826 research outputs found

    Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery

    Full text link
    Thanks to recent advances in CNNs, solid improvements have been made in semantic segmentation of high resolution remote sensing imagery. However, most of the previous works have not fully taken into account the specific difficulties that exist in remote sensing tasks. One of such difficulties is that objects are small and crowded in remote sensing imagery. To tackle with this challenging task we have proposed a novel architecture called local feature extraction (LFE) module attached on top of dilated front-end module. The LFE module is based on our findings that aggressively increasing dilation factors fails to aggregate local features due to sparsity of the kernel, and detrimental to small objects. The proposed LFE module solves this problem by aggregating local features with decreasing dilation factor. We tested our network on three remote sensing datasets and acquired remarkably good results for all datasets especially for small objects

    Generalizing Deep Models for Overhead Image Segmentation Through Getis-Ord Gi* Pooling

    Get PDF
    That most deep learning models are purely data driven is both a strength and a weakness. Given sufficient training data, the optimal model for a particular problem can be learned. However, this is usually not the case and so instead the model is either learned from scratch from a limited amount of training data or pre-trained on a different problem and then fine-tuned. Both of these situations are potentially suboptimal and limit the generalizability of the model. Inspired by this, we investigate methods to inform or guide deep learning models for geospatial image analysis to increase their performance when a limited amount of training data is available or when they are applied to scenarios other than which they were trained on. In particular, we exploit the fact that there are certain fundamental rules as to how things are distributed on the surface of the Earth and these rules do not vary substantially between locations. Based on this, we develop a novel feature pooling method for convolutional neural networks using Getis-Ord Gi* analysis from geostatistics. Experimental results show our proposed pooling function has significantly better generalization performance compared to a standard data-driven approach when applied to overhead image segmentation

    Context Based Visual Content Verification

    Full text link
    In this paper the intermediary visual content verification method based on multi-level co-occurrences is studied. The co-occurrence statistics are in general used to determine relational properties between objects based on information collected from data. As such these measures are heavily subject to relative number of occurrences and give only limited amount of accuracy when predicting objects in real world. In order to improve the accuracy of this method in the verification task, we include the context information such as location, type of environment etc. In order to train our model we provide new annotated dataset the Advanced Attribute VOC (AAVOC) that contains additional properties of the image. We show that the usage of context greatly improve the accuracy of verification with up to 16% improvement.Comment: 6 pages, 6 Figures, Published in Proceedings of the Information and Digital Technology Conference, 201

    Segmentación semántica con modelos de deep learning y etiquetados no densos

    Get PDF
    La segmentación semántica es un problema muy estudiado dentro del campo de la visión por computador que consiste en la clasificación de imágenes a nivel de píxel. Es decir, asignar una etiqueta o valor a cada uno de los píxeles de la imagen. Tiene aplicaciones muy variadas, que van desde interpretar el contenido de escenas urbanas para tareas de conducción automática hasta aplicaciones médicas que ayuden al médico a analizar la información del paciente para realizar un diagnóstico o operaciones. Como en muchos otros problemas y tareas relacionados con la visión por computador, en los últimos años se han propuesto y demostrado grandes avances en los métodos para segmentación semántica gracias, en gran parte, al reciente auge de los métodos basados en aprendizaje profundo o deep learning.\\ A pesar de que en los últimos años se están realizando mejoras constantes, los modelos de \textit{deep learning} para segmentación semántica %así como otras áreas, tienen un problema presentan un reto que dificulta su aplicabilidad a problemas de la vida real: necesitan grandes cantidades de anotaciones para entrenar los modelos. Esto es muy costoso, sobre todo porque en este caso hay que realizarlo a nivel de píxel. Muchos conjuntos de datos reales, por ejemplo datos adquiridos para tareas de monitorización del medio ambiente (grabaciones de entornos naturales, imágenes de satélite) generalmente presentan tan solo unos pocos píxeles etiquetados por imagen, que suelen venir de algunos clicks de un experto, para indicar ciertas zonas de interés en esas imágenes. Este tipo de etiquetado hace %imposible que sea muy complicado el entrenamiento de modelos densos que permitan procesar y obtener de manera automática una mayor cantidad de información de todos estos conjuntos de datos.\\ El objetivo de este trabajo es proponer nuevos métodos para resolver este problema. La idea principal es utilizar una segmentación inicial de la imagen multi-nivel de la imagen para propagar la poca información disponible. Este enfoque novedoso permite aumentar la anotación, y demostramos que pese a ser algo ruidosa, permite aprender de manera efectiva un modelo que obtenga la segmentación deseada. Este método es aplicable a cualquier tipo de dispersión de las anotaciones, siendo independiente del número de píxeles anotados. Las principales tareas desarrolladas en este proyecto son: -Estudio del estado del arte en técnicas de segmentación semántica (la mayoría basadas en técnicas de deep learning) -Propuesta y evaluación de métodos para aumentar (propagar) las etiquetas de las imágenes de entrenamiento cuando estas son dispersas y escasas -Diseño y evaluación de las arquitecturas de redes neuronales más adecuadas para resolver este problema Para validar nuestras propuestas, nos centramos en un caso de aplicación en imágenes submarinas, capturadas para monitorización de las zonas de barreras de coral. También demostramos que el método propuesto se puede aplicar a otro tipo de imágenes, como imágenes aéreas, imágenes multiespectrales y conjuntos de datos de segmentación de instancias

    PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation

    Full text link
    Aerial Image Segmentation is a particular semantic segmentation problem and has several challenging characteristics that general semantic segmentation does not have. There are two critical issues: The one is an extremely foreground-background imbalanced distribution, and the other is multiple small objects along with the complex background. Such problems make the recent dense affinity context modeling perform poorly even compared with baselines due to over-introduced background context. To handle these problems, we propose a point-wise affinity propagation module based on the Feature Pyramid Network (FPN) framework, named PointFlow. Rather than dense affinity learning, a sparse affinity map is generated upon selected points between the adjacent features, which reduces the noise introduced by the background while keeping efficiency. In particular, we design a dual point matcher to select points from the salient area and object boundaries, respectively. Experimental results on three different aerial segmentation datasets suggest that the proposed method is more effective and efficient than state-of-the-art general semantic segmentation methods. Especially, our methods achieve the best speed and accuracy trade-off on three aerial benchmarks. Further experiments on three general semantic segmentation datasets prove the generality of our method. Code will be provided in (https: //github.com/lxtGH/PFSegNets).Comment: accepted by CVPR202
    corecore