146 research outputs found

    Basic paramodulation

    No full text
    We introduce a class of restrictions for the ordered paramodulation and superposition calculi (inspired by the {\em basic\/} strategy for narrowing), in which paramodulation inferences are forbidden at terms introduced by substitutions from previous inference steps. In addition we introduce restrictions based on term selection rules and redex orderings, which are general criteria for delimiting the terms which are available for inferences. These refinements are compatible with standard ordering restrictions and are complete without paramodulation into variables or using functional reflexivity axioms. We prove refutational completeness in the context of deletion rules, such as simplification by rewriting (demodulation) and subsumption, and of techniques for eliminating redundant inferences

    Superposition for Finite Domains

    Get PDF

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Proceedings of Sixth International Workshop on Unification

    Full text link
    Swiss National Science Foundation; Austrian Federal Ministry of Science and Research; Deutsche Forschungsgemeinschaft (SFB 314); Christ Church, Oxford; Oxford University Computing Laborator

    Progress Report : 1991 - 1994

    Get PDF

    Computing and evolving variants of computational depth

    Get PDF
    The structure and organization of information in binary strings and (infinite) binary sequences are investigated using two computable measures of complexity related to computational depth. First, fundamental properties of recursive computational depth, a refinement of Bennett\u27s original notion of computational depth, are developed, and it is shown that the recursively weakly (respectively, strongly) deep sequences form a proper subclass of the class of weakly (respectively, strongly) deep sequences. It is then shown that every weakly useful sequence is recursively strongly deep, strengthening a theorem by Juedes, Lathrop, and Lutz. It follows from these results that not every strongly deep sequence is weakly useful, thereby answering an open question posed by Juedes;Second, compression depth, a feasibly computable depth measurement, is developed based on the Lempel-Ziv compression algorithm. LZ compression depth is further formalized by introducing strongly (compression) deep sequences and showing that analogues of the main properties of computational depth hold for compression depth. Critical to these results, it is shown that a sequence that is not normal must be compressible by the Lempei-Ziv algorithm. This yields a new, simpler proof that the Champernowne sequence is normal;Compression depth is also used to measure the organization of genes in genetic algorithms. Using finite-state machines to control the actions of an automaton playing prisoner\u27s dilemma, a genetic algorithm is used to evolve a population of finite-state machines (players) to play prisoner\u27s dilemma against each other. Since the fitness function is based solely on how well a player performs against all other players in the population, any accumulation of compression depth (organization) in the genetic structure of the player can only by attributed to the fact that more fit players have a more highly organized genetic structure. It is shown experimentally that this is the case

    Engineering formal systems in constructive type theory

    Get PDF
    This thesis presents a practical methodology for formalizing the meta-theory of formal systems with binders and coinductive relations in constructive type theory. While constructive type theory offers support for reasoning about formal systems built out of inductive definitions, support for syntax with binders and coinductive relations is lacking. We provide this support. We implement syntax with binders using well-scoped de Bruijn terms and parallel substitutions. We solve substitution lemmas automatically using the rewriting theory of the -calculus. We present the Autosubst library to automate our approach in the proof assistant Coq. Our approach to coinductive relations is based on an inductive tower construction, which is a type-theoretic form of transfinite induction. The tower construction allows us to reduce coinduction to induction. This leads to a symmetric treatment of induction and coinduction and allows us to give a novel construction of the companion of a monotone function on a complete lattice. We demonstrate our methods with a series of case studies. In particular, we present a proof of type preservation for CC!, a proof of weak and strong normalization for System F, a proof that systems of weakly guarded equations have unique solutions in CCS, and a compiler verification for a compiler from a non-deterministic language into a deterministic language. All technical results in the thesis are formalized in Coq.In dieser Dissertation beschreiben wir praktische Techniken um Formale Systeme mit Bindern und koinduktiven Relationen in Konstruktiver Typtheorie zu implementieren. Während Konstruktive Typtheorie bereits gute Unterstützung für Induktive Definition bietet, gibt es momentan kaum Unterstützung für syntaktische Systeme mit Bindern, oder koinduktiven Definitionen. Wir kodieren Syntax mit Bindern in Typtheorie mit einer de Bruijn Darstellung und zeigen alle Substitutionslemmas durch Termersetzung mit dem -Kalkül. Wir präsentieren die Autosubst Bibliothek, die unseren Ansatz im Beweisassistenten Coq implementiert. Für koinduktive Relationen verwenden wir eine induktive Turmkonstruktion, welche das typtheoretische Analog zur Transfiniten Induktion darstellt. Auf diese Art erhalten wir neue Beweisprinzipien für Koinduktion und eine neue Konstruktion von Pous’ “companion” einer monotonen Funktion auf einem vollständigen Verband. Wir validieren unsere Methoden an einer Reihe von Fallstudien. Alle technischen Ergebnisse in dieser Dissertation sind mit Coq formalisiert

    Superposition modulo theory

    Get PDF
    This thesis is about the Hierarchic Superposition calculus SUP(T) and its application to reasoning in hierarchic combinations FOL(T) of the free first-order logic FOL with a background theory T where the hierarchic calculus is refutationally complete or serves as a decision procedure. Particular hierarchic combinations covered in the thesis are the combinations of FOL and linear and non-linear arithmetic, LA and NLA resp. Recent progress in automated reasoning has greatly encouraged numerous applications in soft- and hardware verification and the analysis of complex systems. The applications typically require to determine the validity/unsatisfiability of quantified formulae over the combination of the free first-order logic with some background theories. The hierarchic superposition leverages both (i) the reasoning in FOL equational clauses with universally quantified variables, like the standard superposition does, and (ii) powerful reasoning techniques in such theories as, e.g., arithmetic, which are usually not (finitely) axiomatizable by FOL formulae, like modern SMT solvers do. The thesis significantly extends previous results on SUP(T), particularly: we introduce new substantially more effective sufficient completeness and hierarchic redundancy criteria turning SUP(T) to a complete or a decision procedure for various FOL(T) fragments; instantiate and refine SUP(T) to effectively support particular combinations of FOL with the LA and NLA theories enabling a fully automatic mechanism of reasoning about systems formalized in FOL(LA) or FOL(NLA).Diese Arbeit befasst sich mit dem hierarchischen Superpositionskalkül SUP(T) und seiner Anwendung auf hierarchischen Kombinationen FOL(T) der freien Logik erste Stufe FOL und einer Hintergrundtheorie T, deren hierarchischer Kalkül widerlegungsvollständig ist oder als Entscheidungsverfahren dient. Die behandelten hierarchischen Kombinationen sind im Besonderen die Kombinationen von FOL und linearer und nichtlinearer Arithmetik, LA bzw. NLA. Die jüngsten Fortschritte in dem Bereich des automatisierten Beweisens haben zahlreiche Anwendungen in der Soft- und Hardwareverifikation und der Analyse komplexer Systeme hervorgebracht. Die Anwendungen erfordern typischerweise die Gültigkeit/Unerfüllbarkeit quantifizierter Formeln über Kombinationen der freien Logik erste Stufe mit Hintergrundtheorien zu bestimmen. Die hierarchische Superposition verbindet beides: (i) das Beweisen über FOL-Klauseln mit Gleichheit und allquantifizierten Variablen, wie in der Standardsuperposition, und (ii) mächtige Beweistechniken in Theorien, die üblicherweise nicht (endlich) axiomatisierbar durch FOL-Formeln sind (z. B. Arithmetik), wie in modernen SMT-Solvern. Diese Arbeit erweitert frühere Ergebnisse über SUP(T) signifikant, im Besonderen führen wir substantiell effektiverer Kriterien zur Bestimmung der hinreichenden Vollständigkeit und der hierarchischen Redundanz ein. Mit diesen Kriterien wird SUP(T) widerlegungsvollständig beziehungsweise ein Entscheidungsverfahren für verschiedene FOL(T)-Fragmente. Weiterhin instantiieren und verfeinern wir SUP(T), um effektiv die Kombinationen von FOL mit der LA- und der NLA-Theorie zu unterstützen, und erhalten eine vollautomatische Beweisprozedur auf Systemen, die in FOL(LA) oder FOL(NLA) formalisiert werden können

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book
    corecore