2,934 research outputs found

    Accurate and budget-efficient text, image, and video analysis systems powered by the crowd

    Full text link
    Crowdsourcing systems empower individuals and companies to outsource labor-intensive tasks that cannot currently be solved by automated methods and are expensive to tackle by domain experts. Crowdsourcing platforms are traditionally used to provide training labels for supervised machine learning algorithms. Crowdsourced tasks are distributed among internet workers who typically have a range of skills and knowledge, differing previous exposure to the task at hand, and biases that may influence their work. This inhomogeneity of the workforce makes the design of accurate and efficient crowdsourcing systems challenging. This dissertation presents solutions to improve existing crowdsourcing systems in terms of accuracy and efficiency. It explores crowdsourcing tasks in two application areas, political discourse and annotation of biomedical and everyday images. The first part of the dissertation investigates how workers' behavioral factors and their unfamiliarity with data can be leveraged by crowdsourcing systems to control quality. Through studies that involve familiar and unfamiliar image content, the thesis demonstrates the benefit of explicitly accounting for a worker's familiarity with the data when designing annotation systems powered by the crowd. The thesis next presents Crowd-O-Meter, a system that automatically predicts the vulnerability of crowd workers to believe \enquote{fake news} in text and video. The second part of the dissertation explores the reversed relationship between machine learning and crowdsourcing by incorporating machine learning techniques for quality control of crowdsourced end products. In particular, it investigates if machine learning can be used to improve the quality of crowdsourced results and also consider budget constraints. The thesis proposes an image analysis system called ICORD that utilizes behavioral cues of the crowd worker, augmented by automated evaluation of image features, to infer the quality of a worker-drawn outline of a cell in a microscope image dynamically. ICORD determines the need to seek additional annotations from other workers in a budget-efficient manner. Next, the thesis proposes a budget-efficient machine learning system that uses fewer workers to analyze easy-to-label data and more workers for data that require extra scrutiny. The system learns a mapping from data features to number of allocated crowd workers for two case studies, sentiment analysis of twitter messages and segmentation of biomedical images. Finally, the thesis uncovers the potential for design of hybrid crowd-algorithm methods by describing an interactive system for cell tracking in time-lapse microscopy videos, based on a prediction model that determines when automated cell tracking algorithms fail and human interaction is needed to ensure accurate tracking

    Hybrid human-machine information systems for data classification

    Get PDF
    Over the last decade, we have seen an intense development of machine learning approaches for solving various tasks in diverse domains. Despite the remarkable advancements in this field, there are still task categories that machine learning models fall short of the required accuracy. This is the case with tasks that require human cognitive skills, such as sentiment analysis, emotional or contextual understanding. On the other hand, human-based computation approaches, such as crowdsourcing, are popular for solving such tasks. Crowdsourcing enables access to a vast number of groups with different expertise, and if managed properly, generates high-quality results. However, crowdsourcing as a standalone approach is not scalable due to the latency and cost it brings in. Addressing the challenges and limitations that the human and machine-based approaches have distinctly requires bridging the two fields into a hybrid intelligence, seen as a promising approach to solve critical and complex real-world tasks. This thesis focuses on hybrid human-machine information systems, combining machine and human intelligence and leveraging their complementary strengths: the data processing efficiency of machine learning and the data quality generated by crowdsourcing. In this thesis, we present hybrid human-machine models to address the challenges falling into three dimensions: accuracy, latency, and cost. Solving data classification tasks in different domains has different requirements concerning accuracy, latency, and cost criteria. Motivated by this fact, we introduce a master component that evaluates these criteria to find the suitable model as a trade-off solution. In hybrid human-machine information systems, incorporating human judgments is expected to improve the accuracy of the system. Therefore, to ensure this, we focus on the human intelligence component, integrating profile-aware crowdsourcing for task assignment and data quality control mechanisms in the hybrid pipelines. The proposed conceptual hybrid human-machine models materialize in conducted experiments. Motivated by challenging scenarios and using real-world datasets, we implement the hybrid models in three experiments. Evaluations show that the implemented hybrid human-machine architectures for data classification tasks lead to better results as compared to each of the two approaches individually, improving the overall accuracy at an acceptable cost and latency

    Spam elimination and bias correction : ensuring label quality in crowdsourced tasks.

    Get PDF
    Crowdsourcing is proposed as a powerful mechanism for accomplishing large scale tasks via anonymous workers online. It has been demonstrated as an effective and important approach for collecting labeled data in application domains which require human intelligence, such as image labeling, video annotation, natural language processing, etc. Despite the promises, one big challenge still exists in crowdsourcing systems: the difficulty of controlling the quality of crowds. The workers usually have diverse education levels, personal preferences, and motivations, leading to unknown work performance while completing a crowdsourced task. Among them, some are reliable, and some might provide noisy feedback. It is intrinsic to apply worker filtering approach to crowdsourcing applications, which recognizes and tackles noisy workers, in order to obtain high-quality labels. The presented work in this dissertation provides discussions in this area of research, and proposes efficient probabilistic based worker filtering models to distinguish varied types of poor quality workers. Most of the existing work in literature in the field of worker filtering either only concentrates on binary labeling tasks, or fails to separate the low quality workers whose label errors can be corrected from the other spam workers (with label errors which cannot be corrected). As such, we first propose a Spam Removing and De-biasing Framework (SRDF), to deal with the worker filtering procedure in labeling tasks with numerical label scales. The developed framework can detect spam workers and biased workers separately. The biased workers are defined as those who show tendencies of providing higher (or lower) labels than truths, and their errors are able to be corrected. To tackle the biasing problem, an iterative bias detection approach is introduced to recognize the biased workers. The spam filtering algorithm proposes to eliminate three types of spam workers, including random spammers who provide random labels, uniform spammers who give same labels for most of the items, and sloppy workers who offer low accuracy labels. Integrating the spam filtering and bias detection approaches into aggregating algorithms, which infer truths from labels obtained from crowds, can lead to high quality consensus results. The common characteristic of random spammers and uniform spammers is that they provide useless feedback without making efforts for a labeling task. Thus, it is not necessary to distinguish them separately. In addition, the removal of sloppy workers has great impact on the detection of biased workers, with the SRDF framework. To combat these problems, a different way of worker classification is presented in this dissertation. In particular, the biased workers are classified as a subcategory of sloppy workers. Finally, an ITerative Self Correcting - Truth Discovery (ITSC-TD) framework is then proposed, which can reliably recognize biased workers in ordinal labeling tasks, based on a probabilistic based bias detection model. ITSC-TD estimates true labels through applying an optimization based truth discovery method, which minimizes overall label errors by assigning different weights to workers. The typical tasks posted on popular crowdsourcing platforms, such as MTurk, are simple tasks, which are low in complexity, independent, and require little time to complete. Complex tasks, however, in many cases require the crowd workers to possess specialized skills in task domains. As a result, this type of task is more inclined to have the problem of poor quality of feedback from crowds, compared to simple tasks. As such, we propose a multiple views approach, for the purpose of obtaining high quality consensus labels in complex labeling tasks. In this approach, each view is defined as a labeling critique or rubric, which aims to guide the workers to become aware of the desirable work characteristics or goals. Combining the view labels results in the overall estimated labels for each item. The multiple views approach is developed under the hypothesis that workers\u27 performance might differ from one view to another. Varied weights are then assigned to different views for each worker. Additionally, the ITSC-TD framework is integrated into the multiple views model to achieve high quality estimated truths for each view. Next, we propose a Semi-supervised Worker Filtering (SWF) model to eliminate spam workers, who assign random labels for each item. The SWF approach conducts worker filtering with a limited set of gold truths available as priori. Each worker is associated with a spammer score, which is estimated via the developed semi-supervised model, and low quality workers are efficiently detected by comparing the spammer score with a predefined threshold value. The efficiency of all the developed frameworks and models are demonstrated on simulated and real-world data sets. By comparing the proposed frameworks to a set of state-of-art methodologies, such as expectation maximization based aggregating algorithm, GLAD and optimization based truth discovery approach, in the domain of crowdsourcing, up to 28.0% improvement can be obtained for the accuracy of true label estimation

    Assessing emphysema in CT scans of the lungs:Using machine learning, crowdsourcing and visual similarity

    Get PDF

    Combining crowd worker, algorithm, and expert efforts to find boundaries of objects in images

    Get PDF
    While traditional approaches to image analysis have typically relied upon either manual annotation by experts or purely-algorithmic approaches, the rise of crowdsourcing now provides a new source of human labor to create training data or perform computations at run-time. Given this richer design space, how should we utilize algorithms, crowds, and experts to better annotate images? To answer this question for the important task of finding the boundaries of objects or regions in images, I focus on image segmentation, an important precursor to solving a variety of fundamental image analysis problems, including recognition, classification, tracking, registration, retrieval, and 3D visualization. The first part of the work includes a detailed analysis of the relative strengths and weaknesses of three different approaches to demarcate object boundaries in images: by experts, by crowdsourced laymen, and by automated computer vision algorithms. The second part of the work describes three hybrid system designs that integrate computer vision algorithms and crowdsourced laymen to demarcate boundaries in images. Experiments revealed that hybrid system designs yielded more accurate results than relying on algorithms or crowd workers alone and could yield segmentations that are indistinguishable from those created by biomedical experts. To encourage community-wide effort to continue working on developing methods and systems for image-based studies which can have real and measurable impact that benefit society at large, datasets and code are publicly-shared (http://www.cs.bu.edu/~betke/BiomedicalImageSegmentation/)
    • …
    corecore