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ABSTRACT

While traditional approaches to image analysis have typically relied upon either manual

annotation by experts or purely-algorithmic approaches, the rise of crowdsourcing now

provides a new source of human labor to create training data or perform computations

at run-time. Given this richer design space, how should we utilize algorithms, crowds,

and experts to better annotate images? To answer this question for the important task of

finding the boundaries of objects or regions in images, I focus on image segmentation, an

important precursor to solving a variety of fundamental image analysis problems, includ-

ing recognition, classification, tracking, registration, retrieval, and 3D visualization. The

first part of the work includes a detailed analysis of the relative strengths and weaknesses

of three different approaches to demarcate object boundaries in images: by experts, by

crowdsourced laymen, and by automated computer vision algorithms. The second part of

the work describes three hybrid system designs that integrate computer vision algorithms

and crowdsourced laymen to demarcate boundaries in images. Experiments revealed that

hybrid system designs yielded more accurate results than relying on algorithms or crowd

workers alone and could yield segmentations that are indistinguishable from those cre-

ated by biomedical experts. To encourage community-wide effort to continue working

on developing methods and systems for image-based studies which can have real and

measurable impact that benefit society at large, datasets and code are publicly-shared

(http://www.cs.bu.edu/∼betke/BiomedicalImageSegmentation/).
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Chapter 1

Introduction

The ubiquitous use of cameras and the advance in imaging technology for medical and

scientific visualization have resulted in an unprecedented number of images to be analyzed.

In response, an explosion of new image-based applications are emerging in both academia

and industry which reap a multitude of benefits to society. Demarcating the boundaries

of objects (segmentation) is commonly a critical step in image-based applications whether

trying to observe object silhouettes [94], collect measurements (features) [47, 77], match

images of the same scene (registration) [25, 76], follow objects over time (tracking) [54, 70],

differentiate between different types of objects (classification) [87], find similar images in a

database (image retrieval) [59, 81], or analyze shapes [74] or behaviors [69]. Consequently,

much related work is devoted to obtaining high-quality segmentations whether from do-

main experts, algorithms, or crowd workers (Figure 1.1). Given this rich design space,

how should we utilize algorithms, crowds, and experts to consistently collect high quality

segmentations?

Domain expertise may be required to understand how object boundaries should be

delineated and careful attention may be necessary to manually separate complex object

shapes from other objects and/or the background. Manual annotation studies investi-

gate ways to reduce the inter and intra-annotator variability that arises when collecting

segmentation drawings from domain experts [65, 89].

Many computer vision algorithms were proposed over the past 40 years with differ-

ent built-in assumptions about image properties that enable them to accurately demar-

cate object boundaries for a range of object and background appearances observed from
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Figure 1.1: Which segmentation collection method will work best in demarcating objects
of interest? Overview of resources available to create segmentations. Higher positions for
each color in the hierarchy reflect a greater depth of training for the task, the “Agreement”
disc for each color reflects a greater breadth of expertise. The width of each disc approxi-
mates the relative potential to scale the resource to perform the task. The objective when
choosing from these resource options is to maximize quality (higher in the hierarchy) while
minimizing cost (lower in the hierarchy).

differing acquisition systems and environmental conditions [6, 15, 16, 48, 35, 68] (Fig-

ure 1.2a,b). However, such built-in assumptions restrict the wide-spread applicability of

such algorithms. Consequently, it can be faster for individuals to manually trace bound-

aries themselves than to risk repeatedly applying different algorithms until finding one to

trust (assuming a suitable option exists).

More recently, as an alternative option, researchers across several fields have proposed to

offload the labor-intensive, segmentation task to crowdsourced workers [8, 26, 35, 36, 37, 79].

The widespread importance of this approach is exemplified when looking even just at its

popularity within the computer vision community. LabelMe [79], a freely-shared, web-

based drawing tool regularly used for crowdsourcing, has a website counter indicating

267,392 visits to the website over the past decade and the publication about this work

has been cited 1,381 times to date (Figure 1.2c). Moreover, larger sizes of annotated

datasets for algorithm training and benchmarking are reported annually, with a recent
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Figure 1.2: Which segmentation collection method will work best in demarcating objects
of interest? Popular image editing tools support numerous automatic methods including
those shown for (a) Gimp [1], an open-source replacement for Adobe Photoshop and (b)
Fiji [80], a version of the widely-used bioimage analysis software ImageJ. (c) LabelMe [79],
is a freely-available web-based drawing tool frequently used for crowdsourcing.

publication describing how an extended version of an annotation tool [8] was applied to

create hundreds of thousands of segmented objects in images [55]. Until the work described

in this thesis (some published elsewhere [35, 36, 37]), publications about crowdsourcing the

image segmentation task only discussed studies conducted on “everyday images” showing

objects such as a tree or swan captured with visible cameras. Consequently, little was

known regarding what to expect when applying such systems for the vast amounts of

imagery that show content undetectable to the naked human eye such as microscopic

images showing cells or magnetic resonance images showing aortas in a heart (Figure 1.3;

BU-BIL:1-6). Another gap in the literature was that little work qualifies what to expect in

terms of quality from crowdsourced workers compared to experts, despite known mistakes

observed from collected crowd drawings.

In parallel with proposing segmentation creation methods, researchers have proposed

quality control methods to address concerns about the quality of segmentations created

by experts, algorithms, and crowdsourced workers. Ensemble methods combine multiple

segmentations created by humans, computers, or a mixture of both to obtain a better
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Figure 1.3: This paper examines how to leverage crowd efforts in delineating the boundary
of objects in biomedical and everyday images using studies on images taken from three
image libraries (BU-BIL, MPEG7, and Weizmann). The focus is on the single primary
object in each image. The images shown here exemplify how object appearance can vary
significantly with respect to intensity, size, and shape, how edges separating objects from
the background can be faint, and how the background can be noisy and cluttered.

segmentation [27, 95]. Crowdsourcing quality control strategies have been proposed to filter

workers using training tests or to grade submitted segmentations from the immediately

available, yet potentially unreliable crowdsourced workforce [55, 85]. The challenge with

applying quality control methods is knowing what is the benefit of each method and so

when to apply which method [82].

This work is a contribution to the emerging research field at the intersection of human

computation and computer vision that explores how to involve humans to contribute to

computing in hybrid algorithm-crowdsourcing systems. Recent publications have suggested

to engage crowdsourced workers to supply initial bounding regions coarsely hugging object

boundaries which the algorithms then evolve to the final desired object boundaries [44].

While such hybrid methods are effective for particular image sets, they only succeed when

the algorithm assumptions match the image properties. Another set of hybrid systems show

how to pair algorithms with crowdsourced workers in a system workflow to create segmen-

tations of biological structures in microscopy images [28, 42, 45]. These works discuss

different hybrid system workflows targeted for specific image sets. Our work, described in

this thesis and elsewhere [31, 34, 36], grows the limited body of research on hybrid system
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designs for the image segmentation problem by validating system workflows that combine

crowdsourced lay people and computer vision algorithms with different workflows on a

diversity of image content.

Finally, this work and associated publications [31, 34, 36, 37] are a contribution to

crowdsourcing literature that examines how to leverage non-expert humans to replace do-

main experts for extracting information from biomedical images [29]. Exemplar image-

based research revealing how to leverage the crowd include classifying galaxies [56], malaria

infected red blood cells [60], and colorectal polyps (precursor to malignant cancer) [67]

observed in large numbers of infrared, microscopy, and computed tomography images re-

spectively. These citizen science and gamification studies motivate continuing to challenge

commonly-held assumptions regarding when expert training is required. We extended

existing research by conducting studies [31, 34, 36, 37] using a crowdsourcing internet

marketplace, Mechanical Turk, which provides a set of incentives for participation that

is different from that of citizen scientists or gamers and so can lead workers to behave

significantly differently from volunteers [61]. We chose to conduct experiments using mon-

etary incentives with the paid crowdsourcing platform, Mechanical Turk, because of “easy

access to a large, stable, and diverse subject pool, the low cost of doing experiments and

faster iteration between developing theory and executing experiments” [62]. Our work

demonstrates how to involve paid crowdsourced workers in expert-quality systems.

The key contributions of this dissertation are:

• A principled approach for analyzing segmentation performance that connects anno-

tation collection methods, fusion methods, and evaluation algorithms into a unified

framework called SAGE; this approach simplifies the challenge of finding a suitable

replacement for an expert by incorporating into the evaluation approach the incon-

sistencies observed between expert annotators [32].

• Evaluation and comparison of experts, crowdsourced non-experts, and automated

segmentation algorithms to find the boundaries of biological structures in biomedical
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images [37].

• Analysis of crowdsourcing the image segmentation problem that reveals what may be

expected when leveraging crowd workers at different levels of involvement for both

familiar (everyday images) and unfamiliar (biomedical images) content: 1) draw only,

2) vote only, or 3) both draw and vote [33, 34].

• Three hybrid system designs and experiments that inform how to utilize the an-

notation efforts of crowdsourced workers and algorithms together to create object

boundaries that are of comparable quality to segmentations created by experts and

exceed the performance of pure algorithm and crowdsourcing methods [31, 34, 36].

The remainder of this dissertation is organized in six sections. A methodology and series

of three studies that motivate a new segmentation evaluation methodology is described in

Chapter 2. These experiments inform how to involve experts to establish references for

segmentation evaluation purposes. Then, we describe a comparative analysis of drawings

from algorithms, crowd workers, and experts in Chapter 3. Next, in Chapter 4 we discuss

crowdsourcing studies suggesting how to more effectively involve crowd workers to gather

high quality results. Finally, we conclude in Chapters 5-7 with three hybrid system designs

and experiments that highlight ways to combine efforts from algorithms and crowdsourcing

to efficiently collect high quality segmentations.



Chapter 2

Evaluation Methodology

An important foundation for image-based applications is demonstrating that the segmen-

tation method consistently provides the desired outcome. Performance analysis of seg-

mentation methods varies depending on the application objectives. Zhang [97] proposed

to group evaluation methods into three categories, “analytical methods,” empirical meth-

ods based on goodness measures, and empirical methods based on discrepancy measures.

Zhang [97] concluded that methods based on discrepancy measures, which indicate how

similar a query segmentation is to a gold standard segmentation (e.g., shape similarity),

are most powerful for segmentation evaluation. In this work, also discussed in a 2013 pub-

lication [32], we focus on performance analysis of segmentations using the current common

model, empirical methods based on discrepancy measures.

Prior to this work, there was little discussion about when to use which segmentation

analysis method when calculating discrepancy scores. Numerous papers reviewed eval-

uation methods for finding a discrepancy between two segmentations [43, 88, 97]. An

active area of research lied in establishing an annotation collection process to obtain gold

standard segmentations including studies about annotation tools and annotator expertise

level [5, 19, 57, 65, 73, 79]. Additionally, annotation fusion methods were developed to

produce a reliable gold standard segmentation from a collection of annotations for the cases

when intra-annotator and inter-annotator variation could be high [12, 17, 85, 95].

Finding the appropriate methodology for analyzing a segmentation method is impor-

tant for recognizing an effective algorithm or crowdsourcing system design. For example,

developers may prematurely dismiss good segmentation systems when their measures in-
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dicate poor results, whether due to unreliable gold standard segmentations or the wrong

discrepancy measure. Additionally, scientists may reject downstream analyses, even when

measures indicate strong segmentations, if the gold standard segmentations are not trusted.

It is insufficient to approach segmentation analysis by only selecting a discrepancy mea-

sure [97], because the chosen gold standard segmentation also impacts the score. Further-

more, access to various segmentation analysis tools and methods is critical for establishing

accepted segmentations. Yet shared toolboxes integrating these have not been developed,

leading to non-novel, time-consuming efforts to build such systems. Lastly, given that

finding a meaningful performance score depends on establishing a trusted gold standard

segmentation, it is unclear how, in practice, to establish a trusted gold standard segmen-

tation.

The key contributions of this published work [32] are:

• A principled approach for analyzing segmentation performance that connects annota-

tion collection approaches, fusion methods, and evaluation algorithms into a unified

framework we call SAGE.

• A freely available system implementing SAGE that is compatible on many platforms

and operating systems and links existing annotation tools with popular fusion al-

gorithms and evaluation algorithms enabling quick segmentation validation against

either a single annotation or a fused annotation.

• Three studies using the toolbox that highlight the impact of annotation tools, an-

notator expertise, and fusion methods on establishing trusted, i.e., high-consensus,

gold standard segmentations and so meaningful evaluation scores.

In Section 2, we describe SAGE and a toolbox that implements SAGE. In Section 3, we

describe three studies that highlight ways to establish a trusted gold standard segmentation

for cell and artery images. In Section 4 we present the results and in section 5 we analyze

the results and discuss future work. Conclusions are given in Section 6.
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Figure 2.1: Overview of SAGE (yellow boxes) within the context of analyzing a query
segmentation.

2.1 Methods

We propose in this section a principled approach to analyze the quality of segmentations.

We formulate it as a model called Segmentation Annotation Collection, Gold Standard

Generation, and Evaluation (SAGE). We then describe a freely available system imple-

menting this framework.

2.1.1 SAGE Framework

SAGE indicates a pipeline of steps to consider when establishing a process to analyze

segmentation performance. A flowchart summarizing this model is shown in Figure 2.1.

SAGE connects methods for collecting segmentation annotations with algorithms for gen-

erating a gold standard and measures for evaluating how similar a segmentation is to the

gold standard. It expands upon the current model [97] for analyzing segmentation per-

formance which considers only selecting the appropriate evaluation measure to establish a

score.

Since one would use this model in the context of analyzing the quality of a segmentation,

one first must obtain an image and generate a query segmentation of an object in that

image to analyze (lower path in Figure 2.1). This segmentation may be created either

automatically or manually. One then would apply the SAGE model to analyze the quality

of that segmentation (upper path in Figure 2.1). To use SAGE, one must first collect
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annotations, which may be obtained by one or more annotators. Next, one must establish

a gold standard segmentation, which can be an original annotation or a fused annotation

created by combining multiple annotations. Lastly, one must calculate a score using a

discrepancy measure to assess how similar the query segmentation is to the gold standard.

2.1.2 Implementation

We describe here a freely available implementation of SAGE that links popular segmen-

tation analysis tools in a single system. It is developed in Java in order to easily run on

various computer hardware with various operating systems. The system has been validated

on Windows 7, Windows XP, and Mac OS X operating systems. The configurable choices

for the system are described in detail below.

Annotation Collection: The system supports reading segmentations from the fol-

lowing annotation tools: LabelMe [79], ImageJ [73], and Amira [5]. More generally, the

system supports reading segmentations in binary image format, as xml files indicating

object boundary points connected by straight lines, and as xml files indicating all object

points.

Gold Standard Generation: When more than one annotation per image is provided,

the user can select an original annotation or a fused annotation to represent the gold

standard. The system supports two fusion methods: Thresholded Probability Maps [65]

and Simultaneous Truth and Performance Level Estimation (STAPLE) [95].

Thresholded Probability Maps is an algorithm that takes N input segmentations and

M segmentations and then labels a pixel as foreground when M
N ≥ p and background oth-

erwise. STAPLE is an expectation-maximization algorithm that simultaneously generates

gold standard segmentations and infers the performance of each input segmentation. For

the formulation, each pixel is assigned 1 or 0 to indicate foreground and background re-

spectively, Ti represents the value for the i-th pixel of the gold standard segmentation, Dij

represents the value for the i-th pixel of the j-th input segmentation, pj represents the

fraction of foreground pixels in the gold standard segmentation labeled as foreground in
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the segmentation for the j-th input segmentation, qj represents the fraction of background

pixels in the gold standard segmentation classified as background in the segmentation for

the j-th input segmentation, and j : Dij = k denotes the set of indexes for which segmen-

tation j has value k at pixel i. When the performance parameters pj and qj are given,

pixels are labeled as foreground when Wi is greater than 0.5 and as background otherwise:

Wi ≡ f(Ti = 1|Di, p, q) =
ai

ai + bi
(2.1)

ai = f(Ti = 1)
∏

j:Dij=1

pj
∏

j:Dij=0

(1− pj) (2.2)

bi = f(Ti = 0)
∏

j:Dij=0

qj
∏

j:Dij=1

(1− qj) (2.3)

The EM algorithm uses equation 2.4 to calculate the expected conditional log likelihood in

the E-step and equations 2.5-2.6 to update the performance parameters for the M -step.

Q(θt|θt−1) =
∑
j

[
∑

i:Dij=1

W
(t−1)
i ln pj +

∑
i:Dij=1

(1−W (t−1)
i ) ln(1− qj) +

∑
i:Dij=0

W
(t−1)
i ln(1− pj) +

∑
i:Dij=0

(1−W (t−1)
i ) ln qj ] (2.4)

p
(k)
j =

∑
j:Dij=1W

(k−1)
i∑

iW
(k−1)
i

(2.5)

q
(k)
j =

∑
j:Dij=0(1−W

(k−1)
i )∑

i(1−W
(k−1)
i )

(2.6)

When the system uses STAPLE, three starting conditions must be specified: initial perfor-

mance parameters for input segmentations, probability a pixel in the image is foreground,

and convergence threshold. The interface for selecting a gold standard from the original
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Figure 2.2: Interface of the toolbox for selecting a gold standard from annotations and
fused annotation options.

annotations and fusion segmentations is shown in Figure 2.2.

Evaluation Measures: The system supports the following six discrepancy measures

commonly used to indicate how far a query segmentation is from a gold standard seg-

mentation - accuracy, intersection over union (IoU), false positive rate, false negative rate,

probability of error, and Hausdorff distance [43, 88, 97]. For the formulation of these

measures, A represents the gold standard segmentation and B the query segmentation.

The system uses accuracy to calculate the fraction of the true cell region captured

by the segmented region as |A∩B||A| ; IoU to calculate the average overlap between the two

regions as |A∩B||A∪B| ; false positive rate to calculate the fraction of background pixels in

the true segmentation labeled as foreground in the segmentation; false negative rate

to calculate the fraction of foreground pixels in the true segmentation that are classified

as background in the segmentation; probability of error to calculate the probability

of mislabeling an object pixel as background or a background pixel as object as PE =

P (O) ∗ P (B|O) + P (B) ∗ P (O|B) where P (B|O) is the false negative rate, P (O|B) is the

false positive rate, and P (O) and P (B) are the prior probabilities of object and background

pixels respectively in the images; and directed Hausdorff distance to find the point in
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A furthest from any point in B and calculate the Euclidean distance from that point to its

nearest point in B as h(A,B) = max
a∈A
{min
b∈B
{d(a, b)}} where d(a, b) is the Euclidean distance

between points a and b.

2.2 Experiments

We ran three case studies using the toolbox to highlight various ways to establish trusted

gold standard segmentations in practice. These studies examine which annotation tools to

use, who should annotate, and whether fusion methods should be used. The measure used

to evaluate whether a gold standard segmentation should be trusted is consensus amongst

domain experts. We first characterize the image libraries and annotators and then describe

the experimental design for each study.

2.2.1 Image Library for Annotation and Annotators

The intent of creating the image library was to provide a generalized collection of images

representing various image acquisition modalities, object types, and image acquisition pa-

rameters. The image library contains a total of 154 images coming from four datasets.

The first three datasets were collected by observing the cells with a Zeiss Axiovert S100

microscope and capturing images using a Princeton Instruments 1300YHS camera. For the

first dataset, the cells were cultured at 37◦C in 5% CO2 on a PAAM hydrogel with embed-

Table 2.1: Description of image library for annotation

ID # of
Images

Imaging
Modality

Object Resolution Avg. Object
Pixel Count

Format

1 35 Phase
Contrast

Neonatal rat smooth muscle cells 1024×811 35,649 tif

2 48 Phase
Contrast

Fibroblast cells of the Balb/c 3T3
mouse strain

1030×1300 3,914 tif

3 36 Phase
Contrast

Vascular smooth muscle cells from
rabbit aortas

1030×1300 9,880 jpg

4 35 MRI Left renal artery and the iliac bifurca-
tion of a New Zealand White Rabbit

512×512 180 bmp
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Table 2.2: Description of annotator experience

ID Education
Level

Worked with
cell images

Worked with
MRI images

Used ImageJ Used Amira

A Undergrad 3 months None Yes No

B Post-doc 14 years 3 months Yes No

C PhD student 10 years 1 year Yes No

D Post-doc 2 months None Yes No

E PhD student 3 weeks 1 year Yes No

ded fluorescent beads with a size of 0.75 microns. For the second dataset, the cells were

cultured at 37◦C in 5% CO2 on a PAAM hydrogel. For the third dataset, the cells were

cultured at 37◦C in 5% CO2 on tissue culture plastic. The fourth dataset contains magnetic

resonance images (MRIs) of a left renal artery obtained axially using a 3T MRI scanner

(Philips Achieva). A single object from each dataset, present throughout the sequence of

images, was identified to annotate. The specifications of the datasets are summarized in

Table 2.1.

Five domain experts participated as annotators in the experiments. They had different

education levels, experiences with the image types, and experiences with annotation tools,

as summarized in Table 2.2.

2.2.2 Studies

Study 1: Impact of Annotation Tool. The five annotators were asked to annotate

the first 154 images with two annotation tools, ImageJ [73] and Amira [5], using their own

judgement. ImageJ, like LabelMe [79], uses a collection of user specified points connected

by straight lines to produce a 2D segmentation. Amira collects user brush strokes to

produce a 2D binary mask indicating all pixels in an object.

Annotator A annotated using a touchpad to interface with a laptop running a Mac

operating system and would annotate in 2-3 hour intervals before taking a break. Annotator

B annotated using a mouse to interface with both a desktop and laptop running typically
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on a Linux operating system and would annotate in 1-2 hour intervals before taking a break.

Annotator C annotated using a touchpad to interface with a laptop running a Windows 7

operating system and would annotate in 1 hour intervals before taking a break. Annotator

D annotated primarily using a mouse to interface with a laptop running a Windows 7

operating system and would annotate in 2 hour intervals before taking a break. Annotator

E annotated using a mouse to interface with a desktop running a Windows 7 operating

system and would annotate in 3-6 hour intervals before taking a break.

All annotators first annotated using ImageJ on all images in various orders. Then,

within one week, all annotators annotated using Amira on all images in various orders.

The SAGE implementation was then run over all ImageJ annotations with each person

having their annotations treated as a gold standard. For each of the five gold standard sets,

the system was used to calculate the following six evaluation measures indicating how each

of the other non-gold standard annotations compared against the gold standard: accuracy,

IoU, false positive rate, false negative rate, probability of error, and Hausdorff distance.

This process was repeated for the Amira annotations.

Study 2: Impact of Annotators. Study one data is used to compare annotators

qualitatively and quantitatively.

Study 3: Impact of Gold Standard Generation. Four experts participated in

this study. First, a library of annotations was created to include ten annotation options

for each of 98 images in the image library. Five of the annotation options were the ImageJ

annotations produced by the five annotators. The other five annotation options were gen-

erated using fusion methods implemented in SAGE on the five input annotations. The five

fusion methods are consecutively as follows: Thresholded Probability Map with p = 0.2

(union of annotations); Thresholded Probability Map with p = 1 (intersection of annota-

tions); Thresholded Probability Map with p = 0.6 (majority vote); STAPLE initialized with

global foreground set to 0.1, convergence threshold set to 0, and all performance parame-

ters initialized to 0.7; STAPLE initialized with global foreground set to 0.1, convergence

threshold set to 0, and performance parameters initialized to the average of performance



16

parameter values assigned by the four experts participating in the study.

Then, the four experts used the SAGE implementation to select, from the ten anno-

tations shown simultaneously, the segmentation best representing the gold standard. All

experts were presented the original images in the same order and reviewed the 98 images

in one sitting. For each image, the order of the corresponding annotations in the user in-

terface was randomized to prevent the experts from learning which annotation represented

what source.

2.3 Results

Study 1: Impact of Annotation Tool. Qualitative results of a set of annotations for

an image from each dataset are shown in Figure 2.3 where relative size of objects are

preserved. The quantitative results were pre-processed to include only data where the five

annotators annotated the same object resulting in 153 valid ImageJ images and 152 valid

Amira images. For each annotation tool, the average score for each evaluation measure

over all annotator comparisons across all images was calculated. Quantitative results are

shown in Table 2.3.

Figure 2.3: Qualitative results showing a set of annotations collected using ImageJ from
the five annotators (A-E) for an image from each dataset (1-4).

Study 2: Impact of Annotators. For the post-processed data, the average eval-
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Table 2.3: Average evaluation measure score for annotations obtained using different an-
notation tools are shown where I- indicates ImageJ annotations and M- indicates Amira
annotations and Di indicates the i-th dataset.

Tool Acc IoU FPR FNR POE HD

I-All 0.85 0.72 0.0018 0.15 0.0035 16

M-All 0.87 0.76 0.0018 0.13 0.0034 14

I-D1 0.86 0.74 0.006 0.14 0.011 29

M-D1 0.87 0.77 0.0058 0.13 0.011 30

I-D2 0.86 0.75 0.0004 0.14 0.0008 12

M-D2 0.89 0.80 0.0003 0.11 0.0007 10

I-D3 0.86 0.75 0.0010 0.14 0.002 18

M-D3 0.87 0.77 0.0009 0.13 0.002 16

I-D4 0.82 0.65 0.0002 0.18 0.0004 4

M-D4 0.85 0.73 0.0001 0.15 0.0002 3

uation score over all images for every permutation of two annotators for each evaluation

measure was calculated using SAGE. Quantitative results for Amira and ImageJ annota-

tions are shown in Table 2.4.

Study 3: Impact of Gold Standard Generation: From the 98 images, where

experts voted for the best from 10 segmentations, we found agreement between none of the

annotators for 27 images, two annotators for 49 images, three annotators for 18 images,

and four annotators for 4 images. Where there was consensus, there were five cases of

voting ties. From the 76 cases of voting consensus for a particular annotation, 26 were for

B, 13 were for A, 13 were for the Probability Threshold Map fusion method with p = 0.6,

8 were for E, 7 were for D, 4 were for STAPLE with uniform performance parameters

initialized, 3 were for STAPLE with performance parameters established by the experts,

and 2 were for the Probability Threshold Map fusion method with p = 1. Annotator C

and Probability Threshold Map fusion method with p = 0.2 did not receive any consensus

votes. Fused methods accounted for 9.86% of the consensuses.
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Table 2.4: Average evaluation score over all images for every pair of annotations for each
evaluation measure are shown where I- indicates ImageJ annotations and M- indicates
Amira annotations. False positive rate and probability of error scores are all value× 10−2.

I-Acc M-Acc I-IoU M-IoU I-FPR M-FPR I-FNR M-FNR I-POE M-POE I-HD M-HD

AB 0.95 0.89 0.78 0.80 0.17 0.10 0.05 0.10 0.23 0.29 13 16

AC 0.92 0.91 0.63 0.73 0.35 0.24 0.08 0.09 0.43 0.36 19 15

AD 0.97 0.93 0.70 0.77 0.32 0.18 0.03 0.07 0.35 0.30 14 13

AE 0.94 0.94 0.76 0.74 0.23 0.30 0.06 0.06 0.30 0.38 13 16

BA 0.81 0.88 0.78 0.80 0.29 0.19 0.19 0.11 0.23 0.29 15 12

BC 0.87 0.88 0.67 0.75 0.24 0.29 0.13 0.09 0.42 0.37 20 12

BD 0.94 0.94 0.77 0.80 0.17 0.20 0.06 0.06 0.30 0.26 11 10

BE 0.89 0.95 0.81 0.76 0.07 0.35 0.11 0.05 0.27 0.39 11 13

CA 0.68 0.80 0.63 0.73 0.24 0.13 0.32 0.21 0.43 0.36 17 15

CB 0.76 0.81 0.67 0.75 0.15 0.08 0.24 0.19 0.42 0.37 16 15

CD 0.81 0.86 0.69 0.76 0.17 0.14 0.19 0.14 0.42 0.34 14 11

CE 0.75 0.88 0.67 0.74 0.10 0.24 0.25 0.12 0.42 0.37 15 14

DA 0.72 0.82 0.70 0.77 0.20 0.13 0.28 0.18 0.35 0.30 18 17

DB 0.82 0.85 0.77 0.80 0.07 0.06 0.18 0.16 0.30 0.26 14 17

DC 0.82 0.88 0.69 0.76 0.11 0.21 0.18 0.12 0.42 0.34 21 14

DE 0.80 0.91 0.74 0.78 0.04 0.26 0.20 0.09 0.33 0.34 14 15

EA 0.81 0.78 0.76 0.74 0.10 0.10 0.12 0.22 0.30 0.38 16 17

EB 0.90 0.80 0.81 0.76 0.12 0.05 0.10 0.20 0.27 0.39 13 18

EC 0.88 0.84 0.67 0.74 0.23 0.15 0.07 0.16 0.42 0.37 22 16

ED 0.93 0.85 0.74 0.78 0.08 0.11 0.19 0.15 0.33 0.34 13 14

2.4 Discussion and Future Work

We first discuss the benefit of using the SAGE model. Then, we analyze the impact of the

annotation tools, annotators, and fusion methods on establishing trusted gold standard

segmentations in practice.

SAGE Model: Design Analysis. The results of our studies support the flow of

modules used in our SAGE model. The annotation collection process should precede gold

standard generation since varying the collection methods leads to differences in the gold

standard as observed qualitatively in Figure 2.3 and quantitatively in Table 2.4. The

gold standard generation step should precede the evaluation measure step because varying

the gold standard generation process (e.g., using various fusion methods with various tuned

parameters) while keeping the annotation collection process constant (same collection of

input annotations) and evaluation measure constant causes the output score to vary [12].

Finally, the annotation collection process is independent from the gold standard generation

step because varying the annotation collection process while keeping the evaluation measure
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constant and gold standard selection process constant (using a single input annotation as

is), causes the output score to vary as shown in Table 2.4.

The results support that SAGE is a principled approach to use when analyzing segmen-

tation quality. The results also suggest that SAGE more accurately describes the factors

impacting the performance score than the previous model [97].

Study 1: Impact of Annotation Tool. Images in Figure 2.3 exemplify the variety

of annotation challenges in the four datasets, where objects in dataset 4 are small, the

background in dataset 1 contains clutter, and objects in datasets 2 and 3 have involved

contour details.

Quantitatively, the annotator agreement when using Amira is on average greater than

or equal to the annotator agreement when using ImageJ for all 6 measures over all four

datasets. Note that higher values are better for the accuracy and IoU measures, while lower

values are better for the other four measures. In contrast to the findings in Meyer et al’s

work [65], which found that there was no significant difference between annotation methods,

this suggests that inter-annotator variation can be reduced based on the annotation method

used.

Future work will explore the cause of this improvement. The annotators suggested

that the improvement may be because Amira supports easily erasing and adding pixels

to the segmentation whereas correction is a more involved process with ImageJ. Also,

Amira identifies an annotation with a transparent overlay on the image while ImageJ only

displays the segmented line or the filled region making comparison against the original

image difficult.

Study 2: Impact of Annotators. Images in Figure 2.3 exemplify the differences

between how annotators annotate images. Quantitatively, the set of measures reveal that

education level and experience may not be the greatest factors for achieving annotator con-

sensus. Annotators A and B agree more (columns AB and BA) than B and C (columns

BC and CB), the most experienced annotators, with respect to Hausdorff distance, prob-

ability of error, and IoU while the other measures indicate comparable similarity between
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annotators. Annotators A and B share similar agreement (columns AB and BA) to that

between B and D (columns BD and DB), the most educated annotators, with respect

to accuracy, IoU, false negative rate, probability of error, and Hausdorff distance. One

suggested cause of the high agreement between A and B was their shared training for

what defines the gold standard, as they were the only pair from the five annotators that

conducted research together. Future work will explore the impact of shared instructions

for how to annotate on annotator consensus.

Study 3: Impact of Gold Standard Generation. Furthering the previous analy-

ses of fusion methods [12, 95], we investigate whether the fusion methods are perceived to

provide improved segmentations over the original annotations. Experimental results indi-

cate a low preference for fusion methods over original annotations by a single expert for

our datasets. Results also revealed that a simple pixel majority vote consensus algorithm

was perceived by experts as the better option when considered against the widely-accepted

expectation maximization consensus algorithm [95] that intelligently weighs the influence

of each expert annotation on the final segmentation.

2.5 Conclusions

Knowledge of the various segmentation analysis methodologies and access to segmenta-

tion analysis tools are critical for establishing trusted segmentations. We presented a

framework to obtain project specific segmentation performance indicators in a principled

way that links annotation collection processes with gold standard generation methods and

evaluation algorithms. Furthermore, by turning this framework into a toolbox support-

ing popular tools and algorithms, we enable researchers to focus on the most important

research issues of developing improved algorithms and establishing reliable gold standard

segmentations. Three user studies run with the toolbox demonstrate the impact of annota-

tion tools, annotator expertise, and fusion methods on establishing reliable gold standard

segmentation. Analyses revealed that the annotation tool introduced the greatest amount
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of disagreement between experts’ annotations among the studied factors annotator educa-

tion, annotator experience, and annotation tool. Given inconsistencies observed between

experts, we suggest as an evaluation methodology to set the performance goal to evaluate

query segmentations against a reference segmentation established through a pixel majority

vote of multiple expert annotations.



Chapter 3

Comparative Analysis of Segmentations Created

by Experts, Algorithms, and Crowd Workers

Imaging has become a common and important tool for advancing our understanding of

biomedical processes, enabling observation both within and outside of living organisms (i.e.,

in vivo and in vitro) [42, 47]. In principle, collected images will contribute to the discovery of

how the human body functions in both healthy and diseased states which will in turn greatly

assist in the treatment and prevention of diseases and the engineering of biomaterials.

Common questions asked by individuals analyzing biomedical images is “what segmentation

collection approach is sufficient to consistently and efficiently find the desired boundaries

of biological structures in their images?” and “given that derived biological interpretations

are influenced by the accuracy of the boundaries of biological structures, what segmentation

collection approach will yield the most accurate boundaries?”

Often, domain experts draw the boundaries of biological structures using annotation

software such as ImageJ [73] or Amira [5]. The key motivating assumption for this approach

is that human annotators trained on how to interpret images collected using particular

biomedical image acquisition systems can distinguish between true object boundaries and

image noise/artifacts and so draw highly accurate boundaries. However, this approach is

time-consuming, expensive, and does not scale.

To overcome the obstacles associated with relying on manual annotation by experts,

developers have been integrating segmentation algorithms into publicly available image

analysis systems and researchers have been designing new algorithms to tackle open seg-
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mentation challenges [20, 63, 73, 93]. Older methods including thresholding (e.g., Otsu

Thresholding [68]), feature-based (e..g, Hough Transform [6]), and region growing (e.g.,

Seeded Watershed [91]) algorithms are still actively used, in part because of their ease of

use and widespread availability in bioimage analysis systems. Level-set based algorithms

are more recent developments; their success typically depend on selecting an appropriate

initial contour which gets evolved into the final boundary [20]. Although the continued

development and wide-spread sharing of new segmentation tools are valuable for assisting

with the effort required to analyze the large number of images, the number of automation

methods are becoming too numerous to explore for both non-experts and experts. A chal-

lenge for individuals trying to choose from the abundance of options is how to infer from

isolated studies reported for lab-specific datasets which tool will work well for their biomed-

ical image sets since there are no comparison studies that include algorithms from the past

15 years and analyze algorithms on more than a couple of datasets [2, 7, 9, 18, 41, 66].

An alternative option is to leverage recently available, easy-to-use crowdsourcing sys-

tems that make it plausible for manual annotations to be a scalable solution to the seg-

mentation problem [29]. This begs the question of whether large groups of non-trained

humans can be leveraged to consistently draw accurate boundaries for biomedical image

sets.

The purposes of this work, also discussed in a 2015 publication [37], are to facilitate

making an informed choice quickly about which segmentation collection approach will work

well for biomedical image sets and to highlight limitations of existing methods. The key

contributions of this work are:

• Publicly sharing a library of images collected and used for biomedical research with

associated expert annotations

• Evaluating and comparing the performance of biomedical image segmentation by

trained experts, non-experts and automated segmentation algorithms

• Demonstrating a reliable process for using online, paid crowdsourced workers as part
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Table 3.1: Salient properties characterizing each dataset in the image library and the
number of objects per dataset. PC represents phase contrast microscopy, Fl represents
fluorescence microscopy and MRI represents magnetic resonance imaging.
ID Modality Object Type Mag. Avg. Pixel

Count
Avg. Cir-
cularity

Avg. Object
Intensity

Avg. Bkgrnd
Intensity

#
Objs

1 PC Rat smooth
muscle cells

40x 35,613 0.15 64 61 35

2 PC Rabbit smooth
muscle cells

10x 10,963 0.29 52 50 69

3 PC Fibroblasts 10x 3,937 0.53 58 50 47

4 Fl Lu melanoma
cells

10x 836 0.53 48 17 61

5 Fl WM993
melanoma
cells

10x 1,119 0.71 54 19 58

6 MRI Rabbit aorta 10x 216 0.94 25 42 35

of the laboratory protocol for segmenting biomedical images

3.1 Biomedical Image Library (BU-BIL)

We compiled a generalized image library using images recorded for biology and biomedical

research studies at Boston University for which high-quality image segmentations were

required (Table 3.1). Our image library includes six datasets that represent three imaging

modalities and six object types. We instructed the providers of the datasets to choose

images that capture the various environmental conditions and imaging noise that arose

in their studies. We asked these experts to then select objects from those images that

reflect the natural diversity of shape and appearances that these objects can exhibit. We

finally cropped the image subregions containing the identified objects to create our image

library (discussed below). The outcome was a library with 305 objects from 235 images. We

verified by visual inspection that the image library includes a variety of object appearances,

backgrounds, and properties distinguishing objects from the background (Figure 3.1). We

call this collection the Boston University Biomedical Image Library (BU-BIL) and share it

publicly (http://www.cs.bu.edu/∼betke/BiomedicalImageSegmentation).
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Figure 3.1: Representative images from the six datasets in the image library. Segmentation
methods that accurately delineate boundaries of biological structures must handle appear-
ance variations with respect to intensity, size, and shape; faint edges separating structures
from the background; and backgrounds with clutter.

Phase Contrast Images of Cells (datasets 1–3): Images were collected by observing

the cells with a Zeiss Axiovert S100 microscope, a Ludl motorized stage, and a cooled

Princeton Instruments CCD camera. In each experiment, a density of 103 cells/cm2 was

selected to reduce cell-cell interactions. For dataset 1, the neonatal rat smooth muscle cells

(Coriell Cell Repositories, NJ) were cultured on PAAM hydrogel that contained embedded

0.75-µm fluorescent beads to facilitate imaging of gel deformation, and incubated at 37◦C

in 5% CO2 for a minimum of 18 hours. Image dimensions were 1,024 by 811 pixels and

pixels were recorded using eight bits. For datasets 2–3, the vascular muscle cells from New

Zealand White and Watanabe Heritable Hyperlipidemic (WHHL) rabbit aortas (Brown

Family Research) and fibroblasts of the Balb/c 3T3 mouse strain (American Type Culture

Collection, VA) were cultured at 37◦C in 5% CO2 in Dulbecco’s modified Eagle’s medium

(Invitrogen, NY) supplemented with penicillin, streptomycin, L-glutamine, and 10% bovine

calf serum (Hyclone, UT). Six hours before image acquisition, the cells were seeded onto

a tissue culture plastic substrate. Image dimensions were 1,300 by 1,030 pixels for both
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datasets. Dataset 2 was recorded using one byte per pixel and dataset 3 was recorded using

2 bytes per pixel.

Fluorescence Images of Cells (datasets 4–5): Images were collected by observing the

cells with a Zeiss Axiovert S100 microscope, a Ludl motorized stage, and a cooled Princeton

Instruments CCD camera (1,300 x 1,030 pixels, 1-byte/pixel). The 1205 Lu and WM993

melanoma cells (Wistar Institute) were each cultured at 37◦C in 5% CO2 in Dulbecco’s

modified Eagle’s medium supplemented with penicillin, streptomycin, L-glutamine, and

10% bovine calf serum (Invitrogen, NY). Cells were patterned onto a dish using a micro-

fabricated polydimethylsiloxane (PDMS) stencil with a 600 micron hole. After 6 hours

incubation at 37◦C in 5% CO2, the stencil was peeled away and media was added to the

dish. The patterned cells were placed in a custom constructed microscope incubator to

maintain stable culture conditions.

Magnetic Resonance Images of Aortas (dataset 6): Magnetic resonance images (MRIs)

were collected axially of the aorta of two New Zealand White Rabbits. A 3T Philips Achieva

MRI scanner was used to collect each series of images of physical locations along the aorta

at cross-cuts 4mm apart showing the volume of the aorta that extends from the left renal

bifurcation to the iliac bifurcation (512 x 512 pixels, 1-byte/pixel). The iliac and left renal

bifurcation are both roughly perpendicular to the aorta. The aorta runs approximately

perpendicular to the axial scan direction. Each pixel represents approximately 0.23 x 0.23

mm. The dataset includes a complete MRI scan with 22 images and a partial MRI scan

with 13 images

Image Cropping: We cropped all images so that there is exactly one dominant object

in the foreground. To do this, an expert-drawn segmentation is used to detect the object

location, and increase the bounding box size by a percentage of the original bounding box

dimensions, which maintains the original region proportions. For datasets 1-5, we used

50% and for dataset 6 we used 125%. The datasets represent biological structures that

range in size from approximately hundreds to tens of thousands of pixels (Table 3.1).
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3.2 Methods

We collected multiple annotations for each of the 305 objects in our image library us-

ing trained domain experts; online, paid crowdsourced workers; and algorithms. Expert

annotations are freely shared.

3.2.1 Expert-Drawn Annotations

A total of ten trained domain experts participated as annotators. Some of the annotators

were also the creators of the image data. They had a vested interest in the quality of

the segmentations they produced because they needed accurate object boundaries for their

biomedical research studies.

The annotators created segmentations using three computer annotation tools: Im-

ageJ [73], Amira [5], and an iPad touchpad drawing program [24]. ImageJ takes as input

user specified points and connects them sequentially with straight lines to produce a 2D

segmentation. Both Amira and the touchpad drawing program take as input user brush

strokes to produce a 2D binary mask indicating all pixels in an object. All domain ex-

perts had experience with biomedical images and ImageJ. We instructed the annotators to

identify the object regions using their own judgment.

3.2.2 Crowdsourced-Drawn Annotations

We collected seven crowdsourced segmentation annotations for each of the 305 objects.

The annotators created segmentations using the on-line image annotation tool La-

belMe [79]. LabelMe supports tracing the boundary of objects by taking as input user

specified points and connecting them sequentially with straight lines. The annotator fin-

ishes annotating an object by clicking on the starting point or right clicking with the

computer mouse. If a mistake is made, the annotator can delete and redraw the object

boundary.

We recruited annotators from the Amazon Mechanical Turk (AMT) internet market-
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Figure 3.2: Crowdsourcing user interface. An example of (a) the annotation instructions
given for datasets 1-5 and (b) a segmentation annotation created using the interface that
internet workers use to complete the drawing task, LabelMe.

place. We posted each drawing task for each image to AMT as a human intelligence task

(HIT) paired with a price to be paid upon completion of the task. An internet worker could

review the HIT before accepting the job. Workers were first shown step-by-step annotation

instructions followed by pictures exemplifying good and bad annotations (Figure 3.2a).

After accepting the HIT, a worker was then presented the drawing interface to create the

object boundary (Figure 3.2b). A worker could submit a HIT after meeting either of the

two criteria for finishing the annotation. We paid workers $0.02 for each submitted HIT

and accepted all submitted HITs. We only accepted workers that had previously completed

at least 100 HITs and received at least a 92% approval rating.

3.2.3 Computer-Drawn Annotations

We evaluated six publicly available algorithms that represent four key classes of algorithms

commonly reported in the literature for biomedical images [64]: thresholding (i.e., Otsu

thresholding [68]), feature-based (i.e., Hough transform for circles [6]), region-growing (i.e.,

seeded watershed [91]), and deformable models (i.e., Chan Vese level set method [16], Lank-
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ton region-based level set method [48], and Shi approximation level set method [83]).

Otsu thresholding (Otsu) is based on the assumption that biological structures (“fore-

ground”) have different intensity values than the background [68]. It finds the value that

minimizes the average variance between all foreground and background pixels respectively

and then assigns all pixels with intensities below that value as background and the rest of

the pixels as foreground.

Hough transform with circles (HoTr) finds the set of circles that have at least a pre-

specified number of pixels on their boundary in the edge map of the image [6]. We combine

these circles to create the final segmentation.

Seeded watershed (SeWa) is based on the assumption that the biological structure and

background can be separated based on intensity homogeneity and spatial proximity [91].

The algorithm starts from initial markers and then iteratively adds unassigned neighboring

pixels to one of the markers until every pixel is assigned to the region of exactly one marker.

The algorithm runs on the gradient map of the image. We automatically set two initial

markers: we used the convex hull of the HoTr segmentation for the background marker

and the eroded HoTr segmentation for the foreground marker.

The three level set based methods deform an initial contour to a final contour, sep-

arating image foreground from background so that some method-specific image partition

condition is enforced. Chan Vese level set method (ChVe) evolves the initial contour to try

to separate the image into two homogeneous intensity regions [16]. The Shi approximation

level set method (Shi) computationally speeds up the evolution process by replacing slow

real-valued calculations with faster integer-based calculations [83]. Lankton region-based

level set method (Lank) evolves the initial contour by using the local neighborhood statistics

for each pixel in order to adjust how to separate the sub-region into two homogeneous in-

tensity regions [48]. For all three methods, we automatically created initial contours using

the boundary of a circle drawn at the center of the image region with a diameter slightly

smaller than the smallest image dimension. For all three methods, we set a maximum

number of 2000 iterations before algorithm termination.
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Table 3.2: List of segmentation sources evaluated in the study and associated publicly
available code and systems used.

Segmentation Source (Acronym) Publicly Available System/Code

Expert Annotators (Expe) Amira [5]; ImageJ [73]; iPad
touchpad drawing program [24]

Non-Expert Annotators (NoEx) LabelMe [79]

Otsu Thresholding [68] (Otsu) MATLAB [63]; ImageJ plug-in [73]

Hough Transform for Circles [6] (HoTr) MATLAB [63]; ImageJ plug-in [73]

Seeded Watershed [91] (SeWa) MATLAB [63]; ImageJ plug-in [73]

Chan Vese level set method [16] (ChVe) MATLAB [20]

Shi approximation level set method [83] (Shi) MATLAB [20]

Lankton region-based level set method [48] (Lank) MATLAB [20]

We built a system that facilitates applying all the segmentation algorithms on all images

in the library with one command. The system processes all images sequentially. For each

image, the workflow is to apply a segmentation algorithm, post-process by filling any holes

and keeping the largest object, and finally save the resulting binary segmentation as an

image. We wrapped publicly available code for each of the six segmentation algorithms into

six modules that adapt the the original code interface into a shared, compatible interface

in the system (Table 3.2).

3.2.4 Fused Annotations

We evaluated segmentations created by an ensemble algorithm to examine how combin-

ing multiple segmentations compares with stand-alone segmentations. We used Probability

Maps (P-map) which takes as input N segmentations and outputs a single segmentation

where a pixel is labeled as foreground when at least M of the segmentations label it as

foreground and background otherwise. We chose this method because it is simple to un-

derstand and does not require tuning a set of complex algorithm parameters. We then

post-processed the segmentation result by filling holes and keeping only the largest object.
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3.3 Experiments

To evaluate the segmentation sources, we analyzed a total of 6,148 segmentations created

by 10 experts, 58 crowdsourced workers, and six algorithms. The studies were designed

to examine 1) which source among experts, non-experts, and algorithms yields the most

accurate segmentations?, 2) how well does each of the segmentation sources generalize to

different biological structure characteristics and image modalities?, and 3) what are the

limitations of each segmentation source?

3.3.1 Performance Evaluation Methodology

To evaluate segmentation quality, we computed scores that indicate how closely annota-

tions match gold standard segmentations, i.e., representations of “true” biological structure

regions, using the IoU metric (i.e., |A∩B||A∪B| , where A represents the set of pixels in the gold

standard segmentation and B represents the set of pixels in the annotation). Recall that

scores range from 0 to 1 with higher scores reflecting greater similarity and so better per-

formance. To establish high-quality gold standard segmentations, we used the resulting

segmentations from the majority pixel votes of all expert-drawn segmentations per image.

3.3.2 Analysis of Segmentation Sources

We computed the IoU score for every segmentation produced by all experts, non-experts,

and algorithms. These scores are the foundation for our subsequent analyses.

We first independently analyzed for each of the three segmentation sources all scores

over the entire image library, the subset of phase contrast images (datasets 1-3), the subset

of fluorescence images (datasets 4-5), and the subset of magnetic resonance images (dataset

6).

We next analyzed the variability within each of the three segmentation sources for each

dataset. For experts, we evaluated based on each annotation set, which is defined as a

particular annotator using a single annotation tool. For non-experts, we evaluated based
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on each batch from the seven batches of crowdsourced annotations we collected per image.

For algorithms, we evaluated based on each set of algorithm drawn segmentation results

generated.

Finally, we analyzed whether combining segmentations could lead to improved results

for the non-expert and algorithmic sources. We applied the fused annotation method

(Section 3.2.4) independently to the set of non-expert and algorithm annotations, and

chose M = 4 because its the minimum value that returns a majority vote. We then

computed the IoU score for all resulting segmentations.

3.3.3 Image Library Characterization

We characterized the diversity of biological structures and environmental conditions in the

image library to support analyses that suggest which algorithms cater to particular image

conditions versus generalize well. Gold standard segmentations were used to compute

the area, circularity, i.e., degree of deviation from a circle, and average intensity of the

biological structure as well as average background intensity for each image region.

3.4 Results

3.4.1 Analysis of Segmentation Sources

We found overall that the experts consistently drew more accurate segmentations than

non-experts who consistently drew more accurate segmentations than algorithms, when

evaluating by comparing the median score of all analyzed segmentations against the gold

standard segmentations (Figure 3.3; All). The median score over the entire image li-

brary is 0.85 for experts, 0.82 for non-experts, and 0.36 for algorithms. With respect to

how annotation quality relates to imaging modality, we found that all three segmentation

sources consistently drew segmentations best matching gold standard segmentations for

the studied fluorescence images, followed by phase contrast images, and finally magnetic

resonance images (Figure 3.3; Fluorescence, Phase Contrast, MRI). These observations



33

Figure 3.3: IoU scores for segmentations created by experts (blue), non-experts (magenta),
and algorithms (green), averaged over all data, and data of each of the three image modal-
ities. For each annotation source, the central mark of the box denotes the median score
and the box edges the 25th and 75th percentiles scores. The whiskers extend to the
most extreme data points not considered outliers, and the outliers are plotted individually
(black). Surprisingly, the quality of annotations of internet workers follows closely that of
experts, and algorithms perform on average much worse. Automated segmentation tech-
niques struggle particularly with interpreting the outlines of cells in phase contrast images
and aortas in MRIs. The best annotations were collected for fluorescence images, followed
by phase contrast images, and then MRIs for all three annotation sources.

that errors in drawn boundaries are often increasingly severe for experts, non-experts, and

algorithms and for fluorescence, phase contrast, and magnetic resonance images are exem-

plified in Figure 3.4. We found that outliers often stemmed from annotating the incorrect

object for humans and identifying no object for algorithms (e.g., Figure 3.4; col 6, “Worst

Algorithm”).

We observed that the consistency of quality between annotations was the greatest for

experts, followed by non-experts, and finally the least between algorithms (Figure 3.3).

Within each of the three annotation sources, we observe for each dataset there was vari-

ability in quality between different sets of collected annotations with respect to the median

score and the amount of variability of agreement with the gold standard (Figure 3.5a-c).
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Figure 3.4: Representative segmentation results. Raw images (row 1), followed by fused,
highest-scoring, and lowest-scoring segmentations for experts (rows 2–4), non-experts (rows
5–7), and algorithms are shown for a biological structure from each dataset in the image
library (cols 1–6).

Among the six tested algorithms, we found that the gold standard segmentations are most

accurately captured by HoTr for dataset 1 with a median score of 0.31, HoTr for dataset

2 with a median score of 0.59; SeWe for dataset 3 with a median score of 0.66; and Otsu

for dataset 4 with a median score of 0.63; HoTr for dataset 5 with a median score of 0.63;

and SeWe for dataset 6 with a median score of 0.59.

We found that combining segmentations with the fused annotation method led to im-

proved results for both non-experts and algorithms. For non-experts, the median score

for the fused annotations was higher than all individual annotation sets for every dataset

(Figure 3.5b). For algorithms, the median score for the fused annotations was higher

than all individual annotation sets for datasets 4 and 5 which are the fluorescence datasets

(Figure 3.5c).
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Figure 3.5: Variability within IoU scores obtained for each annotation set for each dataset
(phase contrast in red, orange, and yellow; fluorescence in green and blue; MRI in purple.
See Figure 3 for the explanation of a box plot visualization). The top plot (a) summarizes
scores based on different combinations of an expert, annotation tool used by that expert,
and dataset. The plot reveals that the performance of experts differs noticeably, especially
for phase contrast data, and that annotations of phase contrast images with Amira were
more accurate than with ImageJ. The middle plot (b) shows scores averaged over the
results of each of the seven batches of crowdsourced segmentation annotations collected
per each object and the fused annotation created by combining all seven annotations per
object. The fused annotation approach yielded the highest median score for all datasets
(last box for each color). The bottom plot (c) shows that the performance of the algorithms
varies widely across datasets. The fused annotation approach was a clear winner for the
fluorescence data.
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We found that 58 workers created all crowdsourced annotations. The drawing tasks

for datasets 1 through 6 were completed by 18, 24, 22, 27, 24, and 23 unique workers,

respectively, taking on average 60 s, 50 s, 38 s, 36 s 43 s, and 47 s per object, respectively.

3.4.2 Image Library Characterization

We found that structures in the fluorescence and magnetic resonance images mostly appear

rounder, i.e., circularity values closer to 1, than structures observed in the phase contrast

images, i.e., circularity values closer to 0 (Table 3.1). This is exemplified in Figure 3.4

with structures in datasets 1 and 2 appearing less round than structures in the other

datasets. The difference between the average pixel intensity for the biological structure

and background reported in Table 3.1 reflects what can be observed in Figure 3.4, where

structures in the fluorescence and magnetic resonance images have a stronger contrast to

the background than structures in phase contrast images.

3.5 Discussion

Our results indicate that all experts and non-experts consistently drew imperfect, yet high-

quality segmentations while no single algorithm consistently performed well for all studied

images. We also found that experts, non-experts and algorithms share which image modal-

ity/object type was most difficult for them to annotate. Annotations of cells on fluorescence

data was most accurate and annotations of aortas on MRI data least accurate. We aimed

to conduct our studies on datasets that together represent a diversity of appearances for

biological structure types, environmental conditions, and imaging modalities. We suggest

BU-BIL and the analyzed segmentation methods as a starting point towards learning which

sources generalize well versus cater to particular image conditions.

It is valuable for the research community to realize that the contributions of untrained

internet workers can be very close in quality to those of domain experts trained to inter-

pret biomedical images. Such crowdsourced work can be solicited through online annota-
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tion systems with easy-to-use graphical user interfaces to inexpensively and quickly obtain

boundaries for biomedical images with consistent accuracy. Our results lead us to suggest

that the contributions of online crowdsourced workers without domain-specific backgrounds

may be successfully included in a laboratory protocol for segmenting biomedical images.

We were surprised to observe that, among the set of freely-shared algorithms evaluated

in this study, no single algorithm worked well in general and that older algorithms regularly

outperformed newer algorithms. While we hypothesize that the level set based algorithms

may be optimized by tuning parameters and contour initializations to yield better results

for specific datasets, we caution against assuming that such tuned methods will effortlessly

lead to improved results across the board. We suggest that the observed performance

inconsistency of newer segmentation methods should instead motivate future work. This

work needs to answer the question how to select an algorithm, among a given set, based on

image context so that the best performing algorithm is applied when it will perform best.

3.6 Conclusions

Analyses on biomedical images often rely on finding boundaries of biological structures and

so are influenced by the accuracy of the used segmentations. To examine how to consis-

tently and efficiently collect high quality segmentations, we evaluated 6,148 segmentations

created by experts, non-experts, and algorithms on our proposed biomedical image library

representing fluorescence, phase contrast, and magnetic resonance images showing cells

and aortas. Our study demonstrates that crowdsourced workers are a viable source for

replacing domain experts in consistently collecting high-quality segmentations for biomed-

ical images. Our results also reveal that none of the studied algorithms performed well

for all datasets in the image library and all algorithms yielded lower quality results than

segmentations produced by crowdsourced workers. We facilitate extensions of this work by

sharing our image library with annotations.



Chapter 4

Crowdsourcing: Domain Expertise Helps & Hurts

In a 2013 study, researchers discarded 33,508 crowdsourced drawings of everyday content,

i.e., 32% of collected data, because the results were not “deemed to be good” [8]. Con-

versely, our study [37] (discussed in the previous chapter) demonstrated that crowdsourced

drawings on biomedical image content nearly matched the quality of drawings from domain

experts. These contrasting findings are surprising. Could the hidden secret for success on

unfamiliar biomedical image content be generalized to familiar everyday image content?

Why are there differences in the quality of crowd work reported for the two drawing studies?

Two schools of thought lead to two plausible different ways to explain the poor quality

crowd work observed in the 2013 study [8]. The key difference between these ideologies lies

in whether or not to trust crowd workers.

One popular approach to deal with poor crowd work is to infer that the problem lies

with crowd workers. As posited by Bernstein et al. many crowd workers are either “Lazy

Turkers” or “Eager Beavers.” So, as “a rule-of-thumb, roughly 30% of the results from

open-ended tasks are poor” [11]. According to this interpretation, the 32% of discarded

drawings in the 2013 study [8] makes sense and should be expected.

Alternatively, one may infer that poor crowd work is a consequence of an inadequate

task design. As discussed by Lease [52], “When we ask users to perform a task that is

simple and obvious to us, yet they screw it up, we may infer perhaps that the workers are

lazy or deceitful, when in fact it may be our own poor design that is truly to blame.” Based

on this interpretation, the large fraction of wasted crowd effort offers a sign that the task

design in the 2013 study [8] could have been improved to yield higher quality results.
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Figure 4.1: When asked to draw the boundary of an object in an image, how are crowd
workers influenced by the familiarity of the data? Will crowd workers draw faster and
better when the image content is less or more familiar?

In our work [33], we explored the problem of poor quality crowd work by examining

how crowd workers’ skills and judgments are influenced by the familiarity of the data. We

focused on the open-ended segmentation problem of drawing the boundary of a single object

in an image (Figure 4.1). We were pleasantly surprised to observe that making the data

less familiar not only triggered crowd workers to produce significantly better drawings

but crowd workers also took significantly less time. Our findings highlight that crowd

workers’ recognition of the content can lead to under-utilization of their skills. Our results

offer hints that poor crowd performance may be due to workers’ cognitive overload from a

complicated task rather than lack of sufficient effort in accomplishing the task. This work

offers promising evidence that more efficient, higher quality crowdsourcing system designs

can be inspired by applying methodologies to learn one’s own biases.

The remainder of this chapter is organized into six sections. Related work is reviewed

in the next section. Then, our crowdsourcing systems and evaluation methodologies are

described in the next two sections for the open-ended drawing task and closed-ended voting
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task. In the following section, experiments and results for three crowdsourcing studies that

explore how data familiarity relates to the drawing skill and judgment of crowd workers are

discussed. Finally, we conclude with a discussion and summary about our contributions.

4.1 Related Work

To date, much of the rush towards crowdsourcing the segmentation problem, delineating

the border of an object in an image, has been motivated by the desire to build larger

annotated datasets, unparalleled in size to those possible from a single, local group. Con-

sequently, crowdsourcing efforts in the computer vision [55, 79] and computer graphics [8]

research communities have led to new datasets that consist of hundreds of thousands human

drawings. These annotations empower researchers to train machine learning algorithms on

more diverse datasets and evaluate automated segmentation algorithms more rigorously.

These annotations also support researchers to build search engines that effectively mine

images.

Additional interest in crowdsourcing the segmentation problem is also observed with

researchers in need of drawings at run-time. For example, crowdsourced drawings serve

as computations within state of art computer vision [44] and crowdsourcing [39] systems.

In these cases, the use of imperfect crowd drawings instead of (more seriously incorrect)

automatically-produced outlines.

Given the widespread interest in crowdsourcing the segmentation problem, there is

clear benefit across many communities in improving the design of crowd drawing systems.

In particular, researchers commonly report similar warnings about the quality of crowd

drawings: “Most workers only produce a coarse outline of the instance resulting in poor

segmentations” [55]. While recent research has predominantly focused on developing new

web-based tools to more efficiently elicit high quality drawings from the crowd [13, 26, 57,

85], we demonstrate how to collect higher quality drawings based on knowledge about how

crowd workers behave with respect to different types of images.
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Our work considers how to perform quality control for crowdsourcing. Approaches can

be categorized into those that are applied at run-time versus during the design phase.

Run-time quality control approaches introduce additional machinery that reportedly

yield higher-quality crowd work. In particular, mechanisms have been designed to filter

out workers with insufficient training qualifications [55], edit or validate crowd work [11, 86],

or mitigate the influence of poor quality work through redundancy [82]. Filtering workers

has the undesirable consequence of limiting the crowd worker pool which, in turn, reduces

the degree to which such a crowdsourcing solution can scale. Cleaning poor quality data

leads to a loss of money both from collecting the poor quality results and then applying

machinery to fix/filter the results. In addition, cleaning poor quality results introduces a

delay to acquire results making such approaches less amenable to “real-time” applications.

Alternatively, quality control during the design phase often involves human factors

studies to tease out richer information regarding how human behavior relates to various

task designs. For example, when choosing how to attract a crowd, one may be influenced by

understanding how crowd behavior is related to different incentives (i.e., pay versus volun-

teer) [61] or cultural biases [71]. A human factors approach is commonly adopted for expert

studies. Learned causes of expert disagreement help researchers improve their theories and

methodologies [65]. In this work, we chose a human factors approach. We demonstrate

that teasing out more detailed information about why crowd behavior is breaking down

can lead to the collection of higher quality annotations and a reduced cost.

4.2 Datasets and Annotation Methods

Our goal is to examine how the familiarity of image content influences crowd workers’

drawing skills and perceptions of the difficulty of the drawing task. To do this, we created

two on-line crowdsourcing systems that run within the Amazon Mechanical Turk (AMT)

internet marketplace. We prepared a crowd drawing environment by configuring a secure

web server in an Ubuntu computing environment on the Amazon Elastic Compute Cloud
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(EC2). We then installed the open-source LabelMe code [79] and configured scripts that we

ran to post our drawing jobs to AMT and record the submitted crowd results. We prepared

our crowd perception system by adapting a Human Intelligence Task (HIT) template from

AMT, which is HTML code that supports both displaying our instructions and task as well

as recording the crowd submitted results. We describe below the datasets and annotation

user interfaces used in our studies.

4.2.1 Image Sets - Defining Levels of Familiarity

We used a total of 405 images coming from two public datasets for our crowdsourcing

studies. We selected the two image sets because they were intentionally designed to only

include images that have a single, dominant object of interest. We also chose the two image

sets because they include expert-drawn, pixel-accurate delineations of the object of interest

for each image that we could use for evaluation purposes. Finally, we chose content that is

both detectable and undetectable to the naked human eye in order to capture images that

are more and less likely to be familiar to a lay person. We define three image categories

with the 405 images to represent various levels of content familiarity.

4.2.1.1 Unfamiliar Image Content

We included a total of 305 biomedical images from BU-BIL [37] to represent content unde-

tectable to the naked human eye. Ambiguity regarding the object of interest is minimized

because images were cropped to only contain the objects of interest.

4.2.1.2 Familiar Image Content

We included 100 images [4] that were collected with visible cameras and so represent

content detectable by the naked human eye. The designers of the dataset chose images

from royalty free image databases that “avoid potential ambiguities” regarding the object

of interest because the objects of interest differ from the “surroundings by either intensity,
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texture, or other low level cues.” Images show objects such as animals, trees, buildings,

and boats. We infer that crowd workers are likely to be familiar with the objects.

4.2.1.3 Semi-Familiar Image Content

We flipped the 100 familiar images [4] vertically so that we had 100 upside down im-

ages. For example, a boat becomes situated such that the water resides above the skyline

(Figure 4.1). We infer the crowd workers’ drawing performance will be influenced by the

familiarity of the content less than when images are upright.

4.2.2 Open-Ended Drawing Task

Our crowd drawing system is a two-step process where workers are first shown instructions

and then the interface they use for drawing. We describe both steps below.

4.2.2.1 Annotation Instructions

When a crowd worker on AMT reviews our posted drawing job, he/she is shown the instruc-

tions (Figure 3.2a). Included are five steps described in English. To minimize concerns

regarding the annotation protocol, the instructions emphasize that a worker should anno-

tate the single object which is the largest and closest to the center of the image. Included

are also pictures exemplifying correct and poor annotations to clarify that the aim of the

task is to create a highly detailed annotation of the single, most prominent object in the

image. Examples are intended to address various annotation concerns, such as the common

complaint that crowd workers create coarse rather than highly-detailed outlines [55].

4.2.2.2 Annotation Tool

After a worker accepts our HIT, the instructions embedded in the AMT webpage are

replaced with the drawing user interface (Figure 3.2b). Workers are presented the an-

notation tool from the computer vision community, LabelMe [79]. After completing the

drawing, the worker is prompted with a message allowing the user to delete the drawing, in
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Figure 4.2: (a) Instructions and (b) user interface for our voting task used by crowd workers
in the Amazon Mechanical Turk internet marketplace.

case he/she made a mistake and so wants to redraw the object. Otherwise, the worker must

specify a text label naming the object and click “Done” in order to submit the completed

drawing.

4.2.3 Closed-Ended Voting Task

Our aim is to learn whether the drawing task is clearly-defined for crowd workers. In

particular, one may want to include a voting step to forego the expensive drawing task if

workers can reliably deem whether a task seems ambiguous. Our crowd voting system is a

one step-process where workers can see the instructions and the user interface on the same

webpage before deciding whether to accept the HIT.
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4.2.3.1 Annotation Instructions

Inspired by formative studies, we settled on a task header that included the problem motiva-

tion, task question, and then two steps instructing how to perform the task (Figure 4.2a).

We asked workers to answer the following question about an image: “If we asked multiple

people to draw the boundary of a single object in the given image, do you think all peo-

ple would pick the same object?” We intentionally specified criteria that aligns with the

drawing task we used in practice. Also, in an effort to help workers feel their contributions

are valued, we stated that the long-term aim of the task is to support computer scientists

to build systems. Finally, to clarify the aim of the task, we included pictures exemplifying

when to label an image with “Yes” versus “No” to indicate well-defined versus ambiguous

drawing tasks respectively.

4.2.3.2 Annotation Tool

We presented a set of five images per HIT to increase study efficiency. Each image is

shown in a column on the left and the crowd worker casts a vote by selecting one of two

radio buttons to the right of each image to indicate ”Yes” or ”No” (Figure 4.2b). Once

a worker completes voting on the five images, the workers clicks a button to submit the

results. To minimize concerns about worker quality, we used the majority vote answer

from five collected answers to assign the image label. To minimize the potential impact of

biases related to image clusterings, we chose each set of five consecutive images to pair in

the same HIT based on five different randomized orderings of all images per dataset.

4.3 Evaluation Methods

Our goal is to establish whether crowd worker performance is influenced by the level of data

familiarity. To do this, we first describe measures we applied to evaluate crowd workers’

efforts and the quality of their submitted results. Then, we discuss a significance test that

we adopted to indicate the likelihood that observed differences in crowd performance for
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different types of images arose by chance. Finally, we explain our methodology to learn

whether a crowd worker’s effort relates to the quality of his/her completed work.

4.3.1 Characterizing Performance of Crowd Workers

We chose four metrics to characterize a crowd worker’s effort and the quality of the result.

Our first three metrics have been discussed in previous literature: quality [37, 39, 44],

time [13, 90], and number of user clicks [8, 79, 85]. We also introduce a metric that, to

the best of our knowledge, has not yet been cited in published crowdsourcing segmentation

papers: average drawing time per user click.

4.3.1.1 Drawing Quality

A rigorous methodology to measure quality is to compare crowd drawings against gold

standard segmentations established by experts. To do this, we adopt the standard inter-

section over union (IoU) metric to compute the pixel level similarity of each crowd drawn

segmentation against the gold standard segmentation (i.e., |A∩B||A∪B| where A represents the

set of pixels in the crowd drawing and B represents the set of pixels in the gold standard

segmentation). We establish a gold standard segmentation for each of the 405 images

used in our studies by computing the pixel level majority vote from the multiple expert

annotations per image included in the two datasets.

4.3.1.2 Annotation Time

We quantify the amount of time a worker spent completing a drawing HIT using logged

metadata shared in the AMT system. In particular, a logged value indicates for each

completed HIT the lapsed time between when the crowd worker clicked the “Accept HIT”

button through the time the worker clicked the “Submit HIT” button. We use this meta-

data for both the drawing and voting HITs.
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4.3.1.3 Number of User Clicks

We quantify worker drawing effort also based on his/her number of clicks used to delineate

the boundary of an object. We compute this value by counting the number of (x,y) image

coordinates that make up the closed polygon recorded in the submitted LabelMe result

file.

4.3.1.4 Average Drawing Time Per User Click

We additionally quantify worker drawing effort using a metric that accounts for object

boundaries that have varying levels of complexity (e.g., a box versus a tree). In particular,

we compute for each crowd drawing the average time per user click ( DrawingTime
NumberOfUserClicks).

4.3.2 Measuring Significance of Observed Results

To motivate which observed differences in crowd behavior are related to underlying changes

in the crowdsourcing system set-up, we perform significance testing. For instance, does

presenting images upright versus flipped upside down trigger significant changes to the

time to draw and the quality of resulting drawings from crowd workers? Or are observed

differences in drawing results due to the natural variability one would expect from humans

performing the drawing task?

Inspired by previous work [84], we chose a paired sample t-test to learn whether observed

differences in crowd behavior are likely to arise by chance. Our null hypothesis is that

observed differences in crowd behavior for two sets of results are due to inherent noise in

our crowdsourcing study, such as from the drawing, voting and evaluation processes. In

other words, pairwise differences in crowd behavior for the two sets of results is a normal

distribution with zero mean. The significance test returns a p-value which indicates the

probability of obtaining the two sets of observed results when the null hypothesis is true.

We reject the null hypothesis when the computed two-sided p-value is less than 0.05.

Rejecting the null hypothesis means that, with high probability, observed differences are
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reflective of a true difference between the two sets of results and so the two crowdsourcing

systems.

4.3.3 Correlating Worker Effort to Quality of Work

To motivate whether crowd worker effort is related to the quality of his/her work, we train a

predictive model and report its predictive power. Specifically, for a given image and crowd

drawing, we are interested in learning whether computed descriptors of time, number of

user clicks, and drawing time per click are indicative of the computed IoU score.

4.3.3.1 Predictive Model

We chose a multiple linear regression model to analyze the relationship between a crowd

worker’s effort and the quality of a resulting drawing. This model leads to easy-to-interpret

linear systems, as the resulting learned prediction system is a weighted linear combination

of all chosen predictor values. Generically, this model is represented as follows:

y = Xβ + e (4.1)

where y denotes a column vector of segmentation quality scores, X denotes a matrix of all

observed predictive feature vectors describing all segmentations, β denotes a column vector

of model parameters to be learned, and e denotes the vector of random errors between y

and predicted values Xβ. The regression model is learned by finding the model parameters

β that minimize the sum of the squared prediction errors (e). We trained our models using

the freely-shared data mining software Weka [38].

4.3.3.2 Model Evaluation

We evaluate the predictive power of our learned model using Pearson’s correlation coef-

ficient (CC). This measure indicates how strongly correlated predicted IoU scores are to

observed IoU scores. To collect predictions, we perform 10 fold cross validation. Specifi-
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cally, we randomly partition a set of crowd results into 10 independent sets approximately

equal in size. For each of 10 iterations, a different set is reserved as the test set and the

combination of the remaining sets are the training set. We then use the combination of

predictions on the test sets from the 10 iterations. Resulting CC values range between

+1 and -1 inclusive, with values further from 0 indicating stronger predictive power of a

model.

4.4 Crowdsourcing Studies

We conducted three studies to examine the influence of the familiarity of data on crowd

workers. We examined (1) how does data familiarity influence the quality of crowd draw-

ings?, (2) how does making familiar data less recognizable influence crowd work with

respect to the quality of results, annotation time, and annotation detail?, and (3) how

does data familiarity influence the quality of crowd perception of the drawing task? We

accepted as participants in our studies all crowd workers from AMT that had previously

completed at least 100 HITs and received at least a 92% approval rating. We accepted all

HITs submitted by all crowd workers.

4.4.1 Study 1: Drawing on Everyday and Biomedical Images

We first conducted a study to compare drawing results on familiar and unfamiliar images.

We wanted to directly examine the importance of different findings [8, 37] regarding the

quality of crowd work for the two types of image content.

4.4.1.1 Experimental Design

For each dataset, we collected five crowd drawings per image. We allotted crowd workers a

maximum of ten minutes to complete each HIT and paid $0.02 per HIT. We evaluated each

crowd drawing against the gold standard segmentation. We chose the standard IoU metric

to measure pixel level similarity of each crowd drawn segmentation to the gold standard
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Figure 4.3: Comparison of crowd drawings on unfamiliar biomedical and familiar everyday
images. We include both the (a) histogram of IoU scores for each dataset and (b) exemplar
drawing results from each histogram bin.

segmentation.

4.4.1.2 Results

Overall, we found that crowd workers created drawings that closely resembled the gold

standard drawings for the studied familiar everyday and unfamiliar biomedical images

(Figure 4.3a). Following previous work [37], which demonstrates that experts commonly

create drawings with scores above 0.6, we observed that approximately 90% of crowd

drawings had IoU scores above 0.6. The quality of results above 0.8 (near perfect) is 70%.
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In general, the trend looks like a decrease by a factor of two for the percentage of drawings

that is in each lower quality bin. The quality of drawings associated with each histogram

bin is exemplified in Figure 4.3b.

Intriguingly, there tended to be fewer drawings matching the quality of expert draw-

ings for everyday images than biomedical images (Figure 4.3a). This difference is evident

when comparing the percentage of drawing results with IoU scores from 0 to 0.2 (poorer

quality drawings) and from 0.6 to 0.8 (higher quality drawings) for the familiar and un-

familiar datasets. We visually inspected crowd work which had IoU scores between 0 and

0.2. Causes were primarily due to confusions regarding the task aim including the appro-

priate object to annotate or the appropriate methodology for how to annotate the object

(Figure 4.3b).

Our findings are based on the work of 83 unique workers. 44 unique workers created

the 500 drawings for the familiar everyday images and 40 unique workers created the 1,525

drawings for the unfamiliar biomedical images.

4.4.2 Study 2: Drawing on Images Flipped Upside Down

Our motivation was to use knowledge about how crowd workers draw on upright and

flipped images to learn the influence of content familiarity. This experiment is inspired as

a compromise between crowdsourcing drawings on unfamiliar and familiar content such as

biomedical and everyday images.

4.4.2.1 Experimental Design

We collected a total of 10 crowd drawings per image for the 100 familiar everyday images.

We used the five drawings per image collected for the previous study. We also collected five

drawings when each image was flipped upside down using the same crowdsourcing set-up

as in the previous study.

We then computed four metrics to characterize effort and quality of drawings from

crowd workers for each drawing: IoU score, time, number of user clicks, and average
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drawing time per user click. We used the 1,000 computed scores for each of the four

measures as the foundation for subsequent analyses.

We next performed significance testing to measure whether observed differences in

crowd performance for upright and flipped images were significant. We performed four

tests to compare the 500 upright and flipped image crowdsourcing results with respect to

each of the four computed metrics.

Finally, we evaluated the relationship between the quality of the drawing and each of

the three remaining computed metrics as well as the combination of the three metrics. As

a result, we evaluated a total of eight prediction models. We learned four models from the

500 crowd results when images were upright and four models from when the 500 crowd

results were images were flipped upside down.

4.4.2.2 Results

We found that crowd workers produced higher quality drawings when images were flipped

upside down rather than upright (Figure 4.4a). The difference in average IoU scores across

all crowd drawings was 4.8 percentage points, with average quality for upright images at

0.785 and upside down images at 0.833. Moreover, we found this quality difference was

statistically significant. We found that differences in crowd behavior was predominantly

isolated to instances where the crowd created “poor quality” drawings. As observed in

Figure 4.4a, when comparing the two distributions, the delineation for outliers is 10%

better and the 75th percentile score is 5% better while median scores and top 25th percentile

scores are similar.

We were surprised to find that crowd workers exerted less effort to create the higher

quality drawings on the flipped images than the lower quality drawings on the upright

images (Figure 4.4b,c). Crowd workers took 16% less time with an average of 73 seconds

for upright images and 61 seconds for flipped images. Crowd workers marked 7% fewer

points to create each drawing for upright images in comparison to when images were flipped

upside down (i.e., 33.9 and 31.4 number of user clicks respectively). We found that both
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Figure 4.4: Analysis of 1,000 crowdsourced annotations collected on 100 everyday images
where five crowdsourced annotations were collected per image when it was upright as
well as flipped upside down. For each plot, the central marks of the boxes denote the
median values, box edges denote the 25th and 75th percentiles values, whiskers denote
the adjacent value to the data point that is greater than one and a half times the size of
the inter-quartile range, and black cross-hairs denote outliers. When images were flipped
upside down, overall, (a) segmentation quality was higher, (b) crowd workers took less
time to annotate, and (c) crowd workers denoted the boundary of objects with more user
clicks.

of these effort differences were significant. Overall, flipping images upside down led to a

more consistent crowd behavior in terms of drawing time and number of user clicks (i.e.,

Figure 4.4b,c; smaller ranges between all values in each box plot, excluding the outliers).

In contrast, we did not observe a significant difference in terms of the average time

a crowd worker took to draw per point when drawing on upright versus flipped images.

Crowd workers took on average 3.2 and 3.6 seconds to mark each point for flipped and

upright images respectively.

Linear regression analysis provided evidence for how crowd effort relates to segmenta-

tion quality (Table 4.1). We found from our single variable analyses that, whether crowd

workers drew on images that were upright or flipped, segmentation quality was most cor-

related with the drawing time per point, followed by number of user clicks, and finally

drawing time (Table 4.1, rows 1-3). Interestingly, segmentation quality tended to be

better when a crowd worker took less time to draw each point (Table 4.1, row 3). We

found that the strongest indication of a higher quality segmentation is when a worker takes
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Table 4.1: How is worker effort correlated to the quality of a segmentation when images are
upright and flipped upsides down. We evaluate worker effort with respect to four criteria:
drawing time, number of user clicks, drawing time per click, and the combination of the
three parameters. Segmentation quality is measured as the similarity of a crowd drawing
to a gold standard drawing using the IoU evaluation metric. We report the learned linear
regression model describing the correlation between worker effort and segmentation quality.
We also report the correlation coefficient (i.e., CC), with larger absolute scores indicating
greater linear correlation between worker effort and segmentation quality.

Upright Images Model: IoU = CC

Time (T) 0.0002T + 0.7767 0.03

# User Clicks (C) 0.0022C + 0.7173 0.23

Time/Click (TPC) -0.0121TPC + 0.8362 0.33

All 0.0007T + 0.0006C - 0.0146TPC + 0.7726 0.40

Flipped Images Model: IoU = CC

Time (T) -0.0001T + 0.8368 -0.21

# User Clicks (C) 0.0024C + 0.7592 0.22

Time/Click (TPC) -0.0052TPC + 0.8498 0.33

All 0.0002T + 0.0016C - 0.0051TPC + 0.7847 0.34

less time to mark each point while drawing more points and taking more time (Table 4.1,

row 4). Our learned models also reveal that there are slight differences regarding how

crowd effort relates to segmentation quality when images are upright versus flipped. For

example, segmentation quality reduces over twice as fast when users take more time per

point for upright rather than flipped images (Table 4.1, row 3).

Our findings are based on the work of 75 unique workers. 44 unique workers created

the 500 drawings for the upright images and 34 unique workers created the 500 drawings

for the flipped images.

4.4.3 Study 3: Influence of Data Familiarity for Voting Task

We finally conducted a study to learn whether the prevalence of images that were indeed

difficult to annotate, as exemplified by egregious drawing disagreements, could be detected

as difficult image drawing problems through crowd voting.
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4.4.3.1 Experimental Design

For the 100 familiar everyday images and 271 unfamiliar biomedical images (e.g., BU-

BIL:1-5), we collected five crowd votes per image and then assigned image labels using the

majority vote result. We allotted crowd workers a maximum of two minutes to complete

each HIT and paid $0.02 per HIT. We tallied the number of images that were labeled by

majority vote as having a clear object to annotate. We also tallied the time crowd workers

took to complete each HIT.

4.4.3.2 Results

Our findings suggest that crowd workers perception of the clarity of a task is influenced by

the image content. From the studied 405 images, we found that the crowd perceived the

drawing task as more difficult for unfamiliar than familiar image content by a difference of

30 percentage points (Table 4.2). The finding that 19% of the familiar image content data

was tagged as a difficult drawing problem reflected our findings observed in the first study

showing the frequency at which crowd workers created non-expert quality results (e.g., IoU

scores < 0.6). However, the finding that 49% of the unfamiliar image content data was

tagged as a difficult drawing problem inaccurately reflected our findings observed in the

first study. Interestingly, crowd workers take more time on average to make an estimate

of the task difficulty for familiar everyday image content than the unfamiliar biomedical

image content.

Our findings are based on the work of 25 unique workers who contributed to the 100

voting HITs for the familiar everyday images and 26 unique workers who contributed to

the 275 voting HITs for the unfamiliar biomedical images.

Table 4.2: Percentage of images in two datasets that are perceived by the crowd to have a
clear segmentation task in the absence of additional instruction.

# Images Average Voting Time

Familiar Content 81% 23.4

Unfamiliar Content 51% 20.2
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4.5 Discussion

Our results offer promising evidence that recognition of content is an important factor

influencing one’s ability to perform a task. We found familiarity of data can detract from

the quality of crowd work for open-ended tasks and can be beneficial for collecting higher-

quality crowd work for closed-question tasks. In summary, different crowdsourcing tasks

are better designed for differing levels of domain knowledge.

Crowdsourcing the Drawing Task. By broadening our analyses of crowd work to include

familiar and unfamiliar data, we were inspired to rethink our generally held assumptions

about the drawing task design for familiar image content. We suggest when crowdsourcing

the drawing task to perform a simple step of flipping images upside down in order to gain

great savings during run-time in terms of time and cost. For instance, our observed results

at the scale of 100,000 images would translate to an aggregated savings equivalent to over

eight forty-hour work weeks by a single person who draws boundaries of objects in images

five days per week. Our observed results at the scale of 100,000 images would also translate

to approximately 5,000 fewer poor quality results (i.e., IoU score < 0.4) by flipping images

upside.

Interestingly, a similarly puzzling finding that flipping images upside down leads to

higher quality drawing results has been discovered in the art community. In the New York

Times bestselling book “Drawing on the Right Side of the Brain,” beginners are taught

how to draw with a pencil on a blank page by flipping images they are trying to replicate

upside down so the content is less familiar [21]. Possible future research could compare

crowd behavior with respect to drawing on images versus drawing on blank canvases while

trying to replicate content in observed images.

Influence of Data Familiarity on Crowd Worker Performance. When crowdsourcing

tasks, we found people’s skills and judgments were clouded both for the better and worse

by the content type. Workers that performed the open-ended task of drawing the boundary

of an object in an image created more drawings that resembled drawings created by experts
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when the image content was unfamiliar than familiar. In contrast, workers perceived the

drawing task to be more difficult when the content was unfamiliar than familiar. Our results

highlight the interesting question of why is popular belief contrasting what is observed in

practice regarding the difficulty of a task?

We hypothesize that crowd workers’ perceptions of task difficulty relates to their famil-

iarity with the content. When workers are less comfortable with the content, they may be

more inclined to perceive that other related tasks are more difficult. In general, it may be

desirable to use fast, multiple choice questions to reduce the number of time-consuming,

expensive open-ended drawing tasks. However, we infer that this step is best-suited for

image content familiar to the crowd.

In contrast, we hypothesize that content familiarity leads to greater task ambiguity

and analysis paralysis for crowd workers who perform the open-ended drawing task. For

example, when annotating an image of a person, crowd workers that are “experts” on the

content may be focused on asking whether they should annotate just the face or also include

the person’s body hallucinated underneath the clothing. In contrast, when annotating an

image of a cell, crowd workers that are “not experts” on the content are less likely to be

familiar and so distracted by the intricacies of the nucleus, membrane, and other internal

structures that they could annotate within a cell.

Our results demonstrate the value of developing strategies to challenge and learn one’s

own biases when designing crowdsourcing systems. Analogous experiments in other do-

mains could include examining how crowd workers perform in text-based or audio-based

tasks that are in English when their first language is or is not English. Additional related

experiments could include investigating how a crowd worker’s behavior changes over time as

he/she becomes more experienced and perhaps begins to “see” potential task ambiguities.

Open-Ended Tasks. While the crowdsourcing literature is filled with warnings about

trusting crowd workers, we found crowd workers were generally highly trustworthy when

they spent on average 61 seconds to complete an image drawing task. Our experiments

comparing crowd drawings on upright versus flipped images allayed our initial concerns
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Figure 4.5: Why is crowd work still poor when images are flipped upside down? From
visual inspection, we observed that most drawing outliers arose due to the majority of the
crowd disagreeing with the gold standard drawing regarding the object of interest. We
show a couple of exemplar results presented upright for visualization purposes.

that the greater percentage of poor quality annotations for everyday image content than

biomedical image content is due to unreliable crowd workers. In particular, initially, we

hypothesized that quality differences for the everyday and biomedical content may be due

to crowd morale or boredom. However, we were surprised to observe from the image

flipping experiments that workers were exerting more effort in terms of time and number

of user clicks for the set of images on which they were producing lower quality annotations.

We believe that crowd workers expertise in the content may have caused them to identify

the shades of gray for various ways to interpret the drawing task which, in turn, led to

divergent opinions and, possibly, analysis paralysis.

While the reliability of crowd workers depends on many factors, we offer our study

of the image segmentation problem as a meaningful example for how to uncover possible

causes for inefficiencies in leveraging crowd workers. We hope this study encourages others

to consider crowdsourcing open-ended tasks who may have been previously deterred.

Drawing Outliers. From visual inspection of drawing outliers on the flipped familiar

images, we observed that most poor quality scores arose because crowd workers consistently

disagreed with experts regarding the true delineation of the object of interest (Figure 4.5).

This result highlights an important concern regarding how experts are establishing gold

standards. What should the truth be when the majority of the crowd disagree with experts?
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In short, another commonly adopted bias when designing crowdsourcing systems is to trust

experts over the crowd.

4.6 Conclusions

Our work facilitates the determination of what to expect from crowd workers for drawing

and perception tasks on familiar and unfamiliar image content. Experiments on two chal-

lenging image sets revealed that crowd workers produced higher quality drawings when

content was less familiar. We also found that crowd workers exerted less effort when they

produced higher quality results. We recommend flipping images upside down when crowd-

sourcing the drawing task to gain benefits both in terms of higher quality results and faster

collection. We hope our drawing studies will encourage rethinking generally held assump-

tions that one should expect large fractions of “poor quality” work when crowdsourcing

open-ended tasks. Our studies offer promising evidence that researchers can improve de-

signs of crowdsourcing systems by explicitly studying the influence of content familiarity

on crowd behavior.



Chapter 5

Hybrid System - Drawing with Quality Control

Crowdsourcing is emerging in many data-rich fields as a promising supplement or substitute

for performing data analysis tasks that are too labor intensive for expert practitioners

to do themselves, and for which it is unclear which, if any, algorithm will yield accurate

results [3, 49, 51, 72, 92, 96]. We address the question “when are efforts from algorithms and

crowdsourcing suitable for delineating boundaries of objects in images (segmentation)?” We

examined how to bring together the two disparate developments of drawing and quality

control methods from the computer vision and crowdsourcing communities into a single

framework. This chapter describes the following four key contributions, also discussed in

our 2015 paper [34]:

1. Crowd voting as a quality-control step for the image segmentation task. To the best

of our knowledge, we are the first to formulate this solution. Our contribution exposes

interesting areas for future work, including designing optimal user interfaces to direct

human attention to an image region while preserving surrounding image context.

2. Studies evaluating results obtained from crowd workers with respect to skill level

and time. They highlight what to expect when leveraging crowd workers for both

familiar (everyday images) and unfamiliar (biomedical images) content for drawing

and voting tasks.

3. Evaluation and comparison of four implementations of a segmentation workflow based

on different combinations of efforts from crowdsourced lay people and computer vision
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algorithms for the drawing and voting steps. Analyses demonstrate the benefit of

crowdsourcing and computer vision methods for the different steps in a system design.

4. Results revealing that hybrid algorithm-crowdsourcing system designs creates object

boundaries that exceed the performance of pure crowdsourcing and algorithm sys-

tems; overcome well-known problems of crowdsourcing outliers and algorithm incon-

sistencies; and can produce segmentations that are of comparable quality (statistically

similar) to those created by experts.

The remainder of the chapter is organized in six sections. A series of five formative

studies is described in Section 2. These experiments informed us about how to involve

crowd workers and build crowdsourcing systems to collect accurate segmentations. They

motivated the design of a framework for human computation systems we call “Segmentation

Annotation collection, Vote Collection, and Evaluation,” or SAVE, which is described in

Section 3. Prototype implementations of this framework are also described in Section 3. A

crowdsourcing experiment with SAVE is then described in Section 4; results and analysis

are provided in Section 5. Discussions and conclusions follow in Sections 6 and 7.

5.1 Formative Studies

Five formative studies, F1 – F5, motivated how to involve humans for both creating and

voting for “best” segmentations. We evaluated prototype tools with experienced and mo-

tivated volunteer participants in order to examine human performance when there are no

serious concerns about human skill or intentions. The prototype tools are described in Sec-

tion 5.2.2. For all images analyzed in our formative studies, one object of interest dominates

each image, making it clear which object to outline to collect the desired segmentation.

For the drawing task, these studies examine user interaction methods that can lead to

higher quality human-drawn annotations and whether human-drawn or algorithm-drawn

annotation options lead to the most accurate results. For the voting task, these studies

investigate how to design the task including the implications behind human disagreement
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when voting for a “best” segmentation.

5.1.1 Study F1: Expert-Drawn Segmentations on Black and White Images

We observed expert behavior on outlining objects from black-and-white images [50] to

examine how accurately and with which methods an expert creates annotations when

there are no perceptual questions of which pixels are part of the object versus background

(Figure 1.3a; MPEG7). The study provides insight of what one may expect from a

crowd worker at best since it reveals what one may expect from a highly qualified expert

who dedicates large amounts of time and painstaking attention to the task of accurately

capturing object boundaries when there are no challenges associated with annotating real

world images, including background noise and ill-defined boundaries separating an object

from the background. The study also provides insight into possible causes of drawing error.

Annotation Collection. We instructed a professional medical graphics illustrator to

draw the object boundary for as many images as possible in one hour. We also informed

the illustrator that we were collecting these annotations to compare the quality against

algorithm-drawn boundaries. The illustrator created the segmentations using a touchpad

with pen in the software Adobe Photoshop.

Results. The illustrator annotated three images. To evaluate segmentation quality, we

computed scores that indicate how closely all generated segmentation annotations match

the true object boundaries, using the intersection over union (IoU) score (defined in Sec-

tion 5.2.6). The IoU score for the expert-drawn annotations of images showing an apple,

cup, and fish was 0.77, 0.99, and 0.99 respectively. The nearly flawless segmentation anno-

tations for the second and third images were due to the illustrator changing the annotation

methodology. The illustrator used a paintbrush tool for the first annotated image and so

possible causes of error included the thickness of the drawing tool and hand jitter. For

the following two images, the illustrator zoomed in on the image to observe the individual

pixels and then marked each pixel along the boundary.



63

5.1.2 Studies F2 and F3: One Expert Votes for Best Segmentation

We next examined whether domain experts prefer expert-drawn or algorithm-drawn object

boundaries for biomedical images. The image library used in formative study F2 contains

a sequence of 100 phase contrast microscopy images of a migrating fibroblast population

(a large group of cells), and so enables us to study the challenge of annotating images for a

single biomedical research experiment. The image library used in formative study F3 rep-

resents a more diverse collection of phase contrast microscopy images to observe if trends

from formative study F2 generalizes. This image library contains 125 images showing 267

cells and was compiled by a domain expert to represent the variability of fibroblast appear-

ances when captured using various image acquisition parameters in different environmental

conditions.

Annotation Collection. We collected one expert-drawn and ten algorithm-drawn anno-

tations per object in both formative studies. We collected the 10 sets of algorithm-drawn

segmentations per image using Algorithms 1-10 (Table 5.2). In order to constrain the

images to have one dominant object, before applying the algorithms, we cropped each im-

age by using the expert-drawn segmentation to detect the object location and then grew

its bounding box by 10 pixels on all sides. The expert-drawn annotations were created in

formative study F2 by a biomedical engineering PhD student, Expert A, who spent eight

hours to draw a total of 423 cell outlines. The expert-drawn annotations were created in

formative study F3 by Expert B, a biomedical engineering PhD student who created the

images for quantitative analyses. Both Expert A and B chose to annotate the images using

ImageJ, a widely-used biomedical image analysis system, with a computer mouse.

Voting Collection. We then asked a scientist with a PhD in biomedical engineering,

Expert C, to vote for the segmentation best representing each cell region from the 11

segmentations (10 algorithm-drawn and one expert-drawn) shown simultaneously for each

image. Expert C interacted with our freely-available software SAGE [32] to perform voting.

The order of segmentations presented by the user interface was randomized for each each
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image to prevent voter bias by possibly learning the algorithmic or manual source of the

segmentations.

Results. We tallied the voting results based on the number of Expert C’s votes for

the expert-drawn versus algorithm-drawn segmentation options. In formative study F2,

we were surprised to find that only approximately 1% of votes (i.e., 4/423) were for the

segmentations drawn by Expert A. In formative study F3, we found approximately 43% of

votes (i.e., 116/267) were for the segmentations drawn by Expert B.

5.1.3 Study F4: Multiple Experts Vote for Best Segmentation for Everyday

Images

To address the concern that the preference for algorithm-drawn over expert-drawn seg-

mentations is due to voting biases from a single expert and is limited to image content

unfamiliar to lay people, we conducted a voting experiment on 70 everyday images from a

publicly available image library [4]. Objects of interest include, for example, a swan and a

tree trunk (Figure 1.3; Weizmann).

Annotation Collection. We compiled six segmentations per image. One segmentation

was a manual annotation provided with the image library for algorithm evaluation. We

created the other five segmentations using Algorithms 3, 6, 9-11 (Table 5.2).

Voting Collection. For each image, we asked five computer vision PhD students to vote

on the segmentation best representing each object region from six segmentation options

shown simultaneously. To vote, each voter interacted with our publicly available software

SAGE [32], configured with the order of segmentations presented by the user interface

randomized for each image. The software was also configured so that the order of the

images was the same for all voters.

Results. The voters each spent between 15 to 30 minutes to complete voting. We tal-

lied the voting results based on the number of votes for each of the segmentation sources.

Consensus from all five voters occurred for 63% of everyday images (i.e., 44/70). Exactly

four voters agreed on the best segmentation for 17% of images (i.e., 12/70), three voters
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Figure 5.1: Summary of voting outcomes by experts for the best segmentation showing
how frequently algorithm-drawn or expert-drawn annotations are preferred as well as the
implications of segmentation quality based on the degree of voting agreement between five
expert voters. (a) The number of voting outcomes for each of the six sets of annotations for
70 images in the Weizmann image library for three scenarios when considering only results
with a majority vote (i.e., 2+ votes), 3+ voting agreements, and agreement between all 5
votes. (b) Each row shows the image followed by segmentations created by an expert and
Algorithms 9, 11, 10, 6, 3 (Table 2). Darker gray level shadings indicate more votes for
the segmentation. The voting outcomes are a unanimous win for the expert in row 1, a
unanimous win for the algorithm in row 2, a majority vote win for the algorithm in row 3,
and a majority vote win for the expert in row 4. For visualization purposes, segmentations
are shown as binary images rather than image overlays.

for 17% of images (i.e., 12/70), and two voters for 3% of images (i.e., 2/70). There were no

cases with five differing votes. The distribution of the number of “winning” sources arising

from different amounts of voter agreement is shown in Figure 5.1a. We found that a small
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number of algorithm-drawn annotations were preferred over expert-drawn annotations for

each agreement level. Representative cases when expert-drawn or algorithm-drawn segmen-

tations were preferred are shown in Figure 5.1b. From visual inspection of the results,

we observed that voting disagreement arose when multiple segmentations appeared accu-

rate as well as when multiple segmentations appeared flawed. In the latter case, voters

assessed differently which flaws mattered more when identifying a “best” segmentation

(Figure 5.1b, rows 3 & 4).

5.1.4 Study F5: Multiple Experts Vote for Best Segmentation for Biomedical

Images

To address the concern that the preference for algorithm-drawn over expert-drawn segmen-

tations in Studies F1 and F2 on biomedical images may be due to the unbalanced number

of segmentation options for algorithms and experts, inadequate drawing performance by

experts A and B, and voting biases of Expert C, we set up an experiment in which mul-

tiple experts voted on a balanced number of algorithm-drawn and expert-drawn options

for images in BU-BIL:1-5 [37] (Figure 1.3a; BU-BIL). We conducted the experiment on

274 images that represent three biomedical imaging modalities: phase contrast microscopy,

fluorescence microscopy, and magnetic resonance imaging.

Annotation Collection. We compiled six segmentations per image. Three options were

the manual annotations provided in the image library [37]. The other three we created

using Algorithms 2, 8, and 10 (Table 5.2).

Vote Collection. For each image, we asked three biomedical engineers (Experts C,

D, and E - biomedical engineering PhD and PhD students) to vote on the segmentation

best representing each object region from six segmentation options shown simultaneously.

As in the previous study, each voter voted using our software SAGE [32] with all images

presented in the same order.

Results. The three voters reported that voting took approximately 55 minutes, 2 hours,

and 5 hours, respectively. For 18% of images (i.e., 50/274), there was consensus on the best
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segmentation. For 59% of images (i.e., 161/274), exactly two voters agreed. There was

no consensus for 23% of images (i.e., 63/274). We found that no single annotation source

was preferred. Specifically, for the 211 instances of majority agreement, the distribution

of “winners” coming from the six sets of annotations is 40% (i.e., 84 wins) for the first set

of manual annotations, 32% (i.e., 67 wins) for the second, and 22% (i.e., 47 wins) for the

third, and less than 1% (i.e., one win) for Algorithm 2, 5% (i.e., 10 wins) for Algorithm 8,

and 1% (i.e., two wins) for Algorithm 10.

5.1.5 Lessons for Crowdsourcing Taken from the Five Formative Studies

Formative studies, F1 – F5, were conducted on 1,037 images that represent numerous ob-

ject types observed with a variety of imaging modalities (visible, fluorescence microscopy,

phase contrast microscopy, magnetic resonance imaging). We limited our study to im-

ages for which associated manual segmentations existed that had been created for use as

the “gold standard” for algorithm evaluation. This allowed us to analyze the accuracy

of segmentations that were established under the assumption that humans draw better

outlines than algorithms. Additionally, we limited our study to domain expert voters to

avoid concerns about results arising because voters have inadequate skill or even malicious

intentions. We infer that the results reveal which observations about human involvement

generalize to various image conditions. Several ideas of how to design the crowdsourcing

annotation collection and voting collection tasks emerged from these studies (Table 5.1).

Annotation Collection. We infer that if highly qualified experts do not create perfect

segmentation results, it is likely that less motivated humans using equivalent or less so-

phisticated annotation equipment will draw imperfect outlines. We observed that different

annotators, experts and algorithms, were preferred for different images. Therefore, we

infer that overall segmentation quality will improve when considering a collection of op-

tions rather than relying on a single algorithm or a single set of human annotations for all

images. The results also showed that for generalized image sets it is more convenient to

consider a collection of expert-drawn segmentations since algorithm-drawn segmentations
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Table 5.1: Key properties of and results from the five formative studies that informed
how to use humans in the loop and the final crowdsourcing system design. They motivate
collecting multiple votes for the “best” segmentation from a collection of segmentation
options.

ID
Objects Annotators #

Votes
Annotation Results &

Discussion
Voting Results &

Discussion

F1

Black and
white im-
ages [50] 1 expert None

Imperfect annotations created
even when experts dedicate lots
of time; higher quality seg-
mentations obtained with image
zoom

Not applicable

F2

Biomedical
images
from one
experiment

1 expert, 10
algorithms

1

Algorithm-drawn annotations
preferred over expert-drawn
annotations ∼99% of time;
expert takes ∼68 seconds to
draw each object boundary

Results may be biased
due to a single voter

F3

Biomedical
images from
multiple ex-
periments

1 expert, 10
algorithms

1

Algorithm-drawn annotations
preferred over expert-drawn
annotations for ∼57% of images

Results may be biased
due to unbalanced #
of options from algo-
rithms and experts as
well as a single voter

F4

Everyday
image
library [4] 1 expert, 5

algorithms
5

Expert-drawn annotations pre-
ferred over algorithm-drawn an-
notations∼87% of voter consen-
sus results

Voting agreement
arose for all images;
experts took on aver-
age 12 to 26 s to vote
for each image

F5

Biomedical
image
library [37] 3 experts, 3

algorithms
3

Expert-drawn annotations pre-
ferred over algorithm-drawn an-
notations∼94% of voter consen-
sus results; no single annotator
preferred

Voting agreement
arose for 77% of im-
ages; experts took on
average 12 to 66 s to
vote for each image

are rarely preferred however, for particular image sets, there can be great benefit when also

considering algorithm-drawn segmentations or even only algorithm-drawn segmentations.

We also infer, from observing expert behavior in study one, that a system design for human

annotation should leverage image zoom to yield higher quality annotations.

Voting Collection. We found that experts have different priorities or interpretations

when collapsing the possibly many observed imperfections or differences for each segmen-

tation into a single assessment and then choosing the best option from each of these as-

sessments. To make it easier for voters to agree on the segmentations that the experiment

designer considers high quality, we suggest clearly motivating the criteria that will be used
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to evaluate “quality” by incorporating into training or instructions how to handle the cases

that are the common causes of undesired interpretations or voting disagreements. We also

suggest collecting multiple votes for the “best” annotation. Finally, inspired by the re-

stricted user interface in SAGE which presents annotation options in a vertical column

(Figure 5.3a), we suggest examining an appropriate grid layout and number of options

to present to the user in order to still yield accurate voting results while minimizing or

eliminating user scrolling.

5.2 Methods

We propose a segmentation collection methodology that decomposes the task into a series

of three micro-tasks that could be distributed and completed by any combination of hu-

mans and computers. We first describe this framework we call “Segmentation Annotation

collection, Vote Collection, and Evaluation,” or SAVE. We then describe implementations

of this framework used for our studies that support these tasks to be completed by experts,

algorithms, and crowd workers (Table 5.2). Lessons learned from our formative studies

motivated the choice and design of the crowdsourcing tools. We finally describe four sys-

tem implementations of this framework that combine crowdsourcing and algorithm efforts

in different ways to support studies to learn when to distribute the tasks to crowd workers

or algorithms in practice.

Figure 5.2: SAVE (Segmentation Annotation collection, Vote collection, and Evaluation),
the proposed annotation collection methodology. A user collects s annotations, then col-
lects n votes indicating which pixels/regions/annotations best reflect that of the true seg-
mentation, and finally evaluates to establish a final segmentation.
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5.2.1 SAVE Framework

SAVE takes as input an image to be annotated and outputs a single segmentation. SAVE

involves performing a series of three steps for each image (Figure 5.2): (1) Annotation

Step: The image is annotated by s algorithms or humans. (2) Voting Step: n votes at the

pixel level or image level are collected from either humans or an algorithm to determine

the “best” annotation from the s annotations (3) Evaluation Step: A decision mechanism

interprets the votes to establish a final annotation to use. The key design decisions for

implementing this pipeline are to determine (1) which annotation collection methods?, (2)

which voters?, and (3) what annotation recommendation decision mechanism?

5.2.2 Annotation Collection Implementation

Expert-Based System: We utilized freely-available ImageJ [73] and Photoshop to collect

expert segmentation drawings. ImageJ takes as input user specified points and connects

them sequentially with straight lines to create the boundary of an object. Photoshop

collects user brush strokes to produce a boundary or binary mask including all pixels in an

object.

Algorithms: We compiled a comprehensive set of 11 image segmentation algorithms

that together span four categories of algorithms commonly reported in the literature for

biomedical images [64] (Table 5.2). The set consists of thresholding methods (algorithms

1 and 2 [68]), feature-based methods (algorithms 3 [6] and 4 [35]), region growing methods

(algorithm 5 [91]), and deformable model based methods [10, 15, 16, 48, 53, 83]. We utilized

freely-available implementations of each algorithm. We initialized Algorithm 5 with two

initial markers using the convex hull of the algorithm 3 segmentation for the background

marker and the eroded segmentation from algorithm 3 as the foreground marker. We

initialized Algorithms 6-11 with Algorithm 4 because of its reported success [35].

Crowd Worker System: To collect crowd-drawn segmentations, we set up the freely-

available source code for the on-line image annotation tool LabelMe [79] in an Ubuntu
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Table 5.2: List of segmentation drawing and voting tools used in studies for different
annotator options. We built the crowdsourcing voting tool since no web-based tool exists
for the segmentation problem and utilized existing tools/algorithms for the remaining five
tasks.

Annotation Collection Tool(s) Voting Tool

Experts Photoshop, ImageJ SAGE

Algorithms

1: Adaptive thresholding
2: Otsu thresholding
3: Hough transform for circles
4: variance maps
5: seeded watershed
6: geodesic active contours
7: active contours without edges
8: localized region-based active contours
9: Bernard level set algorithm
10: Shi level set algorithm
11: Li level set algorithm

Pixel voting

Crowd Workers LabelMe (web-based) New tool (web-based)

computing environment on the Amazon Elastic Compute Cloud (EC2).

5.2.3 Vote Collection Implementation

Expert-Based System: We utilized our freely-available tool SAGE [32] to perform image

level voting by experts (Figure 5.3a). This system shows an original image in a column

on the left and each segmented region overlaid transparently on the original image in

a vertical column on the right. To vote, the user selects a radio button next to the

desired segmentation and then clicks a button to submit the vote. To prevent biases

from segmentation ordering, the system randomizes the order of the set of segmentations

presented by the user interface for each image.

Algorithm: We implemented an algorithm that performs pixel level voting to create a

final segmentation. Specifically, the algorithm takes as input N segmentations and out-

puts a single segmentation where a pixel is labeled as foreground when at least M of the

segmentations label it as foreground and background otherwise.

Crowd Worker System: Since existing web-based voting tools did not address challenges
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Figure 5.3: User interfaces for human-interaction voting tools that participants in the
studies used to vote for a best segmentation among multiple options: (a) Freely-available
SAGE system used by experts; (b) Web-based interface we created for use by internet
workers. Key design choices were to present segmentation options with transparent green
image overlays and to show all options in two rows to prevent user scrolling.

specific to the segmentation problem, we created a segmentation voting tool. One challenge

is how to display each segmentation option. We overlay each segmentation option on the

original image rather than presenting the segmentation as a binary image in order to en-

courage users to choose the option that is pixel perfect rather than semantically meaningful.
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Selecting an overlay color/texture/transparency that works well in general for a variety of

image characteristics (intensity contrasts, intensity textures, grayscale versus color images)

is challenging. Preliminary studies motivate overlays used for our experiments, however

a generalized solution is an open area for future research. Another challenge relevant to

the image segmentation problem is choosing an appropriate grid layout. Motivated by

observations from the formative studies, we designed the webpage to display all segmen-

tation options in two columns and we scaled images to span the maximum width and/or

height of the allotted grid cell in the web page to minimize user scrolling while supporting

accurate voting. As a result, the webpage presents the original image on the left and a

grid layout consisting of two rows that shows each segmented region overlaid transparently

on the original image on the right (Figure 5.3b). In addition, to minimize the internet

worker’s subjectivity in interpreting the criteria that he or she needs to optimize when

voting, we also pasted short, step-by-step instructions at the top of the user interface with

exemplar images to visually show undesired votes. To vote, a user selects a radio button

next to the desired segmentation and then clicks a submit button. To prevent biases from

segmentation ordering, the tool randomizes the order of the set of segmentations presented

by the user interface for each image.

5.2.4 Evaluation Implementation

We separate “Evaluation” as its own task to enable one to make educated decisions regard-

ing whether to trust or be “suspicious” of voting outcomes. For example, humans may not

necessarily be trustworthy and so one may not want to trust all majority vote outcomes.

One may want to instead weight the influence of different voters (human voting) or pixels

(algorithm voting) differently. For each study in this paper, we specify what number of

votes are used to determine the final segmentation and, when there is a tie, we select the

first segmentation result that accrues the most votes.
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5.2.5 Four SAVE Systems

We developed four implementations of SAVE that represents each of the four possible

combinations of using crowdsourced workers and algorithms to perform the annotation

collection and voting tasks. For each image, SAVE collects s segmentations of the image,

collects n votes at the image or pixel level to establish the best segmentation, and saves

the segmentation resulting from the majority vote. For annotation collection, the sys-

tem supports using any combination of crowdsourced segmentations and Algorithms 1-11

(Table 5.2).

5.2.6 Quantitative Segmentation Performance Analysis

To evaluate segmentation quality, we used the intersection over union (IoU), a standard

evaluation metric (i.e., |A∩B||A∪B| , where A represents the set of pixels in the true region and B

represents the set of pixels in the annotated region). We then used significance testing to

compare the quantitative results for different methods and establish if performance differ-

ences between methods are negligible for a collection images. In particular, we conducted

a one-way analysis of variance (ANOVA), followed by a multiple comparison test with

Tukey’s honestly significant difference criterion to perform pairwise comparisons of anno-

tation performance. Statistically significant results are deemed those where the significance

level p is less than 0.05.

5.3 Experiments

We conducted studies to evaluate and compare the four proposed SAVE implementations

against standalone algorithmic and crowdsourcing methods. We examined (1) which among

two pure crowdsourcing methods, two pure algorithmic methods, and two hybrid algorithm-

crowdsourcing methods yield expert accuracy and perform the best?, (2) what are the

benefits of using hybrid system designs over pure crowdsourcing and algorithmic methods?,

(3) What are the benefits of using crowd workers versus algorithms for annotation and
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voting respectively to solve the image segmentation problem?, (4) how do crowd workers

perform for both the segmentation drawing and voting tasks with respect to skill level and

time?, and (5) how does image content impact crowd worker behavior?

5.3.1 Image Libraries

We analyzed all segmentation methods on a total of 405 images from freely-available image

libraries of everyday images [4] and biomedical images [32] that were also used in formative

studies F3 and F4. We chose these image libraries because they each include multiple

expert-drawn segmentations. For each image, we applied the pixel majority vote algorithm

to fuse the multiple experts’ annotations into a final gold standard segmentation to reduce

the impact of biases and mistakes from a single expert on performance analyses.

5.3.2 Crowdsourcing Platform and Participants

We used the Amazon Mechanical Turk internet marketplace to recruit crowdsourced work-

ers. We accepted all Mechanical Turk workers that had previously completed at least 100

HITs and received at least a 92% approval rating. For all HITs, we allotted a maximum

of ten minutes to complete the task. We approved all submitted HITs.

Annotation Collection. We created external HITs by applying scripts provided with

LabelMe [79] to post HITs to Mechanical Turk and record the submitted results in our

cloud computing environment. When Workers reviewed the HITs, they were redirected to

a webpage that contains a five step set of instructions followed by pictures exemplifying

good and bad annotations. After accepting a drawing HIT, the Worker was presented the

user interface to complete and submit the task (Figure 3.2). We paid each worker $0.02

to complete the drawing task.

Vote Collection. We created internal HITs by adapting Mechanical Turk templates

to both post our voting HITs as an embedded webpage and record the submitted results.

When Workers reviewed the voting HITs, they were first shown a two step set of instructions

with pictures exemplifying a good and bad vote followed by the original image on the
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left and segmentation options on the right (Figure 5.3b). Motivated by preliminary

crowdsourcing experiments, we use exemplar images that demonstrate that the task is to

choose the segmentation which has the largest number of pixels overlapping the object of

interest rather than selecting segmentations for which the object could be best recognized.

Also motivated by preliminary analyses, we present each segmentation option for all images

using a green overlay of the segmentation on the original image. We paid each worker $0.01

to complete a voting task.

5.3.3 Performance Analysis for Four SAVE Implementations

We evaluated six segmentation options based on different combinations of efforts from

crowdsourced workers and computer vision algorithms (Table 5.3). Two of these configu-

rations are pure crowdsourcing methods: crowd-drawn segmentations (C1 ) and segmenta-

tions chosen by crowd voting on multiple crowd-drawn segmentations (C2 ). Another two

of these configurations are pure automated methods: algorithm-drawn segmentations (A1 )

and segmentations created by algorithm voting on multiple algorithm-drawn segmentations

(A2 ). The final two configurations are hybrid human-computer methods: segmentations

created by algorithm voting on multiple crowd-drawn segmentations (CA) and segmenta-

tions chosen by crowd voting on multiple algorithm-drawn segmentations (AC ).

We collected five annotations and five votes for the annotation collection and vote col-

Table 5.3: Description of seven annotation methods we evaluated and compared in the
studies. Each annotation method is described in terms of the SAVE pipeline and a ranking
shows how these methods compare across the studied 405 everyday and biomedical images
with respect to median IoU scores.

ID Method Type Annotations Per Image Votes Rank

Ex Expert 3 expert-drawn None 1

C1 Crowd 5 crowd-drawn None 4

C2 Crowd 5 crowd-drawn 5 crowd per image 3

A1 Algorithm 1 algorithm-drawn None 7

A2 Algorithm 5 algorithm-drawn 5 pixels per pixel 6

CA Hybrid 5 crowd-drawn 5 pixels per pixel 2

AC Hybrid 5 algorithm-drawn 5 crowd per image 5



77

lection tasks respectively from both the crowd and algorithms. For crowd annotation col-

lection, we posted for each image library five batches of HITs for all images simultaneously.

For the algorithm annotation collection methods, we collected five sets of segmentations

for each image using five different algorithms for the two image libraries. Motivated by

demonstrated success of algorithms in the formative studies, we applied Algorithms 3, 6, 9,

10, and 11 (Table 5.2) for the “Everyday Images” and Algorithms 2, 3, 5, 8, and 10 (Ta-

ble 5.2) for the “Biomedical Images.” For the crowd vote collection methods, we posted for

each image library five batches of HITs for all images simultaneously. We ran this experi-

ment twice using as input the five sets of crowd-drawn segmentations and algorithm-drawn

segmentations respectively. For algorithm voting method, we fused five segmentations per

image into a single segmentation that represents the pixel-level majority vote (e.g., assign a

pixel as “object” only when at least three input segmentations assign the pixel as “object”).

We ran algorithm voting twice, using as input the five sets of crowd-drawn segmentations

and algorithm-drawn segmentations respectively.

To establish whether any of the six studied segmentation methods can compete with

expert accuracy, we computed the IoU scores for three expert-drawn annotations per image

for all 405 everyday and biomedical images (Ex ). We then computed the IoU score for

every segmentation produced by all pure crowd-based (C1, C2 ), pure algorithm-based

(A1, A2 ), and hybrid crowd-algorithm based methods (CA, AC ). Preliminary experiments

motivated our algorithm selection for A1 where we chose among the 11 algorithm options

the algorithms that yielded the highest median score for each image library: method 6

for the “Everyday Images” and method 10 for the “Biomedical Images.” In total, 5,265

computed scores characterizing the seven annotation sources (experts + 2 standalone + 4

SAVE systems) served as the foundation for our subsequent analyses.

5.3.4 Characterizing Crowd Behavior

We conducted studies to highlight what to expect when leveraging crowd workers for both

drawing and voting tasks for familiar (everyday images) and unfamiliar (biomedical images)
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content.

Annotation Collection Task. We counted the number of unique workers that contributed

to creating the 2,025 drawings and computed statistics to characterize the time they took

to draw each object boundary. To identify how the quality of drawings from the crowd

compares to drawings created by experts, we then compared IoU scores computed for the

crowd-drawn segmentations and expert-drawn segmentations.

Voting Task. We counted the number of unique workers that contributed to creating

the 4,050 votes and computed statistics to characterize the time they took for the voting

task. We also computed the number of majority vote outcomes that led to a segmentation

with an IoU score that was within 5% of the top-scoring segmentation option available.

5.3.5 Characterizing Successes of Image Segmentation Algorithms

We counted the number of majority voting outcomes for each of the five algorithm options

summed over all studied images. We analyzed these results independently for the everyday

and biomedical images.

5.4 Results

We analyzed segmentation results coming from a total of 6,075 HITs completed by a total of

208 unique workers and a total of 2,835 segmentations created by algorithms (stand-alone

and majority-pixel vote).

5.4.1 Performance Analysis for Four SAVE Implementations

Top Performer(s). We found that the best segmentation option overall is a hybrid ap-

proach that applies algorithm voting to fuse crowdsourced drawings (CA), when evaluating

by comparing the median scores of the segmentation options (Figure 5.4; All Images).

Significance testing revealed that crowd voting on crowd drawings (C2 ) is a comparable

top-performing option, when evaluating for “All Images.”
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Figure 5.4: Summary of IoU scores shown for all 405 images, as well as based on the image
content (i.e., everyday images only and biomedical images only), when applying six seg-
mentations systems per each object and evaluating expert annotations: experts (red); two
crowdsourcing methods - C1 (orange) and C2 (yellow); two hybrid algorithm-crowdsourcing
methods - CA (green) and AC (blue); and two algorithm methods - A1 (indigo) and A2
(magenta). For each annotation source, the central mark of the box denotes the median
score and the box edges the 25th and 75th percentiles scores. The whiskers extend to the
most extreme data points not considered outliers, and the outliers are plotted individu-
ally (black). We found that crowdsourcing approaches led to segmentations of comparable
accuracy to that of experts and better accuracy than fully-automated methods. We ob-
served that the best method for involving crowdsourced workers was a hybrid approach of
algorithm voting to fuse crowdsourced drawings. This method yielded expert-quality an-
notations for the biomedical images. We observed that crowd-drawn annotations resulted
in a larger percentage of egregious outliers for everyday images than biomedical images
(i.e., IoU <0.3).

Expert Equivalent Options. Significance testing revealed segmentations created by two

of the SAVE implementations (C2, CA) are comparable to expert-drawn annotations (Ex )

for the “Biomedical Images.” In contrast, significance testing revealed that none of the six

studied methods performed comparably to experts for the “Everyday Images.”
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SAVE vs Stand-Alone Options. The results highlight performance gains from applying

the SAVE system implementations (Figure 5.4; A2, C2, AC, CA) in place of standalone

annotation collection methods (Figure 5.4; A1, C1 ). We found that combining multiple

crowd-drawn segmentations with crowd or algorithm voting improved overall quality while

eliminating most of the egregious outliers (Figure 5.4; A2 and AC vs A1 ). We found that

combining algorithm-drawn segmentations with crowd or algorithm voting could lead to

higher quality (i.e., median score) results than relying solely on the studied top performing

computer vision algorithm (Figure 5.4; A2 and AC vs A1 ).

Hybrid Algorithm-Crowdsourcing Systems. Overall, we found that hybrid methods yielded

superior performance to pure automated and pure crowdsourcing methods (Figure 5.4;

All Images). Specifically, significance testing demonstrated significant quality improve-

ment when pairing algorithm-drawn annotations with crowd voting over the two studied

pure algorithm-drawing methods (Figure 5.4; All Images - AC vs A1 and A2 ) and pair-

ing crowd-drawn annotations with algorithm voting over the pure crowd-drawing method

(Figure 5.4; All Images - CA vs C1 ). Moreover, algorithm voting on crowd drawing

performs better than crowd voting on crowd drawings, when comparing median scores

(Figure 5.4; CA vs C2 ).

5.4.2 Characterizing Crowd Behavior

Annotation Collection Task. 90 unique crowd workers created the 2,025 drawings. The

time that crowd workers spent on completing a HIT was on average 30 seconds (i.e., median

time), 25th percentile and 75th percentile times ranged from approximately 20 to 55 sec-

onds, and was at most close to three minutes (Figure 5.5; All Images - C1 ). We observed

that the main distinguishing factor between crowd-drawn and expert-drawn annotations

is that more egregious outliers are created by crowd workers than experts (Figure 5.4;

All Images - C1 vs Ex ). We visually inspected the 45 crowd-drawings that received a

score below 0.3 (score distinguishing where majority of outliers lie between the crowd and
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Figure 5.5: How much time do crowd workers spend on drawing and voting tasks? Sum-
mary of time taken for crowdsourced drawings (orange), crowdsourced voting for the best
among five crowdsourced drawing options (yellow), and crowdsourced voting for the best
among the five algorithm drawings (blue) is shown for all images as well as only for the
“Everyday” and “Biomedical Images.” See Figure 5.4 for the explanation of a box plot
visualization.

experts). We categorized these outliers into five types of observed crowd behaviors which

are exemplified in Figure 5.6: 1) multiple closed contours drawn, 2) points marked on the

image along with a text label indicating what the object is, 3) wrong object annotated, 4)

object annotated at incorrect granularity, and 5) spam.

Voting Task. 129 unique crowd workers contributed to the 4,050 voting tasks. When

voting between five crowd-drawn options, the crowd workers took on average (i.e., median

time) 12 seconds, 25th percentile and 75th percentile times ranged from approximately 9 to

20 seconds, and took at most close to three minutes (Figure 5.5; All Images - C2 ). When

voting between five algorithm-drawn options, the crowd workers took on average (i.e.,

median time) approximately 16 seconds, 25th percentile and 75th percentile times ranged

from approximately 11 to 25 seconds, and took at most close to three minutes (Figure 5.5;

All Images - C2 ). We found the voting outcome led to IoU scores within 5% difference
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Figure 5.6: Why do crowd workers make drawing mistakes? We categorized egregious
drawing outliers (i.e., IoU scores below 0.3) into five categories which we show in five
columns with representative crowd-created results. Two categories were only observed on
“Everyday Images” (highlighted in dark green) and the other three categories were observed
for all studied images (highlighted in navy blue). In the bottom row, we suggest ways that
we hypothesize would prevent these observed outliers.

of the highest scoring segmentation option for 68% (i.e., 277/405) of voting outcomes on

crowd-drawings (C2 ) and 57% (i.e., 229/405) of voting outcomes on algorithm-drawings

(AC ).

Impact of Image Content. We found differences between crowd behavior for different im-

age content in terms of quality, time, and worker recruitment (Figure 5.4, Figure 5.5,

Table 5.4).

For annotation collection, the total elapsed time from posting to submission of all HITs

was proportionally about three times more for “Biomedical Images” (i.e., 1,955 minutes

for 2,025 drawings) than for “Everyday Images” (i.e., 226 minutes for 500 drawings). In

terms of quality, we found that the percentage of outliers with an overlap score below 0.3
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Table 5.4: Statistics characterizing the six independently run crowdsourcing experiments
in terms of task cost, elapsed time to collect all submitted tasks, and number of unique
workers for all tasks.

Everyday (100 images) Biomedical (305 images)

Draw
(C1)

Vote
(AC)

Vote
(C2)

Draw
(C1)

Vote
(AC)

Vote
(C2)

US Dollars Paid Per HIT $0.02 $0.01 $0.01 $0.02 $0.01 $0.01

Elapsed Time to Collect Five Sets of
HITs (Normalized to min/500 HITs)

226 56 35 641 26 38

Unique Worker Count (Avg. #
Tasks Per Worker)

44
(11)

36
(14)

13
(38)

40
(51)

44
(46)

45
(45)

accounted for approximately 6.6% of annotations (i.e., 33/500) observed on 22 unique “Ev-

eryday Images” and 0.6% of annotations (i.e., 12/2025) observed on 11 unique “Biomedical

Images.” From visual inspection of these outliers, we learned that two of the five types of

outliers were only observed for “Everyday Images”: six instances of identifying image

point(s) with associated text labels to perform a “recognition” task and two instances of

spam annotations.

For voting, we found that the majority vote agreement yields higher quality voting

outcomes for everyday images than biomedical images. It led to selecting a segmentation

with an IoU score within a 5% difference from the score of the top-performing segmentation

option for 81% of outcomes for the everyday images (i.e., 87/100 crowd-drawn and 74/100

algorithm-drawn) and 49% of outcomes for the biomedical images (i.e., 190/305 crowd-

drawn and 155/305 algorithm-drawn). This better voting performance for everyday images

is also observed when comparing how the median score in practice compares against the

maximum and minimum possible median scores that could arise if voters always chose

either the highest scoring segmentation or lowest scoring segmentation respectively from

the five segmentation options for each image (Table 5.5).

5.4.3 Characterizing Successes of Image Segmentation Algorithms

We found that no single algorithm was preferred and all algorithms were perceived as

an optimal option for some number of images. We report the distribution of voted high
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Table 5.5: How do majority vote outcomes from the crowdsourcing experiments compare
to the best and worst possible voting outcomes? Median scores are shown for the crowd-
sourcing experiments as well as scenarios when voting outcomes identified the maximum
and minimum possible scoring segmentation for all images.

Crowd-Drawn Algorithm-Drawn

Actual (C2) Max Min Actual (AC) Max Min

Everyday Images 0.92 0.93 0.68 0.71 0.74 0.2

Biomedical Images 0.83 0.86 0.71 0.6 0.68 0.14

quality segmentation sources for both image sets based on majority vote winners. For the

305 biomedical images, we tallied that the winners were 29, 87, 56, 56, and 10 instances for

Algorithms 2, 3, 5, 8, and 10 respectively. For the 100 everyday images, we tallied that the

winners were 25, 23, 28, 19, and 5 instances for Algorithms 3, 6, 9, 10 and 11 respectively.

5.5 Discussion

Intersection of Computer Vision and Human Computation. We proposed SAVE, a modu-

lar image segmentation framework which users can plug in different annotation collection

and voting quality control methods, algorithm-based and human-based. While the inher-

ent tradeoffs of using crowdsourcing for accuracy and algorithms for efficiency are well

known, the strengths of both approaches are shown to successfully emerge when combining

their efforts in hybrid SAVE system implementations (CA, AC ). Pairing existing crowd

drawing tools with algorithm voting quickly and inexpensively filters out the occasional

segmentation errors while improving the accuracy of results overall. Pairing existing algo-

rithm drawing methods with crowd voting empowers users to quickly offload the task of

identifying the best-suited algorithm among several options for different images at a low

cost. These results provide exciting evidence that this simple framework is effective for

a diversity of images to bring out the strengths from the disparate computer vision and

human computation communities and efficiently create higher-quality segmentations.

Crowdsourced Voting. Our work reveals that crowd voting for the best segmentation can

vastly improve the quality of segmentations. While we were surprised to observe that this
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quality control method has never been applied before, we hypothesize the reason may be

because this seemingly simple voting task for the “best” annotation comes with numerous

open challenges unique to the image segmentation problem. Challenges include establishing

the optimal method to display segmentation options (e.g., green overlays on the original

image) and the optimal grid layout with number of segmentation options (e.g., in our

web interface, two rows with fives options). Experiments with our proposed user interface

design revealed that users can trust crowd workers to judge what is a best segmentation

among several options for both everyday and biomedical images. Moreover, we found that

users could expect a quick turn-around time for such experiments given that, for our four

crowdsourced voting experiments, we collected 535-1,153 completed voting tasks per hour.

Crowd Behavior for Different Image Content. Surprisingly, we observed that unfamiliar

(biomedical) images elicited fewer egregious drawing errors while, less surprisingly, crowd

workers performed better for crowd voting on the familiar (everyday) images. The egregious

drawing errors (IoU scores below 0.3) occurred approximately 11 times more frequently

for everyday images than biomedical images. We observed that recognition of the image

content led to more drawing mistakes because crowd workers would misinterpret the task

as annotating objects at smaller granularities that they recognize rather than the largest

“blob” in the center of the image (e.g., stone versus basket) or indicating the identity and

location of observed objects.

Expert-Quality System. Our results demonstrate the potential of the proposed method-

ology, SAVE, to produce expert-quality annotations with crowdsourced workers and al-

gorithms. The immediate practical importance of this finding is clear for biomedical im-

age analysis studies when comparing results from the formative studies and SAVE study.

Specifically, whereas the domain expert in study F2 spent eight hours to produce 423 out-

lines of biological structures in biomedical images, we have demonstrated that a domain

expert can instead spend around $30 and wait for approximately 31 hours to have a hybrid

SAVE implementation (CA) collect 305 expert-quality outlines of biological structures in

biomedical images.
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Future Work. Many possible directions for future research emerge from our work.

For human computation, interesting future research directions include examining what to

expect from the crowd when using different incentive structures (e.g., gamification or citizen

science) in terms of quality for both the crowd drawing and voting tasks for familiar and

unfamiliar image content. Another open research question is how to improve instructions

or worker training to improve crowd voting results for unfamiliar image content. For

computer vision, an interesting future research direction would be to find the smallest

collection of image segmentation algorithms that together yield at least one algorithm that

will work well for a diverse set of images. Finally, at the intersection of human computation

and computer vision lies an opportunity to grow crowd-based voting studies to learn on a

large-scale which algorithms work best for which images. Our ultimate research goal is to

use voting outcomes to train classifiers to automatically predict the best-suited algorithm

based only on the image information. Success with this work will lead to a fully-automated

system that works well for the diversity of images and so empower users to collect accurate

segmentations at scale relatively quickly and inexpensively.

5.6 Conclusions

The proposed image segmentation framework SAVE allows mixing and matching of crowd-

sourcing and algorithm methods for segmentation creation and voting quality control in a

single framework. Experiments with different combinations of algorithm and crowd efforts

in the SAVE framework revealed that hybrid systems designs outperformed pure algo-

rithmic and crowdsourcing approaches. We were excited to find that one of the hybrid

algorithm-crowdsourcing system designs created expert-quality segmentations for biomedi-

cal images. This finding highlights that a new question may be realistically explored within

the biomedical community of “What is possible if we could efficiently and inexpensively

gather thousands of expert-quality segmented images?” We also found that, overall, crowd

workers could be trusted to perform both the drawing and voting tasks for both familiar
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and unfamiliar image content. Finally, we found that introducing the new crowd voting

quality control method for the segmentation problem is a powerful starting point towards

automatically learning on a large scale how to pair data with appropriate algorithms.



Chapter 6

Hybrid System - Human Initializes Algorithm

Level set methods are widely used to automate finding accurate boundaries of biological

structures in biomedical images and videos. In general, level set methods deform an ini-

tial contour to a final contour that separates image foreground from background so that

some method-specific image partition condition is enforced. While new energy functionals

controlling how to partition an image continue to be proposed to address the spectrum

of possible image conditions, the continued development and wide-spread sharing of new

options is making it difficult for both non-experts and experts to know which method to

use when. A further challenge for applying such methods is knowing which type of initial

contour will be sufficiently close to the desired boundary since they often produce locally

optimal segmentation results which may not match the desired globally optimal segmen-

tations. As a result, a common question asked by individuals trying to apply level set

methods is “which method with which initial contour will produce the desired boundary

in my images?”

To address this question, we evaluated level set algorithms that currently have a poten-

tial widespread practical impact due to their inclusion in freely-shared bioimage analysis

systems [20, 23, 80]. Geodesic active contours evolve the initial contour to end up in

regions with strong edges (high contrast) [15]. Active contours without edges evolve the

initial contour to try to separate the image into two homogeneous regions [16]. Both Lank-

ton region-based active contours [48] and the Li level set algorithm [53] evolve the initial

contour by using the local neighborhood statistics for each pixel in order to adjust how

to separate the sub-region into two homogeneous regions. The Shi approximation method
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computationally speeds up the evolution process by replacing slow real-valued calculations

with faster integer-based calculations [83]. The method by Bernard et al. uses a linear

combination of B-spline basis functions for process speedup [10]. Currently, there is no

work comparing these freely shared algorithms on biomedical image sets.

Domain experts planning to use level set methods on their biomedical images encounter

an additional overhead of creating initial contours. With freely available image analysis

software [20, 80], they create initial contours, clicking on images to create simple geometric

shapes, points connected into polygons/splines, or free-hand tracings, and then typically

wait for seconds or minutes per image for the input contour to finish evolving to a seg-

mentation [20]. While recent as well as foundational publications reported that simple

initial contour shapes such as bounding squares, rectangles, circles, ellipses, and triangles

led to accurate segmentations [10, 15, 16, 48, 53, 83], other recent publications suggested

these initial contours can be insufficient. As an example, specialized contour initialization

methods have been proposed for phase contrast image sets [22, 54] to avoid common curve

evolution failures. It can be faster for domain experts to manually trace boundaries them-

selves than to run an algorithm and possibly risk running it repeatedly until finding an

initial contour that returns an accurate segmentation (Figure 6.1).

To provide practical guidance for obtaining accurate segmentations with level set meth-

ods, we conducted an extensive comparison study of six publicly-available level set methods

paired with popular initial-contour shapes which we discussed in a 2014 publication [36].

We analyzed when to use which method and how to use the methods effectively on fluores-

cence and phase contrast images. To further minimize the overhead for domain experts of

creating initial contours for their biomedical images, we also proposed to use crowdsourcing

to create them. Finally, to facilitate extensions of this study, we publicly share all code

(http://www.cs.bu.edu/∼betke/BiomedicalImageSegmentation).
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Figure 6.1: Representative segmentation results exemplifying that a trial-and-error effort
to find a contour initialization may or may not lead to successful use of a level set method.
Raw images (column 1), shown for a biological object from each dataset in the image
library, were processed with the “Bernard level set algorithm” [10] (columns 2–5), the
“Lankton level set algorithm” [48] (columns 6–9), and manually (column 10). Blue lines
show initial contours, green lines the final segmentation.

6.1 Methods

To find a contour initialization method that works well in general, we designed and im-

plemented a system that supports trial-and-error analyses by applying all combinations

of chosen initial-contour shapes and level-set algorithms to all image sets in an image li-

brary. A user runs the system with one command and can configure the system to apply

a collection of level set algorithms initial-contour pairings to a collection of image sets.

6.1.1 Segmentation System

Images are processed sequentially. For each image, the system applies the segmentation

method with the associated curve initialization method. Different segmentation and curve

initialization configurations with different parameter settings can be applied for different

image sets (described below). Next, the segmentation result is post-processed by filling

holes and keeping only the largest object. Finally, the system saves the resulting binary
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Table 6.1: List of algorithms analyzed in comparison study, their inclusion in biomedical
image analysis toolboxes, and initialization methods reported in the initial publications.
Tool Software Options Published Curve Initializations

Geodesic Active Contours [15] Fiji[80], ITK[23],
Creaseg [20]

Rectangle, Circle

Chan Vese level set
method [16]

Creaseg [20] Square, Circle

Lankton level set method [48] Creaseg [20] Rectangle, Square, Circle, Ellipse,
Merged Rectangles

Li level set method [53] Creaseg [20] Square, Circle, Ellipse, Triangle

Shi level set method [83] Creaseg [20] Circle, Merged Circles

Bernard level set method [10] Creaseg [20] Square, Circle, Ellipse, Merged
Circles

segmentation as an image.

Segmentation Modules. Each of six publicly available implementations [20] of level

set algorithms are wrapped into a single module that the user may use interchangeably

in the system: geodesic active contours [15], Chan Vese level set method [16], Lankton

level set method [48], Shi level set method [83], Bernard level sets [10], and Li level set

method [53] (Table 6.1). Each segmentation module is decoupled from the initial contour

by being linked to an Initial Contour Module option that, at run time, creates an initial

contour.

Initial Contour Modules. Each initial contour module shares the same interface.

Given an input image, it returns a binary mask of the same dimensions. The system

supports four initial contour methods the user may use interchangeably: rectangle, ellipse,

circle, and a triangle. To create the contour, the rectangle module uses the boundary of the

rectangle drawn by removing n pixels from all sides of the image region, the ellipse module

uses the boundary of an ellipse drawn to span the image region downsized by n pixels on

all sides, the circle module uses the boundary of a circle drawn at the center of the image

region with a radius of half of the smallest image region dimension minus n pixels, and the

triangle module uses the boundary of a triangle drawn to span the image region downsized

by n pixels on all sides using two corners of the bounding box on the bottom image side
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and the midpoint between both corners on the top image side. The user can configure

parameter n to control the size of the shape.

6.1.2 Crowdsourced Initial Contour Module

When basic geometric shapes are insufficient, as reported for phase contrast image sets [22,

54], a user can instead use a crowdsourced initial contour to create an estimate of the object

boundary that is closer to the true boundary. We incorporate the publicly available on-line

annotation software, LabelMe [79], into the system usage pipeline to collect the initial con-

tours. To address concerns about trusting annotations from a single annotator, whether

due to weaker skills or even malicious motivations, we incorporated into the pipeline the

Probability Maps (p-map) algorithm so that the user can combine multiple crowdsourced

segmentations for each image. This algorithm takes as input N segmentations and out-

puts a single segmentation where a pixel is labeled as foreground when at least M of the

crowdsourced segmentations label it as foreground and background otherwise. Finally, the

segmentation result is post-processed to fill holes and keep only the largest object.

6.2 Experiments

We conducted three studies using the proposed system on biomedical images to examine

which among the six freely-available level set methods yield the most accurate segmen-

tations for various image modalities, what is the impact of contour initialization on seg-

mentation quality, and whether paid crowdsourced workers can be leveraged to expedite

successful use of level set methods for biomedical images.

We analyzed the algorithms on a total of 271 images from BU-BIL:1-5. We computed

scores that indicate how closely algorithm-generated segmentations match gold standard

segmentations provided with the image library. We quantitatively analyzed each algorithm

for all images using IoU, a standard evaluation metric (i.e., |A∩B||A∪B| where A and B represent

the set of pixels in the gold standard and algorithm-generated segmentations respectively).
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Study 1: Impact of Initial Contour. We applied our system to all images in the

library to collect segmentations using all six algorithms. We did this 12 times to analyze

the impact of the shape and size of the initial contour by setting n = 5, 15, and 25 pixels

for the rectangle, ellipse, circle, and triangle.

Study 2: Comparison of Level Set Methods. We applied our system to all images

in the library to collect segmentations using all six algorithms. We set the initial contour

to the gold standard segmentation mask. We also compared algorithms using as the initial

contour a circle with n = 15 since we found in Study 2 this pair performed well for both

phase contrast and fluorescence images.

Study 3: Analysis of Using Crowdsourced Initial Contours. We applied our

system to all images in the library to collect segmentations using all six algorithms paired

with the initial contours created by crowdsourced workers. To create the initial contours,

we collected five crowdsourced annotations per image and fused the segmentations into a

single binary mask with the p-map algorithm setting M = 3 (i.e., a pixel is part of the

object only if at least three annotators included it as part of the object). To minimize

concerns about work quality, we only accepted workers that had previously completed at

least 100 HITs and received at least a 92% approval rating. Workers receive a five step

set of instructions detailing how to submit a HIT followed by pictures exemplifying good

and bad annotations. All submitted HITs were accepted and workers were paid $0.02 for

completing each drawing task.

6.3 Results

Study 1: Impact of Initial Contour. We found that the shape and size of the initial

contour can impact algorithm performance for both phase contrast and fluorescence images

(Figures 6.1, 6.2). For fluorescence images, we found a noticeable difference in algorithm

performance based on initial contour shape and size for all but the Bernard level set

algorithm. For initial contour shape, the ellipse and circle led to the best performance for
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Figure 6.2: Results showing the performance of six level set methods paired with 14 unique
contour initializations. Each plot shows the median IoU score for all phase contrast images
and fluorescence images independently when using as the initial contour four geometric
shapes at three different sizes, the crowdsourced segmentation boundary, and the gold
standard boundary.

most of the algorithms. For initial contour size, for most algorithms, the medium-sized

bounding region led to the best performance (n = 15). For phase contrast images, we

found a slight difference in algorithm performance based on initial contour shape and size

for the Lankton, Li, and Shi level set based algorithms. For initial contour shape, the

ellipse, circle, and triangle each led to better performance for different algorithms and only

the rectangle consistently led to inferior or equal performance. For initial contour size,
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for most algorithms, a smaller bounding region led to the best performance regardless of

initial contour shape (larger n value).

Study 2: Comparison of Level Set Methods. We found, when the initial contours

were set to the boundaries of the gold standard segmentations, that only the Lankton, Shi,

and Bernard level set algorithms performed well (Figure 6.2). For the phase contrast

images, the Lankton and Shi level set algorithms yielded the best performance. For the

fluorescence images, the Bernard and Shi level set algorithms yielded the best performance.

We found that the top-performing algorithms resulted in scores over 10% higher for phase

contrast images than for fluorescence images.

We found, when comparing algorithms using the circle as an initial contour, that dif-

ferent algorithms performed well for different image modalities (Figure 6.2). For phase

contrast images, we found that the Lankton and Shi level set algorithms led to the best

performance. For fluorescence images, we found that the Bernard level set algorithms led

to the best performance. We found that the top-performing algorithms resulted in scores

over 50 percent points higher for fluorescence images than for phase contrast images.

Study 3: Analysis of Using Crowdsourced Initial Contours. We found that

pairing segmentation algorithms with our proposed initial contour method yielded over

50 percent points performance improvement for phase contrast images and comparable

performance for fluorescence images in comparison to the top-performing algorithm initial-

contour pairings found in study 2.

6.4 Discussion

We analyzed freely-available level set algorithms to report about algorithms with immediate

wide-spread relevance. We were surprised that most of the algorithms yielded low-quality

segmentations when evolving the gold standard boundary to a final boundary. We infer

from these results that the algorithm energy functionals most closely matching the inherent

properties of the studied image modalities and biological structures are Lankton and Shi
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level set algorithms for the phase contrast images and Bernard and Shi level set algorithms

for the fluorescence images. We infer from our results that, when applying these algorithms

in practice, all the studied initial contour shapes and sizes yield high quality segmentations

when paired with the Bernard level set algorithm, while the other three level set algorithms

should be paired with an initial contour that closely hugs the true object boundary. Lastly,

we infer from our results that non-expert paid crowdsourced workers can replace domain

expert involvement to create initial contours for biomedical images.

6.5 Conclusions

Greater wide-spread use of algorithms to successfully collect high quality segmentation

annotations relies on knowing which algorithm to choose and then how best to use it. We

found that only a few of the studied freely-available level set algorithms are designed with

assumptions that are well-suited for the studied phase contrast and fluorescence images of

cells. For the well-suited algorithms, we found that one simple detail, the initial contour,

can trigger over a 50 percent point improvement for phase contrast images. Finally, our

results show the potential of using paid crowdsourced workers without domain-specific

training to reliably and inexpensively replace domain experts in creating initial contours

that are needed to use these algorithms effectively. Our study may be a start point towards

a larger community effort to empower those applying level set methods to make an informed

choice about which algorithm to use, how to use it effectively, and how to replace their

efforts with non-experts. We encourage the reader to leverage our system so that the

number of comparison studies of this sort can grow to address a wider range of biomedical

problems important to the research community. Future work will explore how to more

efficiently utilize crowdsourcing by analyzing the reliability of crowdsourced workers and

what number of annotations are necessary. Possible future research directions also include

running the study on a larger image set and quantitatively analyzing the causes in images

that influence the successes and failures of the different algorithms and initial contours.
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Hybrid System - Predicting Computing Source

A common question individuals ask when needing to annotate images in practice is whether,

for a given image, available automated options are sufficient for their purposes or they

should instead bring humans in the loop to create accurate annotations. The knowledge

of which segmentation algorithm(s), if any, will succeed is a highly-specialized skill often

resigned to computer vision PhDs or applications specialists who have spent years studying

the variety of options. We explore the problem of automatically predicting when to use

available algorithm options versus humans for the task of demarcating object regions, i.e.,

creating segmentations.

In our work [31], we focus on intelligently recruiting human annotation work by lever-

aging predicted performance of segmentation algorithms in the absence of ground truth

segmentations. This is of interest for many applications where coarse or fine-grained seg-

mentations are needed for algorithm input or as a final result. We examine both interests

for the tasks of creating input for interactive segmentation algorithms and evaluating re-

sulting segmentations.

Specifically, one valuable application is to distribute the efforts between humans and

computers to create coarse initial outlines needed as input for interactive segmentation

algorithms [16, 48, 78]. These algorithms refine user supplied coarse segmentations in an

attempt to produce higher quality annotations which incorporate missing pieces and trim

off excess pieces. Initialization is a critical factor that can drive the success or failure of

interactive segmentation algorithms, and a one size fits all solution remains to be found.

Some researchers have suggested offloading the time-consuming, labor intensive task of
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Figure 7.1: Use a human or computer drawn segmentation?

creating coarse segmentations to crowdsourced workers [36, 44]. Other researchers have

proposed using fully-automated methods to create coarse segmentation estimates by re-

lying on simple geometric shapes such as bounding boxes [16, 48] or more sophisticated

segmentation methods [22]. We explore the plausibility of combining strengths of both

approaches by distributing the annotation task to computers when they are successful and

relying on human input otherwise.

Collecting high-quality, fine-grained segmentations is another task that can be sup-

ported by distributing annotation work between humans and computers. Segmentation of

objects in everyday, biomedical, and medical images at the fine-grained level has been ad-

dressed by numerous segmentation systems discussed in the mainstream literature [16, 48,

78], which purportedly have the potential for widespread impact. These algorithms differ

in the computational assumptions they embed that determine how to separate an object

from the background for a given image. For example, some methods assume there should

be two homogeneous intensity regions either globally [16] or locally [48]. Many researchers

agree that there is not a one-size-fits-all segmentation solution. The challenge for users

to efficiently exploit these algorithms is to know when each algorithm will succeed. Our

work examines how to automatically select a best-suited segmentation tool or recommend

human involvement when it is believed no suitable automated options are available.

A natural question is what prediction framework should one apply to decide whether
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to rely on algorithms, or pull the plug on them and use human annotations? Two types of

approaches relevant for predicting the likelihood of segmentation algorithm success have

been proposed both in the computer vision [14, 58, 75] and medical imaging [46] communi-

ties. Our work was inspired by the desire to develop a single prediction system that proves

applicable across domains, handling large variations in image content and modality.

Predicting directly from an image the probability an algorithm will succeed is one

plausible approach [58]. A crucial question, however, is whether one can detangle image

segmentation difficulty from knowledge of one’s available segmentation tools. Moreover,

a quick analysis of running multiple segmentation algorithms on multiple images often

reveals that each algorithm will produce dramatically different results and work well in

different contexts.

Another plausible approach is to predict, using an algorithm-generated segmentation,

the quality of the segmentation in absolute terms [14, 46, 75]. In general, these meth-

ods use supervised learning to build prediction systems. Specifically, for a set of images,

the system runs the segmentation algorithms, extracts features characterizing the images

and segmentation results, and then computes scores indicating the similarity of algorithm

generated segmentations to ground truth segmentations. Then, one uses machine learning

tools to learn whether some weighted combination of computed features can be combined

to predict the observed scores. Previous work used intensity based features which we found

did not generalize well in our study.

Our work is a contribution to the emerging research field at the intersection of human

computation and computer vision. Developments in crowdsourcing systems reveal it is

possible to rapidly collect large amounts of human annotation [55, 79]. We explore how to

involve humans to contribute to computing in hybrid algorithm-crowdsourcing systems.

Broadly speaking, the aim of this work is to minimize human involvement while col-

lecting accurate segmentations. Successful solutions may be applicable when one needs to

capture highly detailed, fine-grained information for shape analysis, which includes char-

acterize tumors in medical images, automatically analyze product quality in factories, and
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visualize 3D structures. Successful solutions also may be applicable for creating coarse seg-

mentations which are highly valuable starting points for solving many downstream image

analysis tasks such as object detection [40], recognition, and tracking. The key contribu-

tions of this work are:

• A method to predict the quality of candidate object segmentations in the absence of

ground truth.

• A system that predicts when to delegate the task of creating coarse segmentations

used by interactive segmentation algorithms to computers or humans.

• A hierarchical prediction system for interactive segmentation algorithms that auto-

matically identifies a best-suited initialization and then evaluates the resulting seg-

mentation.

7.1 Predicting Segmentation Quality

Our motivation is to build a reliable prediction model that indicates when a segmentation

algorithm produces a reasonably accurate object region. Given that a segmentation algo-

rithm can produce results that transition from “miserably-poor quality” to “nearly-perfect

quality” in a continuous manner, we chose a regression rather than classification tool. A

regression approach enables flexibility for different applications by not locking into a single

definition regarding what defines a “sufficient” versus “insufficient” segmentation.

7.1.1 Prediction Model

Our system uses a multiple linear regression model, a supervised learning tool. This pre-

diction model leads to easy to interpret, intuitive systems. The model can be rewritten as

y = Xβ + e where y denotes a column vector of segmentation quality scores, X denotes

the model specification matrix that specifies all observed predictor values, β denotes a

column vector of model parameters, and e denotes the vector of random errors between y

and predicted values Xβ. The objective is to learn β so that e is minimized.
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7.1.2 Training Data Generation

We want to capture in our training data the variability between good and bad segmenta-

tions that can arise in practice. Towards this goal, we have our system collect 11 binary

segmentation masks per training image. Then, our system represents each training instance

with nine features treated as predictor variables and a segmentation quality measure for

the response variable.

To ensure there are positive examples, our system creates three binary masks based on

the ground truth segmentations. The system uses the ground truth directly. Our system

also dilates and erodes the ground truth binary mask by three pixels to simulate a slightly

under-segmented and over-segmented segmentation respectively. These examples highlight

object appearances when fine details either get smoothed out or chopped off.

For negative examples, we derive a variety of binary masks from segmentation algo-

rithms to reveal their diverse failure behaviors. There are a wide array of segmentation

algorithms one could use to generate training data. We chose three fully-automated, com-

putationally fast segmentation algorithms to generate binary masks for training data that

have widespread applicability given their simplicity and availability in many image pro-

cessing tool kits. Our system applies two algorithms: Otsu thresholding and adaptive

thresholding method using the local median from a window size of 45 pixels (1-4). We

use the result and its complement. Our system also applies a third variant of adaptive

thresholding method using the local mean from a window size of 45 pixels (5). Finally, our

system applies three variants of the Hough Transform with circles method using a circle

radius of 3, 5, and 10 respectively (6, 7 & 8). For each binary mask, our system then

post-processes the results to contain exactly one object by filling all holes to address that

our chosen algorithms tend to have lots of holes in resulting segmentations. Then, our

system post-processes the results to contain exactly one object to keep only the largest

object.

Finally, to create the labeled data, for each of the 11 candidate segmentations, our
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system computes an input feature vector and an output label. To create each input feature

vector, the system computes the nine features discussed in Section 7.1.3. To create each

output label, the system computes a score indicating the quality of the algorithm-drawn

segmentation. We use the standard IoU score (i.e., |A∩B||A∪B|).

7.1.3 Prediction Features

Our motivation is to use knowledge about algorithm behavior on everyday and biomedical

images to choose predictive features (Figure 7.2, top row). We observe that when algo-

rithms “mess up” they do so amazingly well with characteristics unlike what one would

expect from widely meaningful object shapes (Figure 7.2, middle row). We propose nine

features derived from the binary segmentation mask. We hypothesize that, in aggregation,

these features may account for objects of different shapes and sizes.

Figure 7.2: We propose a method to automatically evaluate candidate segmentations. Our
design was motivated by observations of algorithm behavior when demarcating everyday
and microscopic objects captured with three fundamentally different image acquisition
systems (top row). We chose nine predictive features describing the segmentation binary
mask that characterize algorithm failure behavior (middle row) which typically is in stark
contrast to what is observed when algorithms accurately capture object regions (bottom
row).
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Segmentation Boundary. When algorithms fail, resulting segmentations often have

boundaries characterized by an abnormally large proportion of highly-jagged edges. We

implement two boundary-based features to capture this observation. We compute the

mean and standard deviation of the Euclidean distance of every point on the segmentation

boundary to the centroid. The boundary is defined as all pixels on the exterior of the object

in a binary mask using an 8-connected neighborhood. The centroid is defined as the center

of mass of the segmentation in the binary mask.

Segmentation Compactness. When algorithms succeed, proposed segmentations

are often compact, meaning that included pixels typically lie within a small distance from

each other. This region compactness is not commonly observed when algorithms fail. We

implement three features to capture this observation. Two measures compute the coverage

of segmentation pixels within a bounding region. Extent is defined as the ratio of the

number of pixels in the segmentation proposal to the number of pixels in the area of the

bounding box. Solidity is defined as the ratio of the number of pixels in the segmentation

proposal to the number of pixels in the area of the convex hull. We also compute the shape

factor to capture the circularity of the region proposal since a pure circle is a good measure

to indicate highly compact objects. It is defined as the ratio of region area A to a circle

with the same perimeter P : 4πA
P 2 .

Location of Segmentation in Image. When algorithms fail, resulting segmenta-

tion regions often lie closer to the edges of images. We compute the normalized x and y

centroid coordinates of the segmentation centroid in the image to capture this observation.

Specifically, we compute the x value of the center of mass divided by the image width and

y value of the center of mass divided by the image height.

Coverage of Segmentation in Image. When algorithms succeed, resulting segmen-

tations often do not cover abnormally large or small areas in the image. We implement

two features to capture this observation. First, we compute the fraction of pixels in the

image that belong to the segmentation. Second, we compute the fraction of pixels in the

image that belong to the bounding box of the segmentation.
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We use these features, together with the training masks discussed in Section 7.1.2, to

train the regression model.

7.2 Segmentations by Humans or Computers?

We aim to meet demands for high quality segmentations while minimizing human involve-

ment. Towards this goal, we predict when to rely on humans versus automated methods

to create segmentations. We propose a system based on a budgeted approach. Specif-

ically, if one can collect human annotations for only N% of images, we aim to best to

use that human effort. First, we focus on the problem of creating coarse segmentations

that an interactive segmentation subsequently refines. Then, we additionally consider the

budget problem of distributing the work between algorithms and humans to create final

segmentations.

Interactive Segmentation Algorithms. We include in our system three options for

interactive segmentation algorithms that are important both in the computer vision and

medical imaging communities - Grab-Cut [78], Chan Vese level sets [16], and Lankton level

sets [48]. These algorithms, from the graph cuts and level set families, represent a set of

optimization-based approaches that deform a user-provided initial segmentation, which we

call a ”coarse” segmentation in the following sections. Grab Cuts enforces color homogene-

ity and spatial proximity. Chan Vese level set method uses global image information to try

to separate an image into two homogeneous intensity regions while enforcing smoothness of

the object boundary. The Lankton level set method uses local neighborhood statistics for

each pixel to separate an object from the background so that there are two homogeneous

intensity regions within a band containing the object boundary.

Coarse Segmentation: Computer or Human? Our aim is to collect exactly one

input coarse region per image to maximize overall quality while minimizing the cost asso-
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ciated with repeatedly running an interactive segmentation algorithm. This is particularly

important for methods that take on the order of minutes or more per image, which is

commonly the case for level set based algorithms. There are two key questions underlying

building such a system for a human allocated budget: 1) how to create the initialization

for each image? and 2) which images get human input?

While ideally one could rely on a single fully-automated algorithm to create all coarse

segmentations, in practice different algorithms often work well for different conditions. We

therefore propose a system where, for each image, the decision is to either rely on one of

eight automated methods or humans to create a coarse segmentation. We apply the eight

computationally fast automated methods described in Section 7.1.2 to create the eight

candidate segmentations. Then, we apply our prediction framework to indicate the quality

of each candidate segmentation. Next, we choose the highest scoring segmentation as our

automated candidate. Finally, we sort all images from highest to lowest predicted scores

based on all selected automated candidates. We enlist human involvement for the allotted

percentage of images where predicted algorithm scores are lowest.

Fine-Grained Segmentation: Computer or Human? We propose an alternative

two stage prediction system to create high quality segmentations. In the first stage, the

prediction framework is applied to choose the best-suited algorithm to create a coarse

segmentation for every image. Then, each coarse segmentation is refined by an interactive

segmentation algorithm. In the second stage, the prediction framework is applied to all

resulting segmentations from the interactive segmentation algorithm to estimate the quality

of each result. Again, all images are sorted based on highest to lowest predicted scores

characterizing the quality of the segmentations. Finally, humans are recruited for the

allotted percentage of images where predicted scores are lowest.
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7.3 Experiments and Results

We conducted studies to both analyze the power of our prediction framework to accurately

evaluate candidate object segmentations and estimate the value of our system to more

efficiently allocate human resources when using interactive segmentation algorithms.

We conduct our studies using three public datasets representing three imaging modal-

ities: Boston University Biomedical Image Library (BU-BIL:1-5) [37] includes 271 gray-

scale images coming from three fluorescence microscopy image sets two phase contrast

microscopy image sets, Weizmann [4] consists of 100 grayscale images showing a variety

of everyday objects, and finally Interactive Image Segmentation [30] (IIS) includes 151

RGB images showing a variety of everyday objects. Each of these datasets come with

pixel-accurate ground truth segmentations for evaluation purposes.

7.3.1 Predicting Quality of Candidate Segmentation

We analyzed the predictive power of the proposed model to evaluate a given segmentation

in the absence of human input. We evaluated and compared prediction models using

Pearson’s correlation coefficient (CC) and mean absolute error (MAE). CC indicates how

strongly correlated predicted scores are to observed scores. Values range between +1 and -1

inclusive, with values further from 0 indicating stronger predictive power of a model. MAE

is a linear measure that indicates the average size of prediction errors when negative signs

are ignored. It is the mean from all computed absolute values of the differences between

the predicted and observed IoU scores.

To train and test our model, we used the code from the freely-shared data mining system

Weka [38] to solve for the model parameters β0, β1, β2, ...βk. It takes as input n tuples,

each consisting of k observed predictor variables followed by the observed response. We

used the M5 greedy feature selection option to iteratively evaluate each model parameter

and eliminate any parameters that do not yield prediction improvements. We created 11

candidate segmentations per image using the methods described in Section 7.1.2 to create
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Table 7.1: Evaluation and comparison of our model and the baseline method CPMC at
predicting the absolute IoU score indicating the quality of a candidate segmentation in
the absence of human input. We evaluate with respect to two evaluation metrics on three
datasets: correlation coefficient (i.e., CC) and mean absolute error (i.e., MAE). We report
performance scores for our method both for training and testing exclusively on one set of
images (“Ours: Single-Dataset”) as well as when testing on one dataset and training on
the other two datasets (“Ours: Cross-Dataset”). Higher CC scores are better and lower
MAE scores are better.

Image Library (# segs): BU-BIL (2981) Weizmann (1100) IIS (1661) All (5742)

Evaluation Metric: CC MAE CC MAE CC MAE CC MAE

Ours: Single-Dataset 0.69 0.18 0.69 0.2 0.78 0.18 0.68 0.2

Ours: Cross-Dataset 0.61 0.31 0.64 0.24 0.68 0.22 NA NA

CPMC 0.36 0.33 0.61 0.32 0.67 0.31 0.53 0.32

a total of 5,742 segmentations which we characterized for training and testing.

Ours: Single-Dataset Predictions. We analyzed the proposed prediction framework per

dataset. We evaluated three models that were dataset-specific (i.e., Weizmann, IIS, BU-

BIL) as well as one model built using the combination of images from all datasets. For

each of the four models, we trained and tested our linear regression model using 10-fold

cross-validation. We used the predictions for all images collected from the ten partitions to

compute the correlation coefficient and mean absolute error scores (Table 7.1, row 1). Our

approach performed well with high correlation coefficients and low mean absolute scores.

Ours: Cross-Dataset Generalization. To analyze whether the success of the prediction

models is due to over-fitting to statistics from a particular dataset, we evaluated how well a

prediction model trained on two of the datasets performs on the third dataset (Table 7.1,

row 2). Surprisingly, we found the models continued to be very effective, even when trained

on two everyday image sets and applied to biomedical images representing two imaging

modalities not observed during training. This is possibly because resulting binary masks

when algorithms fail tend to be consistent across datasets.

Baseline. We compare our model to that used in the CPMC system [14], which also

predicts a IoU score indicating the quality of a given segmentation for a given image. We

used the publicly available code shared by the author. The CPMC prediction system was
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trained on everyday images using a non-linear random forests regression model and a mix

of 34 intensity-based and shape-based features. We applied the system for each algorithm-

generated segmentation and used all the predictions to compute the CC and MAE scores

(Table 7.1, row 3).

While the CPMC method was designed to generalize across different object types, it

was less precise than our model on all studied datasets. One possible reason for this

performance difference is due to our advantage in having trained and tested our system

with segmentations created by the same algorithms. This suggests a possible value in

learning the statistics of specific tools one intends to use in systems rather than relying on

one size fits all approaches. The results also reveal a plausible limitation that the CPMC

method does not generalize well for objects observed in images captured with different

image acquisition technologies (e.g., phase contrast and fluorescence microscopy imaging).

7.3.2 Interaction Tools - Human vs Computer Input

With interactive image segmentation tools, the user is asked to provide an initial segmenta-

tion which will subsequently be refined. Currently, users either create the initial segmenta-

tions by relying exclusively on automation [16, 22, 48] or human involvement [36, 44]. We

examined the trade-off between quality and human effort when combining both approaches.

We ran our study on all 522 images in the three image sets (i.e., BU-BIL, IIS, Weizmann).

We evaluated the impact of our prediction framework with three interactive segmentation

tools: grab cuts, Lankton level set algorithm, and Chan Vese level set algorithm.

For each interactive segmentation tool, we compared our method with four other meth-

ods. We made comparisons by evaluating how the allocated amount of human annotations

relates to the quality of segmentations created by the interactive segmentation tools. In

particular, better methods would yield higher quality with less human effort.

- Our Predictor: We used the method discussed in Section 7.2 with the cross-dataset

predictions discussed in Section 7.3.1 in order to avoid biasing our system to learn the
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statistics for a particular image set.

- Perfect Predictor: We replaced the predicted score for our method (Section 7.2) with

the actual IoU score that indicates the similarity of each candidate segmentation with the

ground truth segmentation. This influences both the input segmentation chosen per image

as well as which images get allocated human input. This predictor demonstrates the best

one can expect with our system.

- Chance Predictor: We randomized the selection of an algorithm among the eight seg-

mentation options (Section 7.2) and the order of images. This influences both the input

segmentation chosen per image and images allocated human input. This predictor demon-

strates what one may expect from random distribution of annotation efforts to available

human and computer resources.

- Bounding Box: We used a bounding box as the initial segmentation for all images. To

do this, we remove n pixels from all sides of the image region. We set n for each image to

be 5% of the number of pixels in the minimum image resolution dimension. We randomly

selected images for human involvement.

Following Jain and Grauman [44], we simulated coarse human input from computer

generated segmentation by dilating the ground truth segmentations by 20 pixels.

In total, we evaluated 7,830 resulting segmentations created using five initialization

methods with three interactive segmentation tools. We evaluated overall segmentation

quality when we used human input for the following percentages of images for each of

the three interactive segmentation algorithms: N = 0, 5, 10, ..., 100%. Results demonstrate

that a single prediction model which instructs how to distribute annotation efforts between

humans and computers successfully led three interaction tools to produce higher quality
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Figure 7.3: Different methods for distributing the effort to create coarse segmentation input
between humans and computers leads to different results for three interactive segmentation
algorithms (a-c). Each plot shows the mean IoU score indicating the overall quality for
522 segmentations created for everyday and biomedical images from three datasets as a
function of varying levels of human involvement. Boundary conditions include exclusively
choosing the segmentations created by automated options (0% human involvement) and
human input (100% human involvement).

results at significantly reduced human costs than observed using random prediction schemes

(i.e. chance predictor, bounding box) (Figure 7.3). Given that the best practitioners

can achieve today is chance prediction, these findings can lead to immediate, practical

implications for more effective use of interactive segmentation tools today.

Impact of Initialization. Using a good initialization as input is clearly important

for interactive algorithms to produce the best segmentations they can (Figure 7.3). As

observed in the three plots, each algorithm performed the worst when only relying on

algorithm input (i.e., 0% human involvement) and steadily improved in performance as the

allocated human input budget increased. However, some algorithms performed best when

relying strictly on human input (i.e., 100% human involvement) while other algorithms

performed best when relying on a combination of algorithm and human input. Two of

the three algorithms always performed better when initialized with the collection of eight

candidate segmentation options studied in this paper (i.e., perfect predictor) than with

the commonly used bounding box [16, 48]. We hypothesize Grab Cuts initially performs

better when initialized with bounding box because this algorithm always shrinks the initial

segmentation which may be a poor behavior for some of the predicted input. In practice,
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Figure 7.4: Sample results from the Grab Cuts algorithm when it is initialized using
three fully automated methods: bounding box, randomly chosen method among eight
automated options, and predicted best choice among eight automated options. As observed
in the ”Successes”, the quality of segmentation results are higher when using well-chosen
initial segmentation estimates (Our Predicted Input) rather than arbitrarily chosen initial
segmentation estimates (Random Input, Bounding Box). As observed in the ”Failures,”
an initial segmentation estimate that does not fully contain the object of interest can lead
to poor segmentation results.

our prediction system, which determines how to distribute work between humans and

computers, significantly outperformed random decisions (i.e., chance predictor, bounding
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box) for all budget levels for two of the three studied interactive segmentation algorithms.

Exemplar results illustrate the performance of the Grab Cut algorithm when initialized

using the three fully-automated methods: our predicted segmentation option, a randomly

selected segmentation option, and a bounding box (Figure 7.4).

Comparison of Interactive Segmentation Tools. The results demonstrate that

picking a good initialization is not sufficient to guarantee high quality segmentations from

interactive segmentation tools (Figure 7.4). All algorithms performed poorly when relying

exclusively on human input. Only Lankton level sets demonstrated high potential as a one

size fits all segmentation tool. We hypothesize this difference is because the Lankton level

set algorithm relies on local information to refine boundaries which is in contrast to Chan

Vese and grab cut algorithms which rely on global image information. Also surprising is

the observation that different algorithms responded very differently to bounding box input.

While it was insufficient for Lankton level sets which predominantly fails to propagate the

shape to the true segmentation due to the inadequacy of the local information, it regularly

was a reasonable input for the grab cut algorithm which always shrinks the initialization

using global information. Performance of the three interactive segmentation algorithms

initialized with the same input are illustrated in Figures 7.5 and 7.6.

7.3.3 Interaction Tools - Human vs Computer Output

Given that optimally initialized interactive segmentation algorithms often fail to yield

high quality segmentations, users continue to face the challenge of how to exploit these

algorithms only in the contexts they will succeed. We analyzed the effectiveness of our

prediction framework to automatically decide when to recruit crowdsourced annotations

to replace computer-drawn segmentations. We conducted a case study with the Weiz-

mann dataset to evaluate the value of our two stage hierarchical prediction system (see

Section 7.2, last paragraph) in practice. We conducted this study three times with the

three aforementioned interactive segmentation tools.

Implementation. We used our prediction framework to both select input and output
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Figure 7.5: Sample results for the everyday images (i.e., Weizmann and IIS). See the
previous figure for the explanation of the image layout. In some cases, an interactive
segmentation algorithm can perform well when using a low quality segmentation as input,
as observed for the image of the sheep (row 6, Grab Cut algorithm). In other cases, none
of the interactive segmentation algorithms perform well when initialized with a low quality
segmentation, as observed for the image of the person (row 4).

from interactive segmentation algorithms. In stage 1, to initialize interactive segmen-

tation tools, we used our prediction system to choose the highest quality automatically
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Figure 7.6: Sample results for the biomedical images (i.e., BU-BIL). Raw images (col 1)
and the predicted input option from eight automatically generated options (col 2), followed
by the resulting segmentation from the grab cut algorithm (col 3), Chan Vese level set
algorithm (col 4), Lankton level set algorithm (col 5). The ground truth segmentation is
shown in column 6. In order to produce segmentations that resemble the ground truth,
interactive segmentation algorithms require sufficiently accurate segmentation input as
well as suitable mathematical assumptions that match properties of each given image. All
interactive algorithms can produce similar results, as observed in row 2. Each interactive
algorithm can also produce dramatically different results from each other, as observed in
row 4.

generated segmentation (i.e., largest expected IoU score) among the aforementioned eight

fully-automated options, as described in Section 7.3.2. We trained our prediction model on

images from IIS and BU-BIL to avoid over-fitting our model to statistics of the Weizmann

dataset. In stage 2, after initializing the interactive segmentation algorithm, the system
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then predicts the expected quality, in terms of an IoU score, of the resulting segmentation.

Our prediction model to evaluate resulting segmentations came from the cross dataset

training across all images discussed in Section 7.3.1.

For human input, we relied on crowdsourcing to collect human annotations. We re-

cruited crowdsourced workers from the Amazon Mechanical Turk internet marketplace to

create annotations using the on-line image annotation tool LabelMe [79]. We accepted all

Mechanical Turk workers that had previously completed at least 100 jobs and received at

least a 92% approval rating. We paid each worker $0.02 to complete the drawing task for

a single image. To overcome concerns about trusting annotations from a single annota-

tor, we collected five drawings per image and then fused these annotations into a single

annotation by labeling pixels as foreground only when the majority of images mark it as

foreground. The segmentation was then post-processed to have a single object by filling

holes and keeping the largest object.

System Evaluation. As done in the previous study, we compared our prediction

framework to perfect predictions as well as chance predictions to decide when to use humans

versus computers. We found that our prediction model, without training for the statistics

of the interactive segmentation algorithms, still could lead to higher quality predictions

Figure 7.7: Predicting when to replace segmentations created by three optimized interactive
algorithms (a-c) with annotations created by crowdsourcing improves overall quality for
100 everyday images (i.e., Weizmann dataset). Boundary conditions include exclusively
choosing the segmentations created by the single algorithm (0% human involvement) and
crowdsourcing (100% human involvement).
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than by chance (Figure 7.7). We hypothesize our system performed poorly for Chan Vese

results because the algorithm strongly enforces a smooth boundary which, our prediction

model uses to assess segmentation quality. Overall, a simple step yielded higher quality

annotations.

7.4 Conclusions

We sought to build systems that utilize the expertise of available computer and human re-

sources to efficiently produce high quality segmentations. Our proposed prediction frame-

work successfully evaluated the quality of candidate segmentations for our datasets, with

stronger predictive capabilities than existing widely-used methods. We demonstrated this

framework could successfully be leveraged to solve two novel tasks that involve intelli-

gently distributing the annotation effort between algorithms and humans. While our work

demonstrates clear benefits for applying our prediction framework as is to solve these seg-

mentation tasks, our ultimate aim is to build a prediction system that is agnostic to the

segmentation method, imaging modality, and object type.



Chapter 8

Closing Remarks

While in a perfect world image segmentation would be fully-automated, the unfortunate

reality is that many segmentation tasks remain open problems today, despite decades of

research from the computer vision community. We demonstrated the effectiveness of three

hybrid system designs to produce superior results for the segmentation task compared to

widely adopted stand-alone algorithm and crowdsourcing methods. Moreover, we demon-

strated it is possible to achieve expert-grade annotations on biomedical and medical images

with a hybrid system. While the merit of this research has already been recognized by two

Best Paper awards [32, 36], the findings and recognition to date underscore the enormous

potential for algorithmic-crowdsourcing approaches to benefit image and video analysis

more widely. We hope that this work will encourage other researchers to explore hybrid

system designs that may more effectively combine the strengths of crowd workers and al-

gorithms to replace expert annotation efforts. Furthermore, we especially hope that this

work will inspire future research that addresses challenges related to annotating biomedi-

cal and medical images, given that such improvements stand to benefit society at-large by

addressing health problems.
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