9 research outputs found

    Wind Power Integration Control Technology for Sustainable, Stable and Smart Trend: A Review

    Get PDF
    The key to achieve sustainable development of wind power is integration absorptive, involving the generation, transmission, distribution, operation, scheduling plurality of electric production processes. The paper based on the analyses of the situation of wind power development and grid integration requirements for wind power, summarized wind power integration technologies' development, characteristics, applicability and trends from five aspects, grid mode, control technology, transmission technology, scheduling, and forecasting techniques. And friendly integration, intelligent control, reliable transmission, and accurate prediction would be the major trends of wind power integration, these five aspects interactive and mutually reinforcing would realize common development both grid and wind power, both economic and ecological

    HVDC Systems Fault Analysis Using Various Signal Processing Techniques

    Get PDF
    The detection and fast clearance of faults are important for the safe and optimal operation of HVDC systems. In HVDC systems, various types of AC faults (rectifier & inverter side) and DC faults can occur. It is therefore necessary to detect the faults and classify them for better protection and diagnostics purposes. Various techniques for fault detection and classification in HVDC systems using signal processing techniques are presented and investigated in this research work. In this research work, it is shown that the wavelet transformation can effectively detect abrupt changes in system signals which are indicative of a fault. This research has focused on DC faults at various distances along the lines and AC faults on the converter side. The DC line current is chosen as the input to the wavelet transform. The 5th level coefficients have been used to identify the various faults in the LCC-HVDC system. Moreover, the value of these coefficients has been used for the classification of the different faults. For more accurate classification of faults, the wavelet entropy principle is proposed. In LCC-HVDC systems, a different approach for fault identification and classification is proposed. In this investigation an algorithm is developed that provides the trade-off between large input data size and minimal number of neurons in the hidden layer, without compromising the accuracy. The claim is confirmed by the results provided from the investigation for various fault conditions and its corresponding ANN output which confirms the specific fault detection and its classification. A fault identification and classification strategy based on fuzzy logic for VSC–HVDC systems is proposed. Initially, the developed Fuzzy Inference Engine (FIE) detects AC faults occurring in the rectifier side and DC faults on the cable successfully. However, it could not identify the line on which the fault has occurred. Hence, to classify the faults occurring in either AC section or DC section of the HVDC system, the FIE has to be restructured with appropriate data input. Therefore, a FIE which identifies different types of fault and the corresponding line where the fault occurs anywhere in the HVDC system was developed. Initially the developed FIE with three input and seven output parameters results in an accuracy level of 99.47% being achieved. After a modified FIE was developed with five inputs and seven output parameters, 21 types of faults in the VSC HVDC system were successfully classified with 100% accuracy. The FIE was further developed to successfully classify with 100% accuracy faults in Multi-Terminal HVDC systems

    Fault Diagnosis of HVDC Systems Using Machine Learning Based Methods

    Get PDF
    With the development of high-power electronic technology, HVDC system is applied in the power system because of advantages in large-capacity and long-distance transmission, stability, and flexibility. Therefore, as the guarantee of reliable operating of HVDC system, fault diagnosis of the HVDC system is of great significance. In the current variety methods used in fault diagnosis, Machine Learning based methods have become a hotspot. To this end, the performance of several commonly used machine learning classifiers is compared in HVDC system. First of all, nine faults both in AC systems and DC systems of the HVDC system are set in the HVDC model in Simulink. Therefore, 10 operating states corresponding to the faults and normal operating are considered as the output classes of classifier. Seven parameters, such as DC voltage and DC current, are selected as fault feature parameters of each sample. By simulating the HVDC system in 10 operating states (including normal operating state) correspondingly, 20000 samples, each containing seven parameters, be obtained during the fault period. Then, the training sample set and the test sample set are established by 80% and 20% of the whole sample set. Subsequently, Decision Trees, the Support Vector Machine (SVM), K-Nearest Neighborhood Classifier (KNN), Ensemble classifiers, Discriminant Analysis, Backward Propagation Neural Network (BP-NN), long Short-Term Memory Neural Network (LSTM-NN), Extreme Learning Machine (ELM) was trained and tested. The accuracy of testing is used as the performance index of the model. In particular, for BP-NN, the impact of different transfer functions and learning rules combinations on the accuracy of the model was tested. For ELM, the impact of different activation functions on accuracy is tested. The results have shown that ELM and Bagged Trees have the best performance in HVDC fault diagnosis. The accuracy of these two methods are 92.23% and 96.5% respectively. However, in order to achieve better accuracy in ELM model, a large number of hidden layer nodes are set so that training time increases sharply

    Fault Diagnosis of HVDC Systems Using Machine Learning Based Methods

    Get PDF
    With the development of high-power electronic technology, HVDC system is applied in the power system because of advantages in large-capacity and long-distance transmission, stability, and flexibility. Therefore, as the guarantee of reliable operating of HVDC system, fault diagnosis of the HVDC system is of great significance. In the current variety methods used in fault diagnosis, Machine Learning based methods have become a hotspot. To this end, the performance of several commonly used machine learning classifiers is compared in HVDC system. First of all, nine faults both in AC systems and DC systems of the HVDC system are set in the HVDC model in Simulink. Therefore, 10 operating states corresponding to the faults and normal operating are considered as the output classes of classifier. Seven parameters, such as DC voltage and DC current, are selected as fault feature parameters of each sample. By simulating the HVDC system in 10 operating states (including normal operating state) correspondingly, 20000 samples, each containing seven parameters, be obtained during the fault period. Then, the training sample set and the test sample set are established by 80% and 20% of the whole sample set. Subsequently, Decision Trees, the Support Vector Machine (SVM), K-Nearest Neighborhood Classifier (KNN), Ensemble classifiers, Discriminant Analysis, Backward Propagation Neural Network (BP-NN), long Short-Term Memory Neural Network (LSTM-NN), Extreme Learning Machine (ELM) was trained and tested. The accuracy of testing is used as the performance index of the model. In particular, for BP-NN, the impact of different transfer functions and learning rules combinations on the accuracy of the model was tested. For ELM, the impact of different activation functions on accuracy is tested. The results have shown that ELM and Bagged Trees have the best performance in HVDC fault diagnosis. The accuracy of these two methods are 92.23% and 96.5% respectively. However, in order to achieve better accuracy in ELM model, a large number of hidden layer nodes are set so that training time increases sharply

    Planning and Operation of Hybrid Renewable Energy Systems

    Get PDF

    Applications of Power Electronics:Volume 1

    Get PDF

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements

    Wind Power

    Get PDF
    This book is the result of inspirations and contributions from many researchers of different fields. A wide verity of research results are merged together to make this book useful for students and researchers who will take contribution for further development of the existing technology. I hope you will enjoy the book, so that my effort to bringing it together for you will be successful. In my capacity, as the Editor of this book, I would like to thanks and appreciate the chapter authors, who ensured the quality of the material as well as submitting their best works. Most of the results presented in to the book have already been published on international journals and appreciated in many international conferences

    Semi-automatic liquid filling system using NodeMCU as an integrated Iot Learning tool

    Get PDF
    Computer programming and IoT are the key skills required in Industrial Revolution 4.0 (IR4.0). The industry demand is very high and therefore related students in this field should grasp adequate knowledge and skill in college or university prior to employment. However, learning technology related subject without applying it to an actual hardware can pose difficulty to relate the theoretical knowledge to problems in real application. It is proven that learning through hands-on activities is more effective and promotes deeper understanding of the subject matter (He et al. in Integrating Internet of Things (IoT) into STEM undergraduate education: Case study of a modern technology infused courseware for embedded system course. Erie, PA, USA, pp 1–9 (2016)). Thus, to fulfill the learning requirement, an integrated learning tool that combines learning of computer programming and IoT control for an industrial liquid filling system model is developed and tested. The integrated learning tool uses NodeMCU, Blynk app and smartphone to enable the IoT application. The system set-up is pre-designed for semi-automation liquid filling process to enhance hands-on learning experience but can be easily programmed for full automation. Overall, it is a user and cost friendly learning tool that can be developed by academic staff to aid learning of IoT and computer programming in related education levels and field
    corecore