10,445 research outputs found

    Large-scale grid-enabled lattice-Boltzmann simulations of complex fluid flow in porous media and under shear

    Get PDF
    Well designed lattice-Boltzmann codes exploit the essentially embarrassingly parallel features of the algorithm and so can be run with considerable efficiency on modern supercomputers. Such scalable codes permit us to simulate the behaviour of increasingly large quantities of complex condensed matter systems. In the present paper, we present some preliminary results on the large scale three-dimensional lattice-Boltzmann simulation of binary immiscible fluid flows through a porous medium derived from digitised x-ray microtomographic data of Bentheimer sandstone, and from the study of the same fluids under shear. Simulations on such scales can benefit considerably from the use of computational steering and we describe our implementation of steering within the lattice-Boltzmann code, called LB3D, making use of the RealityGrid steering library. Our large scale simulations benefit from the new concept of capability computing, designed to prioritise the execution of big jobs on major supercomputing resources. The advent of persistent computational grids promises to provide an optimal environment in which to deploy these mesoscale simulation methods, which can exploit the distributed nature of compute, visualisation and storage resources to reach scientific results rapidly; we discuss our work on the grid-enablement of lattice-Boltzmann methods in this context.Comment: 17 pages, 6 figures, accepted for publication in Phil.Trans.R.Soc.Lond.

    Real Time Wake Computations using Lattice Boltzmann Method on Many Integrated Core Processors

    Get PDF
    This paper puts forward an efficient Lattice Boltzmann method for use as a wake simulator suitable for real-time environments. The method is limited to low speed incompressible flow but is very efficient and can be used to compute flows “on the fly”. In particular, many-core machines allow for the method to be used with the need of very expensive parallel clusters. Results are shown here for flows around cylinders and simple ship shapes

    Real Time Wake Computations using Lattice Boltzmann Method on Many Integrated Core Processors

    Get PDF
    This paper puts forward an efficient Lattice Boltzmann method for use as a wake simulator suitable for real-time environments. The method is limited to low speed incompressible flow but is very efficient and can be used to compute flows “on the fly”. In particular, many-core machines allow for the method to be used with the need of very expensive parallel clusters. Results are shown here for flows around cylinders and simple ship shapes

    Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational grids

    Get PDF
    During the last two years the RealityGrid project has allowed us to be one of the few scientific groups involved in the development of computational grids. Since smoothly working production grids are not yet available, we have been able to substantially influence the direction of software development and grid deployment within the project. In this paper we review our results from large scale three-dimensional lattice Boltzmann simulations performed over the last two years. We describe how the proactive use of computational steering and advanced job migration and visualization techniques enabled us to do our scientific work more efficiently. The projects reported on in this paper are studies of complex fluid flows under shear or in porous media, as well as large-scale parameter searches, and studies of the self-organisation of liquid cubic mesophases. Movies are available at http://www.ica1.uni-stuttgart.de/~jens/pub/05/05-PhilTransReview.htmlComment: 18 pages, 9 figures, 4 movies available, accepted for publication in Phil. Trans. R. Soc. London Series

    Steering in computational science: mesoscale modelling and simulation

    Full text link
    This paper outlines the benefits of computational steering for high performance computing applications. Lattice-Boltzmann mesoscale fluid simulations of binary and ternary amphiphilic fluids in two and three dimensions are used to illustrate the substantial improvements which computational steering offers in terms of resource efficiency and time to discover new physics. We discuss details of our current steering implementations and describe their future outlook with the advent of computational grids.Comment: 40 pages, 11 figures. Accepted for publication in Contemporary Physic
    • …
    corecore