7 research outputs found

    Unique Shortest Vector Problem for max norm is NP-hard

    Get PDF
    The unique Shortest vector problem (uSVP) in lattice theory plays a crucial role in many public-key cryptosystems. The security of those cryptosystems bases on the hardness of uSVP. However, so far there is no proof for the proper hardness of uSVP even in its exact version. In this paper, we show that the exact version of uSVP for ℓ∞\ell_\infty norm is NP-hard. Furthermore, many other lattice problems including unique Subspace avoiding problem, unique Closest vector problem and unique Generalized closest vector problem, for any ℓp\ell_p norm, are also shown to be NP-hard

    KomplexitÀt von Gitterproblemen : Nicht-Approximierbarkeit und Grenzen der Nicht-Approximierbarkeit

    Get PDF
    Ein Gitter vom Rang n ist die Menge der ganzzahligen Linerkombinationen von n linear unabhĂ€ngigen Vektoren im Rm. Unter der Annahme P NP beweisen wir, daß kein Polynomialzeit-Algorithmus existiert, der eine kĂŒrzeste Gitterbasis bis auf einen Faktor nO exp(1/log log n) berechnet, wobei die LĂ€nge einer Menge von Vektoren durch die maximale Euklidische LĂ€nge der Vektoren definiert ist. Weiter zeigen wir, daß eine Verbesserung dieses Resultates bis hin zu einem Faktor n/ sqrt(log n) unter plausiblen Annahmen nicht möglich ist. Ein simultaner Diophantischer Best Approximations Nenner fĂŒr reelle Zahlen alpha1, .... , alpha n und Hauptnennerschranke N ist eine natĂŒrliche Zahl q mit 1 = N, so daß maxi minp2Z |q alpha i - p| minimal ist. Unter der Annahme, daß die Klasse NP keine fast-polynomiellen Algorithmen besitzt, beweisen wir, daß kein Polynomialzeit-Algorithmus existiert, der fĂŒr gegebene rationale Zahlen. Ein Gitter vom Rang n ist die Menge der ganzzahligen Linerkombinationen von n linear unabhĂ€ngigen Vektoren im Rm. Unter der Annahme P 6= NP beweisen wir, daß kein Polynomialzeit-Algorithmus existiert, der eine kĂŒrzeste Gitterbasis bis auf einen Faktor nO(1= log log n) berechnet, wobei die LĂ€nge einer Menge von Vektoren durch die maximale Euklidische LĂ€nge der Vektoren definiert ist. Weiter zeigen wir, daß eine Verbesserung dieses Resultates bis hin zu einem Faktor n=plog n unter plausiblen Annahmen nicht möglich ist. Ein simultaner Diophantischer Best Approximations Nenner fĂŒr reelle Zahlen alpha1, .... , alpha n und Hauptnennerschranke N ist eine natĂŒrliche Zahl q mit 1 0 eine beliebige Konstante ist. Wir zeigen, daß eine Verbesserung dieses Resultates bis hin zu einem Faktor n=log n unter plausiblen Annahmen nicht mölich ist. Wir untersuchen die Konsequenzen dieser Resultate zur Konstruktion von im Durchschnitt schwierigen Gitterproblemen

    A Relation of Primal-Dual Lattices and the Complexity of Shortest Lattice Vector Problem

    Get PDF
    We give a simplified proof of a theorem of Lagarias, Lenstra and Schnorr [17] that the problem of approximating the length of the shortest lattice vector within a factor of Cn, for an appropriate constant C, cannot be NP-hard, unless NP = coNP. We also prove that the problem of findng a n 1=4 -unique shortest lattice vector is not NP-hard under polynomial time many-one reductions, unless the polynomial time hierarchy collapses. 1 Introduction A discrete additive subgroup of R n is called a lattice. Recently in a beautiful paper Ajtai [1] established the first explicit connection between, in a certain technical sense, the worst-case and the average-case complexity of the shortest lattice vector problem. This is the problem of finding or approximating the shortest lattice vector or its length. In a tour de force, Ajtai [2] further established the NP-hardness of the problem of finding the shortest lattice vector (in Euclidean norm, or l 2 -norm), as well as the problem of approximat..

    Reduction algorithms for the cryptanalysis of lattice based asymmetrical cryptosystems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2008Includes bibliographical references (leaves: 79-91)Text in English; Abstract: Turkish and Englishxi, 119 leavesThe theory of lattices has attracted a great deal of attention in cryptology in recent years. Several cryptosystems are constructed based on the hardness of the lattice problems such as the shortest vector problem and the closest vector problem. The aim of this thesis is to study the most commonly used lattice basis reduction algorithms, namely Lenstra Lenstra Lovasz (LLL) and Block Kolmogorov Zolotarev (BKZ) algorithms, which are utilized to approximately solve the mentioned lattice based problems.Furthermore, the most popular variants of these algorithms in practice are evaluated experimentally by varying the common reduction parameter delta in order to propose some practical assessments about the effect of this parameter on the process of basis reduction.These kind of practical assessments are believed to have non-negligible impact on the theory of lattice reduction, and so the cryptanalysis of lattice cryptosystems, due to thefact that the contemporary nature of the reduction process is mainly controlled by theheuristics

    Inner-Product Functional Encryption with Fine-Grained Access Control

    Get PDF
    We construct new functional encryption schemes that combine the access control functionality of attribute-based encryption with the possibility of performing linear operations on the encrypted data. While such a primitive could be easily realized from fully fledged functional encryption schemes, what makes our result interesting is the fact that our schemes simultaneously achieve all the following properties. They are public-key, efficient and can be proved secure under standard and well established assumptions (such as LWE or pairings). Furthermore, security is guaranteed in the setting where adversaries are allowed to get functional keys that decrypt the challenge ciphertext. Our first results are two functional encryption schemes for the family of functions that allow users to embed policies (expressed by monotone span programs) in the encrypted data, so that one can generate functional keys to compute weighted sums on the latter. Both schemes are pairing-based and quite generic: they combine the ALS functional encryption scheme for inner products from Crypto 2016 with any attribute-based encryption schemes relying on the dual-system encryption methodology. As an additional bonus, they yield simple and elegant multi-input extensions essentially for free, thereby broadening the set of applications for such schemes. Multi-input is a particularly desirable feature in our setting, since it gives a finer access control over the encrypted data, by allowing users to associate different access policies to different parts of the encrypted data. Our second result builds identity-based functional encryption for inner products from lattices. This is achieved by carefully combining existing IBE schemes from lattices with adapted, LWE-based, variants of ALS. We point out to intrinsic technical bottlenecks to obtain richer forms of access control from lattices. From a conceptual point of view, all our results can be seen as further evidence that more expressive forms of functional encryption can be realized under standard assumptions and with little computational overhead
    corecore