1,136 research outputs found

    Faculty of Engineering and Design. Research Review

    Get PDF
    STUDENTS AND ACADEMICS - This publication introduces you to the department or school and then each faculty member’s research areas, research applications, and their most recent activities. A comprehensive index can be found at the back of this publication to help guide you by specific areas of interest, as well as point out interdisciplinary topics and researchers. INDUSTRY LEADERS - This publication includes information regarding specific facilities, labs, and research areas of departments and schools as well as individual faculty members and researchers. A comprehensive index can be found at the back of this publication to help guide you by specific areas of interest, as well as point out interdisciplinary topics and researchers

    INSPIRE Newsletter Spring 2022

    Get PDF
    https://scholarsmine.mst.edu/inspire-newsletters/1010/thumbnail.jp

    Survey Paper Artificial and Computational Intelligence in the Internet of Things and Wireless Sensor Network

    Get PDF
    In this modern age, Internet of Things (IoT) and Wireless Sensor Network (WSN) as its derivatives have become one of the most popular and important technological advancements. In IoT, all things and services in the real world are digitalized and it continues to grow exponentially every year. This growth in number of IoT device in the end has created a tremendous amount of data and new data services such as big data systems. These new technologies can be managed to produce additional value to the existing business model. It also can provide a forecasting service and is capable to produce decision-making support using computational intelligence methods. In this survey paper, we provide detailed research activities concerning Computational Intelligence methods application in IoT WSN. To build a good understanding, in this paper we also present various challenges and issues for Computational Intelligence in IoT WSN. In the last presentation, we discuss the future direction of Computational Intelligence applications in IoT WSN such as Self-Organizing Network (dynamic network) concept

    SUSTAINABLE ENERGY HARVESTING TECHNOLOGIES – PAST, PRESENT AND FUTURE

    Get PDF
    Chapter 8: Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerato

    Energy efficient wireless sensor network protocols for monitoring and prognostics of large scale systems

    Get PDF
    In this work, energy-efficient protocols for wireless sensor networks (WSN) with applications to prognostics are investigated. Both analytical methods and verification are shown for the proposed methods via either hardware experiments or simulation. This work is presented in five papers. Energy-efficiency methods for WSN include distributed algorithms for i) optimal routing, ii) adaptive scheduling, iii) adaptive transmission power and data-rate control --Abstract, page iv

    Data-driven method for enhanced corrosion assessment of reinforced concrete structures

    Get PDF
    Corrosion is a major problem affecting the durability of reinforced concrete structures. Corrosion related maintenance and repair of reinforced concrete structures cost multibillion USD per annum globally. It is often triggered by the ingression of carbon dioxide and/or chloride into the pores of concrete. Estimation of these corrosion causing factors using the conventional models results in suboptimal assessment since they are incapable of capturing the complex interaction of parameters. Hygrothermal interaction also plays a role in aggravating the corrosion of reinforcement bar and this is usually counteracted by applying surface protection systems. These systems have different degree of protection and they may even cause deterioration to the structure unintentionally. The overall objective of this dissertation is to provide a framework that enhances the assessment reliability of the corrosion controlling factors. The framework is realized through the development of data-driven carbonation depth, chloride profile and hygrothermal performance prediction models. The carbonation depth prediction model integrates neural network, decision tree, boosted and bagged ensemble decision trees. The ensemble tree based chloride profile prediction models evaluate the significance of chloride ingress controlling variables from various perspectives. The hygrothermal interaction prediction models are developed using neural networks to evaluate the status of corrosion and other unexpected deteriorations in surface-treated concrete elements. Long-term data for all models were obtained from three different field experiments. The performance comparison of the developed carbonation depth prediction model with the conventional one confirmed the prediction superiority of the data-driven model. The variable importance measure revealed that plasticizers and air contents are among the top six carbonation governing parameters out of 25. The discovered topmost chloride penetration controlling parameters representing the composition of the concrete are aggregate size distribution, amount and type of plasticizers and supplementary cementitious materials. The performance analysis of the developed hygrothermal model revealed its prediction capability with low error. The integrated exploratory data analysis technique with the hygrothermal model had identified the surfaceprotection systems that are able to protect from corrosion, chemical and frost attacks. All the developed corrosion assessment models are valid, reliable, robust and easily reproducible, which assist to define proactive maintenance plan. In addition, the determined influential parameters could help companies to produce optimized concrete mix that is able to resist carbonation and chloride penetration. Hence, the outcomes of this dissertation enable reduction of lifecycle costs

    Determining Additional Modulus of Subgarde Reaction Based on Tolerable Settlement for the Nailed-slab System Resting on Soft Clay.

    Get PDF
    Abstract—Nailed-slab System is a proposed alternative solution for rigid pavement problem on soft soils. Equivalent modulus of subgrade reaction (k’) can be used in designing of nailed-slab system. This modular is the cumulative of modulus of subgrade reaction from plate load test (k) and additional modulus of subgrade reaction due to pile installing (∆∆∆∆k). A recent method has used reduction of pile resistance approach in determining ∆∆∆∆k. The relative displacement between pile and soils, and reduction of pile resistance has been identified. In fact, determining of reduction of pile resistance is difficult. This paper proposes an approach by considering tolerable settlement of rigid pavement. Validation is carried out with respect to a loading test of nailed-slab models. The models are presented as strip section of rigid pavement. The theory of beams on elastic foundation is used to calculate the slab deflection by using k’. Proposed approach can results in deflection prediction close to observed one. In practice, the Nailed-slab System would be constructed by multiple-row piles. Designing this system based on one-pile row analysis will give more safety design and will consume less time

    Innovative energy-efficient wireless sensor network applications and MAC sub-layer protocols employing RTS-CTS with packet concatenation

    Get PDF
    of energy-efficiency as well as the number of available applications. As a consequence there are challenges that need to be tackled for the future generation of WSNs. The research work from this Ph.D. thesis has involved the actual development of innovative WSN applications contributing to different research projects. In the Smart-Clothing project contributions have been given in the development of a Wireless Body Area Network (WBAN) to monitor the foetal movements of a pregnant woman in the last four weeks of pregnancy. The creation of an automatic wireless measurement system for remotely monitoring concrete structures was an contribution for the INSYSM project. This was accomplished by using an IEEE 802.15.4 network enabling for remotely monitoring the temperature and humidity within civil engineering structures. In the framework of the PROENEGY-WSN project contributions have been given in the identification the spectrum opportunities for Radio Frequency (RF) energy harvesting through power density measurements from 350 MHz to 3 GHz. The design of the circuits to harvest RF energy and the requirements needed for creating a WBAN with electromagnetic energy harvesting and Cognitive Radio (CR) capabilities have also been addressed. A performance evaluation of the state-of-the art of the hardware WSN platforms has also been addressed. This is explained by the fact that, even by using optimized Medium Access Control (MAC) protocols, if the WSNs platforms do not allow for minimizing the energy consumption in the idle and sleeping states, energy efficiency and long network lifetime will not be achieved. The research also involved the development of new innovative mechanisms that tries and solves overhead, one of the fundamental reasons for the IEEE 802.15.4 standard MAC inefficiency. In particular, this Ph.D. thesis proposes an IEEE 802.15.4 MAC layer performance enhancement by employing RTS/CTS combined with packet concatenation. The results have shown that the use of the RTS/CTS mechanism improves channel efficiency by decreasing the deferral time before transmitting a data packet. In addition, the Sensor Block Acknowledgment MAC (SBACK-MAC) protocol has been proposed that allows the aggregation of several acknowledgment responses in one special Block Acknowledgment (BACK) Response packet. Two different solutions are considered. The first one considers the SBACK-MAC protocol in the presence of BACK Request (concatenation) while the second one considers the SBACK-MAC in the absence of BACK Request (piggyback). The proposed solutions address a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under both ideal conditions (a channel environment with no transmission errors) and non ideal conditions (a channel environment with transmission errors). An analytical model is proposed, capable of taking into account the retransmission delays and the maximum number of backoff stages. The simulation results successfully validate our analytical model. For more than 7 TX (aggregated packets) all the MAC sub-layer protocols employing RTS/CTS with packet concatenation allows for the optimization of channel use in WSNs, v8-48 % improvement in the maximum average throughput and minimum average delay, and decrease energy consumption
    • …
    corecore