
ISSN: 2180 - 1843 Vol. 6 No. 1 January - June 2014

A Prediction-Based Replication Algorithm for Improving Data Availability in Grid Environment

35

A Prediction-Based Replication Algorithm for
Improving Data Availability in Grid Environment

Najme Mansouri
Young Researchers Club, Sirjan Branch, Islamic Azad University, Sirjan, Iran

Department of Computer Science, Shahid Bahonar University of Kerman
najme.mansouri@gmail.com

Abstract— Data replication is a key optimization technique for
reducing access latency and managing large data by storing
replica of data in a wisely manner. In this paper, we propose a
data replication algorithm, called the Prediction-Base Dynamic
Replication (PBDR) algorithm that improves file access time.
Restricted by the storage capacity, it is essential to design an
effective strategy for the replication replacement task. PBDR
deletes files by considering four important factors: the number of
requests for the replica in the future times, availability, the size of
the replica and the last time the replica was requested. Also, it
can minimize access latency by selecting the best replica when
various sites hold replicas of datasets. The algorithm is simulated
using a data grid simulator, OptorSim, developed by European
Data Grid projects. The experiment results show that PBDR
strategy gives better performance compared to the other
algorithms and prevents unnecessary creation of replica which
leads to efficient storage usage.

Index Terms— Data Grid, Data replication, Simulation

I. INTRODUCTION

Nowadays, many large-scale scientific systems [1–5] and
commercial applications [6] such as the Large Hadron
Collider (LHC) [7], the Data Grid Project (EDG) [8], image
processing, physics Data Grids [9,10], and data mining deal
with large volume of data in the terabyte and even petabyte
range and require increasing amounts of computing power,
network bandwidth, and storage capacity for optimum
performance [11-13]. A large number of storage elements and
computational resources are integrated to generate a grid
which provides us shared access to computing and storage
resources such as CPUs, memory, and hard disks [14].

In particular, Data Grid is a type of grid which gives
services and infrastructure that facilitate discovery, transfer
and manipulation of huge amounts of data, as well as creation
and management of copies of these data sets [15-17].
According to the Pareto principle (also known as the 80/20
rule) [18], some particular of Data Grid files are regularly
accessed and transferred. In addition storing data on a central
server causes problems such as single point of failure and
bottleneck. Hence, this huge amount of data should be
replicated and stored in various locations of distributed system
to avoid such problems. Data replication is a practical and
effective approach to achieve efficient and fault-tolerant data
access in grids.

There are three key issues in all the data replication
algorithms as follows:
• Replica selection: process of selecting replica among

other copies that are spread across the grid.
• Replica placement: process of selecting a grid site to

place the replica.
• Replica management: the process of creating or deleting

replicas in Data Grid.
In grid environment, where large number of users is sharing

limited computing and storage resources, the optimization of
resource usage is very critical in order to reach reasonable
execution time. Even though the memory and storage size of
computers are ever increasing, they are still not keeping up
with the request of storing large number of data. Hence
methods needed to create replicas that increase availability
without using unnecessary storage and bandwidth.

In this paper, a Prediction-Base Dynamic Replication
(PBDR) algorithm is proposed to decrease the job execution
time and increase the data availability in the system.
Restricted by the storage capacity, it is essential to present an
effective strategy for the replication replacement task. We
propose a new replacement strategy which considers four key
factors: the number of requests in the future times, the size of
the replica, availability, and the last time the replica was
requested.

The main concept is: some files that were accessed more
frequently in past will be accessed in future more than others.
The strategy assigns an availability factor for each storage
element in grid. This factor is symptom of probability of file
existence. It is supposed that all files in a storage element have
the same availability and in addition, each file has only one
copy in storage element. Also, we are fallowing users behavior
of requesting a file, and record the change to this request,
whether growth or decay change. Then the average
decay/growth rate is computed, and according to this average,
the next number of access of this file is predicted. The
proposed strategy is simulated in OptorSim and compared
with various replica strategies. The simulation results show the
better performance of our algorithm than former ones.

The rest of the paper is organized as follows: In section 2
the classification of data replication strategies is briefly
explained. Section 3 gives an overview of pervious work on
data replication algorithms. Section 4 presents the proposed

ISSN: 2180 - 1843 Vol. 6 No. 1 January - June 2014

Journal of Telecommunication, Electronic and Computer Engineering

36

replication strategy. We show and analyze the simulation
results in section 5. Finally, section 6 concludes the paper and
suggests some directions for future work.

II. CLASSIFICATION OF DATA REPLICATION STRATEGIES

The motivation for replication is how to enhance data
availability, accessibility, reliability, and scalability.
Generally, replication algorithms are either static or dynamic.
In static approaches the created replica will exist in the same
place till user deletes it manually or its duration is expired.

The disadvantages of the static replication strategies are
that they cannot adapt to changes in user behavior and they are
not appropriate for huge amount of data and large number of
users. Of course static replication methods have some
advantages like: they do not have the overhead of dynamic
algorithms and job scheduling is done quickly [19, 20]. On the
other hand, dynamic strategies create and delete replicas
according to the changes in grid environments, i.e. users’ file
access pattern [21-25].

As Data Grids are dynamic environments and the
requirements of users are variable during the time, dynamic
replication is more appropriate for these systems [26, 27]. But
many transfers of huge amount of data that are a consequence
of dynamic algorithm can lead to a strain on the network’s
resources. So, inessential replication should be avoided. A
dynamic replication scheme may be implemented either in a
centralized or in a distributed approach. These methods also
have some drawbacks such as; the overload of central decision
center further grows if the nodes in a data grid enter and leave
frequently. In case of the decentralized manner, further
synchronization is involved making the task hard.

III. RELATED WORKS

Foster and Ranganathan [28], proposed six distinct replica
strategies: No Replica, Best Client, Cascading Replication,
Plain Caching, Caching plus Cascading Replica and Fast
Spread) for multi-tier Data Grid. They also introduced three
types of localities, namely: Temporal locality (The files
accessed recently are much possible to be requested again
shortly), Geographical locality (The files accessed recently by
a client are probably to be requested by adjacent clients, too)
and Spatial locality (The related files to recently accessed file
are likely to be requested in the near future). These strategies
evaluated with different data patterns: first, access pattern with
no locality. Second, data access with a small degree of
temporal locality and finally data access with a small degree
of temporal and geographical locality. The results of
simulations indicate that different access pattern needs
different replica strategies. Cascading and Fast Spread
performed the best in the simulations. Also, the authors
combined different scheduling and replication strategies.

Sashi and Thanamani [29] have extended Latest Access
Largest Weight (LALW) strategy [30] where the replicas are
created based on their weights. LALW algorithm gives higher
weighs to recently requested files and replica placement were

done only in cluster levels and not in the site levels. But Sashi
et al. algorithm minimizes mean job execution time by placing
the replicas in best site within the cluster by considering
number of file requests and response time.

Park et al. [31] presented a Bandwidth Hierarchy based
Replication (BHR) which decreases the data access time by
maximizing network-level locality and avoiding network
congestions. They divided the sites into several regions, where
network bandwidth between the regions is lower than the
bandwidth within the regions. So if the required file is placed
in the same region, its fetching time will be less. BHR strategy
has two deficiencies, first it terminates, if replica exists within
the region and second replicated files are placed in all the
requested sites not the appropriate sites. BHR strategy has
good performance only when the capacity of storage element
is small.

Mansouri and Dastghaibyfard [24] presented a Dynamic
Hierarchical Replication (DHR) strategy that store replica in
suitable sites where the particular file has been accessed most,
instead of storing file in many sites. It also decreases access
latency by selecting the best replica when different sites hold
replicas. The proposed replica selection strategy chooses the
best replica location for the users’ running jobs by considering
the replica requests that waiting in the storage and data
transfer time. The simulation results show, it has less job
execution time in comparison with other strategies especially
when the Grid sites have comparatively small storage size.

According to the previous works, although DHR makes
some improvements in some metrics of performance like
mean job time, it shows some deficiencies. Replica selection
and replica replacement strategies in DHR strategy are not
very efficient. We proposed in [32] Modified Dynamic
Hierarchical Replication Algorithm (MDHRA) that improves
DHR strategy. MDHRA deletes files in two steps when free
space is not enough for the new replica: First, it deletes those
files with minimum time for transferring (i.e. only files that
are exist in local LAN and local region). Second, if space is
still insufficient then it uses three important factors into
replacement decision: the last time the replica was requested,
number of access, and file size of replica. It also improves
access latency by selecting the best replica when various sites
hold replicas. The proposed replica selection selects the best
replica location from among many replicas based on response
time that can be determined by considering the data transfer
time, the storage access latency, the replica request waiting in
the storage queue and the distance between nodes. Also a
novel job scheduling algorithm called Combined Scheduling
Strategy (CSS) is proposed in [32] that uses hierarchical
scheduling to reduce the search time for an appropriate
computing node. It considers the number of jobs waiting in
queue, the location of required data for the job and the
computing capacity of sites.

Khanli et al. [33] proposed a new dynamic replication
strategy in a multi-tier data grid called predictive hierarchical
fast spread (PHFS) which is an extended version of fast spread
(a dynamic replication method in the data grid). Considering
spatial locality, PHFS tries to predict future needs and pre-

ISSN: 2180 - 1843 Vol. 6 No. 1 January - June 2014

A Prediction-Based Replication Algorithm for Improving Data Availability in Grid Environment

37

replicates them in hierarchal manner to increase locality in
accesses and consequently improves performance. PHFS not
only replicates data objects hierarchically in different layers of
the multi-tier data grid for obtaining more localities in
accesses but also optimized the usage of storage resources.
But the authors just compared PHFS and CFS (common fast
spread) with an example from the perspective of access
latency. Therefore we implemented their strategy using
OptorSim and compared it with other data replication
strategies.

IV. PREDICTION-BASED DYNAMIC REPLICATION STRATEGY

When a job is allocated to local scheduler, before job
execution the replica manager should transfer all the required
files that are not available. Some of data files, are more
desirable that those are called, popular files, whereas some
other files will be rarely used. If the popular files can be find
and copied into the required sites, then a great stage are taken
to decrease the data access and therefore decrease the job
execution time. We explained proposed replication strategy in
three sections:

A. Replica Selection
When different sites hold replicas of datasets, there is a

significant benefit realized by selecting the best replica. The
Bandwidth and the latency of links are the most important
factors, affect directly on data transfer time. The other two
factors CPU and I/O slightly affect the performance data
transfer. A score function is calculated as the following
formula:

1 2 3

BW CPU IOScore P w P w P w= × + × + ×
(1)

where PBW represents the percentage of bandwidth available
from the selected site to the site that requested file resides,
PCPU is the percentage CPU idle states of site that requested
file resides, and PIO is the percentage of memory free space of
site that requested file resides.

1 2 3 1w w w+ + =
(2)

These weights can be set by the administrator of the Data
Grid organization. According to different attributes of storage
systems in data Grid node. So, if several sites have the replica
of f, it selects one that has maximum Score.

B. Replica Decision
To improve the system reliability and performance, each

file can has some copy in grids that in this case each one of
those replicas must be saved in different storage elements.
Because saving some replicas of one file in one storage
element, not only don’t help to increase file’s availability but
also will consumed huge amount of storage space.

If the requested file exists in the storage element, there

isn’t any need to replicate and copy it. Since as mentioned
before, various replications of the file in storage element don’t
enhance the availability. In contrast it can cause to waste the
storage space. But, if the requested file doesn’t exist in the
storage element, the file replication will be done. Now PBDR
places the replica in the Best Storage Element (BSE). To
select the BSE, PBDR finds SE with minimum Value-SE
(VSE). In the calculation of VSE the frequency of requests of
the replica and the last time the replica was requested are
considered. These parameters are important because they give
an indication of the probability of requesting the replica again.

1()i
i

VSE CT LT
FR

= − + (3)

where CT is the current time, LTi is the last request time of
replica i, and FRi is the frequency of requests of the replica i.
Figure 1 describes PBDR strategy.

Figure 1: PBDR strategy.

C. Replica Replacement
If enough space for replication does not exist, one or more

files should be candidate for replacement stage using the
following formula:

1 1

CT LT P
CM

N
S

+
−

= + (4)

where N is number of access for the file in future time based
on exponential growth/decay. S is the size of particular replica.
CT is the current time, LT is the last request time of particular
replica, P is data availability. Replicas that are available in
BSE sorted based CM value in ascending order for deletion.
Now some of these important parameters are explained:

Availability (P): Each storage element has the data
availability that is indicator of possibility of existing one file

ISSN: 2180 - 1843 Vol. 6 No. 1 January - June 2014

Journal of Telecommunication, Electronic and Computer Engineering

38

in it. Also it is assumed that all the saved files in storage
element have the same availability. The file availability in the
storage element j is shown by PSEj. Since it is possible that
there were more than one copy of file, so the availability of
each fi file that is shown by Pi will be obtained in this
equation:

1
1 (1)

N

ji SEiP p
=

= − −∏
(5)

N shows the number of fi files copies. It is obvious that for
each operation of accessing to a file, the possibility of
unavailability is obtained form (1-Pi) junction, of course with
this supposition that the access operation of files will done
separate from each other [34].

Number of access in future (N): We use the concept of
exponential decay to predict the next number of access for the
file. Many real world phenomena such as bacteria, radioactive
isotopes, and credit payments can be modeled by functions
that explain how things grow or decay as time passes.
Exponential growth/decay is a growth in which the rate of
growth is proportional to the current size. This model can be
used in access history as well, since each file has number of
access that increases by the increase of access rate and vice
versa. We explain an exponential growth/decay principle for
an access number of files in access history. The process of
accessing files in Data Grid environment obeys an exponential
model. If n0 is the number of access for the file f at time t, and
n(t) is the number of access for the same file at time t+1 (just
after the first access). The exponential decay/growth model is
defined by the equation:

0() rtn t n e−= × (6)

Suppose T is the number of intervals passed, F is the set of
files that have been demanded and t

fn represents the number

of access for the file f at time interval t, and then we acquire
the sequence of the access numbers:

0
fn 1

fn 2
fn ………… 1T

fn − T
fn

Therefore, according to the exponential decay/growth
model we have:

11 TT T
f fn en α −−= ∗ This implies that 1 1ln

T
f

T T
f

n
n

α − −=

So, the average rate for all intervals is
1

0

T

i
i

T

α
α

−

==
∑

(7)

We can predict the number of access for next time interval:
1T T

f f e
ααα + = (8)

For example, we use exponential model to find the next
number of access for file A. If 23, 20, 12, 10 are number of
access for file A during four intervals respectively then first
we have to compute the average decay/growth rate for file A.

20 12 10ln ln
23 20 12 0.27

3
α

+ +
= = −

Finally estimation of next number of access for file A is:

5 0.2710 7.6 8Aa e−= × = ≈
The replacement will be done just in situations that the

value of saving new copy be more than the expense of deleting
the existed files. Now, the value of replicating fi file is
obtained by

()ii i ip p p N′∆ = − × (9)

That Pi is the present availability of fi file and Pi´ is the
availability of fi file after replication.
Also the expense of deleting the candidate files will be
obtained by the equation

()j j j
j Candidates

P P N
∈

′ − ×∑ (10)

That Pj is the present availability of candidate file and Pj´
is the availability after deleting the candidate file.
Therefore, the requested file fi replicated in BSE if the value
gained by replicating fi is greater than the accumulative value
loss by deleting the candidates file from the BSE. Where

()i j j j
j Candidates

i N P P Np
∈

′× > − ×∆ ∑ (11)

Figure 2 shows the replacement strategy.

Figure.2: Replacement strategy.

V. EXPERIMENTS

In this section, elements of Grid simulation, network
configuration and the simulation results are described.

A. Elements of Grid simulation
We have implemented the proposed strategy using

ISSN: 2180 - 1843 Vol. 6 No. 1 January - June 2014

A Prediction-Based Replication Algorithm for Improving Data Availability in Grid Environment

39

OptorSim, a simulator for Data Grids. It provides users with
the Data Grids simulated architecture and programming
interfaces to analysis and validate their strategies. In order to
obtain a realistic simulated environment, there are a number of
components which are included in OptorSim. These include
Computing Elements (CEs), Storage Elements (SEs),
Resource Broker (RB), Replica Manager (RM), and Replica
Optimiser (RO). Each site consists of zero or more CEs and
zero or more SEs as shown in Figure 3.

Figure 3 : OptorSim architecture.

B. Configuration
The study of our scheduling algorithm is carried out using

a model of the EU Data Grid Testbed [35] sites and their
associated network geometry as shown in Fig. 4. Initially all
jobs are placed on CERN (European Organization for Nuclear
Research) storage element. CERN contains original copy of
some data sample files that cannot be removed. Since all files
are available in Site 0, so any job sent to this site does not
require any file transfer. Therefore in our simulation we only
consider all CE sites except site 0. Each file is set to be 1 GB.
To record file transfer time and path, we changed OptorSim
code. The simulation parameter values appear in Table 1.

A job will typically request a set of logical filename(s) for
data access. The order in which the files are requested is
specified by the access pattern. We considered three different
access patterns: sequential (files are accessed in the order
stated in the job configuration file), unitary random (file
requests are one element away from previous file request but
the direction is random), and Random Zipf access (given by Pi

= K/ is , where Pi is the frequency of the ith ranked item, K is
the popularity of the most frequently accessed data item and S
determines the shape of the distribution). Data replication
strategies commonly assume that the data is read-only in Data
Grid environments.

Table 1
Simulation Parameter Values

Description Value

Number of files 200

File size 1 G

Storage available at an SE 30 G–100000 G

Number of jobs 10000

Number of files accessed by a job 3–20

Figure 4. The gird topology of EDG.

C. Simulation Results and Discussion
In order to evaluate the effectiveness of the different
replication strategies implemented in OptorSim, we used the
following metrics:

• Total job execution time;
• Effective Network Usage;
• System File Missing Rate

Total Job Execution Time: The total job time consists of
the time of data transferring and job execution. This is a
typical Grid user would probably evaluate it to be the most
significant metric of how the algorithm is working.
Effective Network Usage: ENU is used to estimate the
efficiency the network resource usage. Effective Network
Usage (Eenu) is given from [35]:

rfa fa
enu

lfa

N N
E

N
+

= (12)

where Nrfa is the number of access times that CE reads a file
from a remote site, Nfa is the total number of file replication
operation, and Nlfa is the number of times that CE reads a file
locally. The effective network usage ranges from 0 to 1. A
lower value represents that the network bandwidth is used
more efficiently.

System File Missing Rate: SFMR— indicates the ratio of
the number of files potentially unavailable and the number of
all the files requested by all the jobs. System File Missing
Rate and it is defined as follows [34] to measure the data
availability:

ISSN: 2180 - 1843 Vol. 6 No. 1 January - June 2014

Journal of Telecommunication, Electronic and Computer Engineering

40

1 1

1

(1)
jmn

i
j i

n

j
j

P
SFMR

m

= =

=

−
=
∑∑

∑
(13)

where n indicates the total number of jobs. mj indicates the
number of file access operation of each job. Pi shows the
probability of availability of file fi as defined in equation (5). It
substantiated that smaller value for SFMR show better system
data availability [34].

Figure 5 shows the mean job time of the eight dynamic
replication strategies with three different access patterns:
Unitary Random, Sequential and Random Zipf distribution.
The Least Frequently Used (LFU) strategy always replicates
files in the site where the job is executing. If there is not
enough space for new replica, least accessed file in the storage
element is deleted. In Least Recently Used (LRU) strategy
always replication takes place in the site where the job is
executing. If there is not enough space for the new replica, the
oldest file in the storage element is deleted.

Bandwidth Hierarchy based Replication (BHR) strategy
stores the replicas in a site that has a high bandwidth and
replicates those files that are likely to be requested soon within
the region. Since size of SE at each site, is not enough to store
large portion of all data, we cannot have much performance
improvements with site-level replacement policy. Therefore,
BHR strategy takes benefit from network-level locality by
storing several files in a region as many as possible. The
results for LFU and LRU are similar, and we only include
those for LRU in the remaining figures.

The mean job time in LALW is about 9% faster than that
of BHR. LALW selects a popular file for replication. By
associating a different weight to each historical data access
record, the importance of each record is differentiated. The
mean job time of DHR is lower by 12% compared to BHR
algorithm with Sequential access pattern. Since it selects the
best replica location for execution jobs with considering
number of requests that waiting in the storage and data
transfer time. The mean job time is about 27% faster using
MDHRA than using LRU, and 11% faster than DHR with Zipf
distribution. PBDR has the lowest value of mean job
execution time in all the experiments and all of file access
patterns.

Figure 5: Mean job Time for different access patterns.

As in Random access patterns comprising Unitary random
and walk Random Zipf , a certain set of files is more likely to
be requested by Grid sites, so a large percentage of requested
files have been replicated before. Therefore, PBDR strategy
and also all the other strategies have more improvement for
random file access patterns.

Data replication takes time and consumes network
bandwidth. However, performing no replication has been
demonstrated to be ineffective compared to even the simplest
replication strategy. So, a good balance must be discovered,
where any replication is in the interest of reducing future
network traffic. ENU is effectively the ratio of files transferred
to files requested, so a low value indicates that the strategy
used is better at putting files in the right places. The effective
network usage for the Random Zipf Access Pattern Generator
is shown in Figure. 6. The ENU of PHFS is lower about 42%
compared to the LRU strategy. The main reason is that Grid
sites will have their needed files present at the time of need,
hence the total number of replications will decrease and total
number of local accesses increase. The PBDR is optimized to
minimize the bandwidth consumption and thus decrease the
network traffic.

Figure.6: Effective network usage.

Figure 7 shows the amount of SFMR for each 8 increasing
schemes and three access patterns. In this evaluation the
random scheduler used to schedule the jobs. The LRU
performs slightly better than LFU. It is obvious that PBDR
strategy for all of the access patterns performs better than
others. This is because our PBDR replica managers decide to
make the replica only when the gain of the value from the
replicated file is greater than the loss of the value of the
replaced file.

Figure.7: SFMR with varying access patterns.

ISSN: 2180 - 1843 Vol. 6 No. 1 January - June 2014

A Prediction-Based Replication Algorithm for Improving Data Availability in Grid Environment

41

The PHFS does not have a lower missing rate when
compared to PBDR. Because the prediction function is not as
accurate, so it brings some inaccuracy into the calculation of
the file weight. This, in turn, will cause the replica scheme to
fail to work as well as.

VI. CONCLUSION AND FUTURE WORK

Data replication strategies have been widely used in Data
Grids to replicate frequently accessed data to suitable sites. A
dynamic data replication strategy, called Prediction-Base
Dynamic Replication (PBDR) is proposed. PBDR selects the
best replica location for execution jobs with considering three
important factors: CPU, I/O and Bandwidth. It also stores the
replicas in the best site where the file has been accessed for
the most time instead of storing files in many sites. Therefore,
sites will have their required files locally at the time of need
and this will decrease response time, access latency,
bandwidth consumption and increase system performance
considerably.

Availability of files in distributed system obtains with a
limited copy space condition. It minimize the data miss rate
and maximize the availability of files, meanwhile with limited
storage space and low “time to data access”. The data files are
sorted based on the weight factor and if the value of
replicating a file is more than the loss of deleting the candidate
files, the replication work will be done.

To evaluate the efficiency of policy, we use the Grid
simulator OptorSim that is configured to represent a real world
Data Grid testbed. We compared PBDR algorithm to 7 of
existing algorithms, LRU, LFU, BHR, DHR, LALW,
MDHRA and PHFS for different file access patterns. The
evaluation shows that PBDR algorithm outperforms the other
algorithms and improves Total Job Time and Effective
Network Usage under different the access patterns, especially
under the different random file access patterns. For future
works, PBDR can be combined with a proper scheduling to
improve performance. We aim to predict the future needs of
Grid sites by using suitable techniques such as data mining.
Employing replica consistency management strategies is also
our future work plans.

REFERENCES

[1] A. Folling, C. Grimme, J. Lepping, A. Papaspyrou, “Robust load
delegation in service grid environments,” IEEE Transactions on Parallel
and Distributed Systems, vol. 21 (9), pp. 1304–1316, 2010.

[2] O. Sonmez, H. Mohamed, D. Epema, “On the benefit of processor
coallocation in multicluster grid systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 21 (6), pp. 778–789, 2010.

[3] H. Li, “Realistic workload modeling and its performance impacts in
large-scale science grids,” IEEE Transactions on Parallel and
Distributed Systems, vol. 21 (4), pp. 480–493, 2010.

[4] G. Waters, J. Crawford, SG. Lim, “Optimising multicast structures for
grid computing,” Computer Communications, vol. 27, pp. 1389–1400,
2004.

[5] N. Doulamis, A. Doulamis, A. Litke, A. Panagakis, T. Varvarigou, E.
Varvarigos, “Adjusted fair scheduling and non-linear workload
prediction for QoS guarantees in grid computing,” Computer
Communications, vol. 30, pp.499–515, 2007.

[6] B. Tierney, W. Johnston, J. Lee, M. Thompson, “A data intensive
distributed computing architecture for grid applications,” Future
Generation Computer Systems, vol. 16 (5), pp. 473–481, 2000.

[7] LHC accelerator project. http://www-td.fnal.gov/LHC/USLHC.html.
[8] European DataGrid Project (EDG). http://www.eu-egee.org.
[9] GriPhyN: The Grid physics network project, 12 July 2010.

http://www.griphyn.org.
[10] PPDG. http://www.ppdg.net.
[11] R.S. Chang, M.S. Hu, “A resource discovery tree using bitmap for

grids,” Future Generation Computer Systems, vol. 26 (1), pp. 29–37,
2010.

[12] J. Wu, X. Xu, P. Zhang, C. Liu, “A novel multi-agent reinforcement
learning approach for job scheduling in grid computing,” Future
Generation Computer Systems, vol. 27 (5), pp. 430–439, 2011.

[13] S. Ebadi, L.M. Khanli, A new distributed and hierarchical mechanism
for service discovery in a grid environment,” Future Generation
Computer Systems, vol. 27 (6), pp. 836–842, 2011.

[14] K. Christodoulopoulos, V. Sourlas, I. Mpakolas, E. Varvarigos, “A
comparison of centralized and distributed meta-scheduling architectures
for computation and communication tasks in Grid networks,” Computer
Communications, vol. 32, pp. 1172–1184, 2009.

[15] S. Venugopal, R. Buyya, K. Ramamohanarao, “A taxonomy of data
Grids for distributed data sharing, management, and processing,” ACM
Computing Surveys, vol. 38 (1), pp. 1–53, 2006.

[16] J. Zhang, B.S. Lee, X. Tang, C.K. Yeo, “A model to predict the optimal
performance of the hierarchical data grid,” Future Generation Computer
Systems, vol. 26 (1), pp. 1–11, 2010.

[17] Z.W. Xu, H.J. Zhou, G.J. Li, “Usability Issues of Grid System
Software,” Journal of Computer Science and Technology, vol. 21(5), pp.
641-647, 2006.

[18] E. Laure, H. Stockinger, K. Stockinger, “Performance engineering in
data Grids,” Concurrency and Computation: Practice and Experience,
vol. 17(2), pp. 171–191, 2005.

[19] C. Dabrowski, “Reliability in grid computing systems,” Concurrency
and Computation: Practice and Experience, vol. 21(8), pp. 927–959,
2009.

[20] C.T. Yang, M.F. Yang, Y.C. Chi, C.H. Hsu, “An Anticipative
Recursively Adjusting Mechanism for parallel file transfer in data
grids,” Concurrency and Computation: Practice and Experience, vol.
22(15), pp. 2144–2169, 2010.

[21] M. Branco, E. Zaluska, D. Roure, M. Lassnig, V. Garonne, “Managing
very large distributed data sets on a data grid,” Concurrency and
Computation: Practice and Experience, vol. 22(11), pp. 1338–1364.

[22] S. Venugopal, R. Buyya, L. Winton, “A Grid service broker for
scheduling e-Science applications on global data Grids,” Concurrency
and Computation: Practice and Experience, vol. 18(6), pp. 685–699,
2006.

[23] M.E. Newman, “Power laws, Pareto distributions and Zipf’s law,”
Contemporary Physics, vol. 46, pp. 323–351, 2005.

[24] N. Mansouri, G.H. Dastghaibyfard, “A dynamic replica management
strategy in data grid,” Journal of Network and Computer Application,
2012.

[25] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi,
C. Kesselman, P. Kunszt, M. Ripeanu, B. Schwartzkopf, H. Stockinger,
K. Stockinger, B. Tierney, “A framework for constructing scalable
replica location services,” in Supercomputing, ACM/IEEE Conference,
2002.

[26] I. Foster, K. Ranganathan, “Design and evaluation of dynamic
replication strategies a high performance data grid,” in Proceedings of
International Conference on Computing in High Energy and Nuclear
Physics, China 2001.

[27] U. Cibej, B. Slivnik, B. Robic, “The complexity of static data replication
in data grids,” Parallel Computing, vol. 31 (8), pp. 900–912, 2005.

[28] K. Ranganathan, I. Foster, “Identifying dynamic replication strategies
for a high performance data grid,” in Proceedings of the Second
International Workshop on Grid Computing, 2001, pp. 75-86.

[29] K. Sashi, A.S. Thanamani, “Dynamic replica management for data grid,”
IACSIT International Journal of Engineering and Technology, vol. 2,
pp. 329-333, 2010.

[30] R.S. Chang, H.P. Chang, “A Dynamic data replication strategy using
access-weight in data grids,” Journal of Supercomputing, vol. 45, pp.
277-295, 2008.

[31] S.M. Park, J.M. Kim, Y.B. Go, W.S. Yoon, “Dynamic grid replication
strategy based on internet hierarchy,” in International Workshop on Grid
and Cooperative Computing, vol. 1001, pp. 1324-1331, 2003.

[32] N. Mansouri, G.H. Dastghaibyfard, E. Mansouri, “Combination of data
replication and scheduling algorithm for improving data availability in

data grids,” Journal of Network and Computer Applications, vol. 36, pp.
711-722, 2013.

[33] L. Mohammad Khanli, A. Isazadeh, T.N. Shishavan, “PHFS: A dynamic
replication method, to decrease access latency in the multi-tier data
grid,” Future Generation Computer Systems, vol. 27, pp. 233–244,
2011.

[34] M. Lei, S.V. Vrbsky, X. Hong, “An on-line replication strategy to
increase availability in data grid,” Future Generation Computer Systems,
vol. 28, pp. 85-98, 2008.

[35] D.G. Cameron, A.P. Millar, C.C. Nicholson, R. Carvajal-Schiaffino, F.
Zini, K. Stockinger, “Optorsim: a simulation tool for scheduling and
replica optimization in data grids,” in International conference for
computing in high energy and nuclear physics (CHEP’04), 2004

