i
i

VSE CT LT
FR

= − + (3)

where CT is the current time, LTi is the last request time of 
replica i, and FRi is the frequency of requests of the replica i.
Figure 1 describes PBDR strategy.

Figure 1: PBDR strategy.

C. Replica Replacement
If enough space for replication does not exist, one or more 

files should be candidate for replacement stage using the 
following formula:

1 1

CT LT P
CM

N
S

+
−

= + (4)

where N is number of access for the file in future time based 
on exponential growth/decay. S is the size of particular replica. 
CT is the current time, LT is the last request time of particular 
replica, P is data availability. Replicas that are available in 
BSE sorted based CM value in ascending order for deletion. 
Now some of these important parameters are explained:

Availability (P): Each storage element has the data 
availability that is indicator of possibility of existing one file 
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in it. Also it is assumed that all the saved files in storage 
element have the same availability. The file availability in the 
storage element j is shown by PSEj. Since it is possible that 
there were more than one copy of file, so the availability of 
each fi file that is shown by Pi will be obtained in this 
equation:

1
1 (1 )

N

ji SEiP p
=

= − −∏
(5)

N shows the number of fi files copies. It is obvious that for 
each operation of accessing to a file, the possibility of 
unavailability is obtained form (1-Pi) junction, of course with 
this supposition that the access operation of files will done 
separate from each other [34].

Number of access in future (N): We use the concept of 
exponential decay to predict the next number of access for the 
file. Many real world phenomena such as bacteria, radioactive 
isotopes, and credit payments can be modeled by functions 
that explain how things grow or decay as time passes. 
Exponential growth/decay is a growth in which the rate of 
growth is proportional to the current size. This model can be 
used in access history as well, since each file has number of 
access that increases by the increase of access rate and vice 
versa. We explain an exponential growth/decay principle for 
an access number of files in access history. The process of 
accessing files in Data Grid environment obeys an exponential 
model. If n0 is the number of access for the file f at time t, and 
n(t) is the number of access for the same file at time t+1 (just 
after the first access). The exponential decay/growth model is 
defined by the equation: 

0( ) rtn t n e−= × (6)

Suppose T is the number of intervals passed, F is the set of 
files that have been demanded and t

fn represents the number 

of access for the file f at time interval t, and then we acquire 
the sequence of the access numbers:

0
fn 1

fn 2
fn ………… 1T

fn − T
fn

Therefore, according to the exponential decay/growth 
model we have:

11 TT T
f fn en α −−= ∗ This implies that 1 1ln

T
f

T T
f

n
n

α − −=

So, the average rate for all intervals is
1

0

T

i
i

T

α
α

−

==
∑

(7)

We can predict the number of access for next time interval: 
1T T

f f e
ααα + = (8)

For example, we use exponential model to find the next 
number of access for file A. If 23, 20, 12, 10 are number of 
access for file A during four intervals respectively then first 
we have to compute the average decay/growth rate for file A.

20 12 10ln ln
23 20 12 0.27

3
α

+ +
= = −

Finally estimation of next number of access for file A is:

5 0.2710 7.6 8Aa e−= × = ≈
The replacement will be done just in situations that the 

value of saving new copy be more than the expense of deleting 
the existed files. Now, the value of replicating fi file is 
obtained by

( )ii i ip p p N′∆ = − × (9)

That Pi is the present availability of fi file and Pi´ is the 
availability of fi file after replication.
Also the expense of deleting the candidate files will be 
obtained by the equation

( )j j j
j Candidates

P P N
∈

′ − ×∑ (10)

That Pj is the present availability of candidate file and Pj´
is the availability after deleting the candidate file.
Therefore, the requested file fi replicated in BSE if the value 
gained by replicating fi is greater than the accumulative value 
loss by deleting the candidates file from the BSE. Where

( )i j j j
j Candidates

i N P P Np
∈

′× > − ×∆ ∑ (11)

Figure 2 shows the replacement strategy.

Figure.2: Replacement strategy.

V. EXPERIMENTS

In this section, elements of Grid simulation, network 
configuration and the simulation results are described.

A. Elements of Grid simulation
We have implemented the proposed strategy using 
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OptorSim, a simulator for Data Grids. It provides users with 
the Data Grids simulated architecture and programming 
interfaces to analysis and validate their strategies. In order to 
obtain a realistic simulated environment, there are a number of 
components which are included in OptorSim. These include 
Computing Elements (CEs), Storage Elements (SEs), 
Resource Broker (RB), Replica Manager (RM), and Replica 
Optimiser (RO). Each site consists of zero or more CEs and 
zero or more SEs as shown in Figure 3.

Figure 3 : OptorSim architecture.

B. Configuration   
The study of our scheduling algorithm is carried out using 

a model of the EU Data Grid Testbed [35] sites and their 
associated network geometry as shown in Fig. 4. Initially all 
jobs are placed on CERN (European Organization for Nuclear 
Research) storage element. CERN contains original copy of 
some data sample files that cannot be removed. Since all files 
are available in Site 0, so any job sent to this site does not 
require any file transfer. Therefore in our simulation we only 
consider all CE sites except site 0. Each file is set to be 1 GB. 
To record file transfer time and path, we changed OptorSim 
code. The simulation parameter values appear in Table 1.

A job will typically request a set of logical filename(s) for 
data access. The order in which the files are requested is 
specified by the access pattern. We considered three different 
access patterns: sequential (files are accessed in the order 
stated in the job configuration file), unitary random (file 
requests are one element away from previous file request but 
the direction is random), and Random Zipf access (given by Pi

= K/ is , where Pi is the frequency of the ith ranked item, K is 
the popularity of the most frequently accessed data item and S
determines the shape of the distribution). Data replication 
strategies commonly assume that the data is read-only in Data 
Grid environments.

Table 1
Simulation Parameter Values

Description Value

Number of files 200

File size 1 G

Storage available at an SE 30 G–100000 G

Number of jobs 10000

Number of files accessed by a job 3–20

Figure 4. The gird topology of EDG.

C. Simulation Results and Discussion
In order to evaluate the effectiveness of the different 
replication strategies implemented in OptorSim, we used the 
following metrics:

• Total job execution time;
• Effective Network Usage;
• System File Missing Rate

Total Job Execution Time: The total job time consists of 
the time of data transferring and job execution. This is a 
typical Grid user would probably evaluate it to be the most 
significant metric of how the algorithm is working.
Effective Network Usage: ENU is used to estimate the 
efficiency the network resource usage. Effective Network 
Usage (Eenu) is given from [35]:

rfa fa
enu

lfa

N N
E

N
+

= (12)

where Nrfa is the number of access times that CE reads a file 
from a remote site, Nfa is the total number of file replication 
operation, and Nlfa is the number of times that CE reads a file 
locally. The effective network usage ranges from 0 to 1. A 
lower value represents that the network bandwidth is used 
more efficiently.

System File Missing Rate: SFMR— indicates the ratio of 
the number of files potentially unavailable and the number of 
all the files requested by all the jobs. System File Missing 
Rate and it is defined as follows [34] to measure the data 
availability:
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1 1

1

(1 )
jmn

i
j i

n

j
j

P
SFMR

m

= =

=

−
=
∑∑

∑
(13)

where n indicates the total number of jobs. mj indicates the 
number of file access operation of each job. Pi shows the 
probability of availability of file fi as defined in equation (5). It 
substantiated that smaller value for SFMR show better system 
data availability [34].

Figure 5 shows the mean job time of the eight dynamic 
replication strategies with three different access patterns: 
Unitary Random, Sequential and Random Zipf distribution. 
The Least Frequently Used (LFU) strategy always replicates 
files in the site where the job is executing. If there is not 
enough space for new replica, least accessed file in the storage 
element is deleted. In Least Recently Used (LRU) strategy 
always replication takes place in the site where the job is 
executing. If there is not enough space for the new replica, the 
oldest file in the storage element is deleted. 

Bandwidth Hierarchy based Replication (BHR) strategy 
stores the replicas in a site that has a high bandwidth and
replicates those files that are likely to be requested soon within 
the region. Since size of SE at each site, is not enough to store 
large portion of all data, we cannot have much performance 
improvements with site-level replacement policy. Therefore, 
BHR strategy takes benefit from network-level locality by 
storing several files in a region as many as possible. The 
results for LFU and LRU are similar, and we only include 
those for LRU in the remaining figures. 

The mean job time in LALW is about 9% faster than that 
of BHR. LALW selects a popular file for replication. By 
associating a different weight to each historical data access 
record, the importance of each record is differentiated. The 
mean job time of DHR is lower by 12% compared to BHR 
algorithm with Sequential access pattern. Since it selects the 
best replica location for execution jobs with considering 
number of requests that waiting in the storage and data 
transfer time. The mean job time is about 27% faster using 
MDHRA than using LRU, and 11% faster than DHR with Zipf 
distribution. PBDR has the lowest value of mean job 
execution time in all the experiments and all of file access 
patterns.

Figure 5: Mean job Time for different access patterns.

As in Random access patterns comprising Unitary random 
and walk Random Zipf , a certain set of files is more likely to 
be requested by Grid sites, so a large percentage of requested 
files have been replicated before. Therefore, PBDR strategy 
and also all the other strategies have more improvement for 
random file access patterns.

Data replication takes time and consumes network 
bandwidth. However, performing no replication has been 
demonstrated to be ineffective compared to even the simplest 
replication strategy. So, a good balance must be discovered, 
where any replication is in the interest of reducing future 
network traffic. ENU is effectively the ratio of files transferred 
to files requested, so a low value indicates that the strategy 
used is better at putting files in the right places. The effective 
network usage for the Random Zipf Access Pattern Generator 
is shown in Figure. 6. The ENU of PHFS is lower about 42% 
compared to the LRU strategy. The main reason is that Grid 
sites will have their needed files present at the time of need, 
hence the total number of replications will decrease and total 
number of local accesses increase. The PBDR is optimized to 
minimize the bandwidth consumption and thus decrease the 
network traffic. 

Figure.6: Effective network usage.

Figure 7 shows the amount of SFMR for each 8 increasing 
schemes and three access patterns. In this evaluation the 
random scheduler used to schedule the jobs. The LRU
performs slightly better than LFU. It is obvious that PBDR 
strategy for all of the access patterns performs better than 
others. This is because our PBDR replica managers decide to 
make the replica only when the gain of the value from the 
replicated file is greater than the loss of the value of the 
replaced file.

Figure.7: SFMR with varying access patterns.
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The PHFS does not have a lower missing rate when 
compared to PBDR. Because the prediction function is not as 
accurate, so it brings some inaccuracy into the calculation of 
the file weight. This, in turn, will cause the replica scheme to 
fail to work as well as.

VI. CONCLUSION AND FUTURE WORK

Data replication strategies have been widely used in Data 
Grids to replicate frequently accessed data to suitable sites. A 
dynamic data replication strategy, called Prediction-Base 
Dynamic Replication (PBDR) is proposed. PBDR selects the 
best replica location for execution jobs with considering three 
important factors: CPU, I/O and Bandwidth. It also stores the 
replicas in the best site where the file has been accessed for 
the most time instead of storing files in many sites. Therefore, 
sites will have their required files locally at the time of need 
and this will decrease response time, access latency, 
bandwidth consumption and increase system performance 
considerably.

Availability of files in distributed system obtains with a 
limited copy space condition. It minimize the data miss rate 
and maximize the availability of files, meanwhile with limited 
storage space and low “time to data access”. The data files are 
sorted based on the weight factor and if the value of 
replicating a file is more than the loss of deleting the candidate 
files, the replication work will be done.

To evaluate the efficiency of policy, we use the Grid 
simulator OptorSim that is configured to represent a real world 
Data Grid testbed. We compared PBDR algorithm to 7 of 
existing algorithms, LRU, LFU, BHR, DHR, LALW, 
MDHRA and PHFS for different file access patterns. The 
evaluation shows that PBDR algorithm outperforms the other 
algorithms and improves Total Job Time and Effective 
Network Usage under different the access patterns, especially 
under the different random file access patterns. For future 
works, PBDR can be combined with a proper scheduling to 
improve performance. We aim to predict the future needs of 
Grid sites by using suitable techniques such as data mining. 
Employing replica consistency management strategies is also 
our future work plans.
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