18,308 research outputs found

    Towards a Holistic CAD Platform for Nanotechnologies

    Get PDF
    Silicon-based CMOS technologies are predicted to reach their ultimate limits by the middle of the next decade. Research on nanotechnologies is actively conducted, in a world-wide effort to develop new technologies able to maintain the Moore's law. They promise revolutionizing the computing systems by integrating tremendous numbers of devices at low cost. These trends will have a profound impact on the architectures of computing systems and will require a new paradigm of CAD. The paper presents a work in progress on this direction. It is aimed at fitting requirements and constraints of nanotechnologies, in an effort to achieve efficient use of the huge computing power promised by them. To achieve this goal we are developing CAD tools able to exploit efficiently these huge computing capabilities promised by nanotechnologies in the domain of simulation of complex systems composed by huge numbers of relatively simple elements.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    Implementation of adaptive logic networks on an FPGA board

    Get PDF
    This work is part of a project that studies the implementation of neural network algorithms in reconfigurable hardware as a way to obtain a high performance neural processor. The results for Adaptive Logic Network (ALN) type binary networks with and without learning in hardware are presented. The designs were made on a hardware platform consisting of a PC compatible as the host computer and an ALTERA RIPP10 reconfigurable board with nine FLEX8K FPGAs and 512KB RAM. The different designs were run on the same hardware platform, taking advantage of its configurability. A software tool was developed to automatically convert the ALN network description resulting from the training process with the ATREE 2.7 for Windows software package into a hardware description file. This approach enables the easy generation of the hardware necessary to evaluate the very large combinatorial functions that results in an ALN. In an on-board learning version, an ALN basic node was designed optimizing it in the amount of cells per node used. Several nodes connected in a binary tree structure for each output bit, together with a control block, form the ALN network. The total amount of logic available on-board in the used platform limits the maximum size of the networks from a small to medium range. The performance was studied in pattern recognition applications. The results are compared with the software simulation of ALN networks

    NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    Get PDF
    © 2016 Cheung, Schultz and Luk.NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation
    corecore